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Abstract

Background: Linkage studies often yield intervals containing several hundred positional candidate genes. Different manual
or automatic approaches exist for the determination of the gene most likely to cause the disease. While the manual search is
very flexible and takes advantage of the researchers’ background knowledge and intuition, it may be very cumbersome to
collect and study the relevant data. Automatic solutions on the other hand usually focus on certain models, remain ‘‘black
boxes’’ and do not offer the same degree of flexibility.

Methodology: We have developed a web-based application that combines the advantages of both approaches.
Information from various data sources such as gene-phenotype associations, gene expression patterns and protein-protein
interactions was integrated into a central database. Researchers can select which information for the genes within a
candidate interval or for single genes shall be displayed. Genes can also interactively be filtered, sorted and prioritised
according to criteria derived from the background knowledge and preconception of the disease under scrutiny.

Conclusions: GeneDistiller provides knowledge-driven, fully interactive and intuitive access to multiple data sources. It
displays maximum relevant information, while saving the user from drowning in the flood of data. A typical query takes less
than two seconds, thus allowing an interactive and explorative approach to the hunt for the candidate gene.

Access: GeneDistiller can be freely accessed at http://www.genedistiller.org
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Introduction

In recent years, genetic defects have been discovered for

many monogenic diseases through linkage analysis, candidate

gene approaches or a combination thereof. Crucial for this

success were the access to large affected families in sufficient

numbers or the availability of animal models that closely

mimicked the human disease phenotype. However, of more

than 25,000 human protein coding genes listed in the Entrez

database, less than 2,000 have been associated with human

disease phenotypes [1]. Geneticists are increasingly confronted

with smaller families affected with rare conditions that carry

‘‘private’’ mutations. Nevertheless, elucidation of the gene

defects in such single families has opened whole new research

areas (e.g. the KE family for FOXP2 [2] in language

development and the ‘‘Muscle baby’’ for Myostatin in muscle

research [2,3]). Linkage analyses of these small pedigrees have

thus to be performed with relatively few meioses leading to more

than one or to larger candidate intervals over 10 cM, whose

LOD scores may remain below the threshold for significance of

3. Such large intervals may contain several hundred genes that

have to be prioritised for mutation screening before labour and

cost intensive gene sequencing is initiated.

The conventional manual approach usually does not follow any

strict algorithm but is guided by the background knowledge and

expectations of the researcher (Figure 1). In a conventional setting,

this involves a search for all known genes in the linkage interval

and a subsequent query of different databases to gather available

data and extract the relevant information for prioritisation.

Assessment of the validity of a positional candidate requires a

thorough knowledge of many data relevant to the gene or protein

of interest. Most of this information can be found on the Internet,

but it is tedious to collect the fragments from different data

sources. While some tools offer maps showing all genes within a

region (NCBI MapViewer [4], UCSC Genome Browser [5])

without any gene-specific information, others (GeneCards [6])

feature detailed genetic data but only for one single gene at a time.

Besides, all these tools suffer from the lack of more elaborate query

options refining the output to a well-defined group of genes.

In the past, several interactive, automatic or semiautomatic

approaches to search for disease genes have been proposed [7] or

implemented such as Endeavour [8], GeneWanderer [9],

GeneSeeker [10], GeneSniffer (http://www.genesniffer.org/),

PosMed (http://omicspace.riken.jp/PosMed/) and SUSPECTS

[11]. Some applications classify genes based on sequence features

[12], or use protein-protein interaction networks [9,13] while
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others (GeneSeeker, SUSPECTS) combine different approaches.

For the researchers, however, the algorithms of these programs

remain largely inaccessible. In a meta-test of three software tools

for automatic gene prioritisation of positional candidate genes the

authors recommend to exert caution in relying solely on single

positional candidate prioritisation tools [14]. In any case, a

researcher would usually want to read relevant gene specific

information for the proposed candidate genes her- or himself

before embarking upon a large sequencing project.

GeneDistiller is aimed at various strategies. It can either be used

as a tool to query, select and project genes from within a linkage

interval together with gene specific data or to display rich

information on human candidate genes obtained with other

prioritisation tools or of the researcher’s interest. Besides, it offers a

customisable user-driven prioritisation integrating the available

data as specified by the researcher. The application is web-based

and features an intuitive interface which enables the researcher to

formulate simple queries without the need to read a software

manual before, yet allowing more complex queries. The software

returns all results on one HTML page which can easily be printed

or saved. The kind of information included is determined by the

researcher. Since the results of a search are presented on the fly,

the software offers a high degree of interactivity, allowing the

researcher to quickly change some parameters to follow new ideas

which may arise when reading the results. She can thus explore the

data with the help of the computer and combine newly gained

insights with her background knowledge (Figure 2).

Results

Strategies
GeneDistiller offers different approaches to determine the most

likely candidate genes:

Projection. GeneDistiller can list all genes within a linkage

interval together with gene specific information. Among the

different kinds of gene specific data, the researcher can select those

relevant to her and print and read this information for all

positional candidates to choose the most promising gene. This

approach can be very helpful if she has only a vague idea of the

disease causing gene.

Selection. The researcher can apply filters to the genes in the

linkage interval, thus narrowing down their number to a small

group of more promising candidates (Figure 3). This approach

should be applied when the researcher is able to define conditions

Figure 2. The GeneDistillery. The user-friendly interface allows the researchers to incorporate their background knowledge about diseases and
genes into the interactive ‘‘gene distilling’’ process. They can extract all the information relevant to their specific question at our one-stop shop. This
saves them from drowning in the flood of data available on the WWW and helps them to determine the most promising candidates.
doi:10.1371/journal.pone.0003874.g002

Figure 1. Strategies / Possibilities. This scheme illustrates different approaches to choose reasonable candidate genes from a linkage interval.
The researcher can either follow a hypothesis driven approach based on a functional model or simply choose genes based on single properties
reflecting the likelihood of being disease causing, e.g. the co-expression with other disease genes that cause similar phenotypes. The general
concepts are depicted as pink boxes, gene properties that can be queried by GeneDistiller as yellow boxes, and properties or models GeneDistiller
presently does not offer as blue boxes. With GeneDistiller, the user is absolutely free to combine gene properties according to her or his own
hypotheses.
doi:10.1371/journal.pone.0003874.g001
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that must be fulfilled by the candidate gene, e.g. expression in a

certain tissue or co-expression with another gene. Alternatively,

‘‘visual’’ filters can be used to highlight gene properties so that no

gene will be excluded.

Sorting. Genes can be sorted according to certain parameters,

e.g. their position, tissue specific expression or likelihood to encode

mitochondrial proteins.

Prioritisation. GeneDistiller offers a user-driven prioritisation

function which ranks genes according to the researcher’s

specifications. Prioritisation approaches should be used when the

researcher cannot exclude any gene in advance but wants to focus on

the genes in falling order of ‘‘apparent’’ relevance.

The user is free to combine these methods to follow a strategy

which best suits the problem, e.g. she can exclude genes using

filters, choose the parameters to be used in the prioritisation

process, select those to be displayed in the output and highlight

interesting properties.

Application of the different strategies
While some researchers prefer to read the available information

for all genes within a candidate interval, others may rather narrow

down the number of genes beforehand and focus on those fulfilling

certain conditions that are regarded as mandatory. We describe

the application of the two latter approaches which are more

complex and most commonly used, selection (filtering) and

prioritisation, here together with valid ‘‘real life’’ examples. More

examples are given on our website and help page.

Selection (Figure 3). Imagine, a candidate locus for epilepsy

could be mapped to a 60 Mbp region on chromosome 2. Entering

the markers limiting the interval will yield 362 genes. Since

epilepsy is a common disease and a well-studied subject, the

researcher might wish to focus on those genes that are known to

show a suitable phenotype in an animal model. She thus filters the

genes for their described mouse phenotypes. By selecting nervous

system phenotype and behaviour/neurological phenotype from the MGD

phenotypes drop-down menu and limiting the query to the respective

genes, the number of genes can be significantly reduced to 35

genes which are linked to at least one of these phenotypes. A

further condensation can be reached when the descriptions for

human phenotypes are considered: The researcher enters the

broad term brain into the field highlight these keywords and restricts the

search to genes in whose descriptions one of these keywords

appear. The more specific word epilepsy is not used because she

does not want to restrain her search to genes already known to

cause epilepsy in humans. The list now contains 25 candidate

genes. Since a gene responsible for epilepsy is likely to be expressed

in brain, she now opens the expression tab and selects .1 (x median)

for the expression in whole brain. Restriction to the genes with an

expression above the median can be reached when show only genes

fulfilling the conditions is selected and will yield 17 genes. From

functional studies with her patients she knows that the prefrontal

cortex might be involved and decides to focus on genes with a

notable expression there. Setting a filter for prefrontal cortex expression

.3 (x median) and connecting both expression filters with AND

shortens the list to only 7 genes. As many epilepsy genes involve

ion channels she could further reduce the number of genes by

adding the Gene Ontology ID for ion transport (GO:0006811) into

the highlight these GO IDs fields and restrict the search to those

carrying this GO ID or a subclass. Now, only 2 genes, SCN1A and

SCN3A remain in the list both of which are excellent candidates for

an epilepsy phenotype.

Prioritisation. For prioritisation the researcher can easily

incorporate his or her background knowledge and follow various

search avenues alone or in combination. GeneDistiller features

Figure 3. Filtering. This figure shows how filters can be applied in GeneDistiller to reduce the number of genes to be studied. After defining the
linkage interval, more and more selection criteria can be added by the researcher, narrowing down the genes to ever more likely candidates. The
example depicts the hunt for candidate genes for epilepsy in a 60 Mbp region on chromosome 2. The size of a rectangle is proportional to the
number of genes and the grey shades reflect the ‘‘distillation’’ process in which the best candidates are enriched.
doi:10.1371/journal.pone.0003874.g003
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predefined models suitable for the common approaches for

prioritisation. In the output, GeneDistiller shows scores for each

of the parameters chosen for the prioritisation so that the

researcher can easily modify the weights given to the different

parameters if she wants to shift the focus to certain aspects.

The disease under investigation may have a similar phenotype

as a disease with a known gene defect or a transgenic mouse

model. In this case the search comprises genes within the

candidate region that are either known to be causing a similar

phenotype in humans or mice or relate to disease-causing genes by

experimentally proven protein-protein interactions, function in the

same biochemical or signal transduction pathway, sequence

similarities, similar protein domains or entries in the Gene

Ontology [15] or share similar mRNA expression patterns. The

latter approach stands in analogy to the credo of the neurophys-

iologist ‘‘Neurons that fire together, wire together’’, changed into ‘‘Disease-

linked genes more or less, co-express’’. The set of known disease genes

can either be defined by their gene symbol or gene ID or retrieved

from the database by specifying suitable OMIM IDs or terms.

Genes may also be prioritised according to their suspected

functional properties. The positional candidate may belong to a

certain functional group of genes (e.g. various sodium channel

proteins in Generalised Epilepsy with Febrile Seizures (GEFS+)

[16]), biochemical pathways (e.g. O-glycolysation defects in

congenital myopathies; FCMD, POMGNT1, POMT1, POMT2,

LARGE [17]) or sub-cellular organelles (e.g. impaired mitochon-

drial protein synthesis in mutations of mitochondrial elongation

factors EFG1 and TSFZ [18,19]).

Let us imagine the same situation as depicted in the example for

the selection approach with the same linkage interval. Instead of

filtering the data for genes fulfilling all criteria, the genes within the

linkage interval can also be prioritised according to their similarity

to genes already known to cause epilepsy. Here, the predefined

model prioritise with focus on possible pathways is chosen. We apply all

our background knowledge to the query, i.e. we want to focus on

genes with the assigned term brain, with known nervous system

phenotype or behaviour/neurological phenotype in mice, expression in the

relevant tissues and phenotypic, functional and expression

similarities with genes known to be involved in epilepsy (Figure 4).

As with the filtering approach, the best candidate, SCN1A, appears

on top of the list. Here, however, no genes are discarded so that

the researcher can scroll from the most to the least promising

candidate, read the gene specific data and also their accordance to

the prioritisation model as a whole and for every single parameter

(Figure 5).

Database schema and contents
The GeneDistiller database stores data from various sources

that are most frequently considered by researchers when manually

searching for candidate genes. All gene-specific data is stored in

satellite tables connected to a central database table GENES in

which the genes are defined. These connections are either

modelled as 1:1, 1:n or m:n relations, depending on the nature

of the data. The database schema therefore resembles the query-

optimised star schema found in many data warehouses (the

database schema can be found on GeneDistiller’s website).

Whenever database entities are defined by a stable numeric ID

in their original environment, GeneDistiller uses this ID to

facilitate later updates and hyperlinks to the original source. If such

an ID is not available and m:n relations must be modelled, an

internal serial numeric ID is used instead. This is also the case

when data from different sources are mixed in one table, e.g. for

SNP markers which are not all necessarily included in dbSNP. In

the schema, SNP and STR markers are not directly connected to

the genes. If marker and gene information is mixed in a query,

their physical position will be used.

The database schema makes extensive use of constraints to

guarantee referential integrity and to exclude worthless informa-

tion (e.g. genetic markers without a position). Dubious data (e.g.

markers with more than one position, except for gonosomal

markers) is either excluded or this state is indicated.

GeneDistiller includes the following data: Genes, gene positions,

gene RIFs, gene ontology, cellular localisation of gene products,

transcripts, exons, OMIM reports, mouse phenotypes, protein-

protein interactions, gene expression data, protein domains, SNP

markers, STR markers. A list of the external data presently

integrated in GeneDistiller is given in Table 1. More data will be

added in the future according to our and the community’s needs.

Whenever such data is displayed, a hyperlink to the original data

source is generated so that users have the chance to easily drill-

down the information. Besides, links to Genbank files via BioMart

[20] and to Exon-Primer (http://ihg2.helmholtz-muenchen.de/

ihg/ExonPrimer.html) are presented so that the researchers can

directly choose their sequencing primers without the need to

manually query a sequence database.

The data stored in the database is updated in regular intervals of

3 months. Further updates are performed whenever new data

sources are integrated. Here again, the strict quality control

measures described above are applied. Whenever data is queried,

a time-stamp is printed indicating the last update or version of the

data.

Interface
GeneDistiller is web-based; all interfaces are ordinary HTML

pages without any Java applications to be installed. In the query

interface (Figure 4), parameters are grouped into distinct blocks.

Some more advanced parameters such as tissue-specific expression

are not shown by default but all blocks can be switched on and off

at the researcher’s will.

To use GeneDistiller, in a first step, the possible candidate genes

have to be chosen. They can either be positional candidates from a

linkage interval or functional candidates. In the former case, the

interval can be defined by entering its position or limiting markers,

in the latter case, gene symbols or Entrez gene IDs can be

specified. The researcher can now select which information shall

be included in the output (or stick to the default settings suitable

for a first glance). Using these settings, the selected data would be

shown for all genes within the candidate interval.

To reduce the number of genes, filters can be applied by

specifying conditions. These can be defined either by selecting one

or more values from select boxes (when only a limited number of

values is stored in the respective database table, e.g. mouse

phenotypes) or by typing values. Depending on the parameter, the

corresponding property table is either searched for tuples with

exactly this value (e.g. GO IDs) or a full-text search is performed

(e.g. OMIM reports). When numeric values are stored in the

database, comparison operators (,, = , .) can be applied (e.g. for

gene expression data). When the researcher does not want to

exclude genes but to emphasise those fulfilling the conditions, the

highlighting function can be used. In this case, keywords occurring

in the text or matching values will be printed in bold and, in full-

text, colour.

GeneDistiller supports the researcher with the option to sort or

prioritise the genes so that the more likely candidates appear on

top of the list. For sorting, a single parameter such as expression

similarity or likelihood of incorporation into mitochondria can be

chosen. Prioritisation offers even broader possibilities as different

parameters can be combined into the ranking. The researcher can

GeneDistiller
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choose between different predefined settings for different prior-

itisation strategies (which focus on distinct approaches, e.g.

similarity or tissue-specificity) and is absolutely free to choose

further parameters to be included or lay more or less weight on

any of them. When prioritisation is applied, a detailed prioritisa-

tion score is printed for each gene so that it becomes clear which

parameter causes a gene to be highly ranked. Since a typical query

takes less than 2 seconds, the researcher can easily modify his or

her prioritisation settings on the basis of the results. The whole

prioritisation process is therefore completely transparent and user-

driven and allows a fast, intuitive, interactive and explorative

access to the results.

Output
GeneDistiller prints the results of a query in HTML format.

The resulting page (Figure 5) does not make use of colour unless

to highlight keywords chosen by the user. The genes are

presented together with all the desired data in an order specified

by the researcher and visually separated to increase readability.

The page also includes hyperlinks to the original data to simplify

access to more detailed data which might exist on the website of

the data source. Below the actual data, a timestamp or version of

the data is displayed. The page can be printed or saved for later

use. The output also features two hyperlinks, one to the results

page and one to the query interface with all current settings.

Bookmarking this hyperlink allows a researcher to return to the

query interface and change the query at any time without having

to fill out the form once again. It can also be shared with other

researchers so that they can refine the search on the basis of their

own background knowledge or focus and eventually return their

concept as another bookmarked query instead of a static list of

genes.

GeneDistiller can also be called and used from other

applications. Since all settings, e.g. regions, gene lists, information

to be displayed filtering criteria etc., can be specified in the call,

GeneDistiller can easily be integrated into other applications. This

can be especially worthwhile for prioritisation tools which could

extend their list of suggested candidate genes with gene specific

data from GeneDistiller, hence facilitate the decision to exclude

certain genes from sequencing.

Discussion

GeneDistiller is aimed at the geneticists themselves. We have

therefore developed an interface that is relatively easy to use.

While this makes the use of GeneDistiller quite intuitive, queries

with a high degree of complexity are not feasible. For example,

filters for different kinds of data are always joined by AND. While

an interface allowing to enter the Boolean logic might be useful to

some bioinformaticians, we believe that it would tend to confuse

the majority of geneticists.

Our software differs from the existing prioritisation tools

because we deeply integrate the geneticist into the gene hunting

process. In our opinion, the researcher’s background knowledge

and the human mind’s capabilities to spontaneously associate

information bear a potential that is neglected by automatic

solutions. In these, the researcher can give some information about

the nature of the disease before the data mining begins and

exclude (negatively select) suggested candidates afterwards but he

is not able to quickly apply his background knowledge in between,

i.e. on the basis of the results. This is further complicated because

most prioritisation tools lack the capability to display gene specific

data comprehensively. Reading the rich information printed by

GeneDistiller could also lead the researcher spontaneously to

completely new ideas, he might thus discover something he did not

expect.

However, GeneDistiller is not meant as a replacement for the

existing prioritisation tools. It does for example not at all offer the

same degree of sequence comparisons or evaluation of interaction

networks, calculations in which computers easily outperform

humans. We regard our software and automatic solutions as

supplemental approaches which should be combined when a

prioritisation strategy is applied. If a researcher decides to solely

rely on automatic prioritisation, GeneDistiller could be a valuable

resource to gather information about the candidate genes to

exclude some of them before the cost-intensive sequencing process

is started.

At present, GeneDistiller only offers information about human

genes. We are currently integrating mouse data, as mice are often

used as a model organism in gene hunting. Depending on the use

of GeneDistiller by the community and suggestions from the users,

other species, especially rat, might be added in the future.

Methods

Implementation
Database. The GeneDistiller database runs on PostgreSQL 8

under Debian Linux on an Intel QuadCore server with 8 GB of

RAM. It uses a strictly conventional schema, no special data types

or objects are used. Tables are connected with foreign keys to

ensure referential integrity. The database schema is query-

optimised and makes use of indexes whenever an attribute is

referenced or frequently included in queries.

Interfaces. All database user interfaces are web-accessible

using plain HTML and, for some functions such as the on-line

help, JavaScript. The query interface is dynamically generated

from a template, so that its elements can be created according to

the database contents and to allow the form to be filled out with

user settings specified in a GET or POST request. These settings

can either be included in a hyperlink given together with the

results or in a request made by another software when

GeneDistiller’s light API is used. To reduce the server’s load, a

static version of the query interface is created whenever data has

changed and used when not called with parameters. The interfaces

were developed with Firefox 2 and also tested on Internet Explorer

7 but so far, no problems with older versions or other browsers

have been reported.

Software. The software behind the interfaces was

programmed in Perl 5.8. Submitted data is read using the CGI

module, HTML::Template is used to create the query interface,

database connections are made with the DBI module and the

DBD::Pg database driver, bar charts are created with the GD

module and the Statistics::Basic::Correlation module is used to

calculate Pearson correlation for expression data.

Figure 4. Prioritisation / query interface (screenshot). This figure shows the query interface of GeneDistiller for the prioritisation example for
epilepsy described in the text. The interface is divided into different sections in which the parameters describing a similar aspect of the gene-specific
data are listed. Sections not used can be closed (e.g. ‘‘prioritisation settings’’). Please note that most of the available tissues in the expression section
are omitted to improve readability.
doi:10.1371/journal.pone.0003874.g004
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For prioritisation, the users can select among different predefined

schemes for common approaches, e.g. tissue specific expression or

similarity with known disease genes. If a prioritisation approach has

been selected, the prioritisation section will open in the interface and

the preset weights assigned to each parameter will be filled in by

JavaScript. Users are absolutely free to change these settings to

values that better reflect their own preconception. After the database

was queried, all genes are scored according to their parameters’

fulfilment of the settings made in the query interface and the weight

assigned to each positive match. The genes are subsequently re-

ordered by their scores.

Expression similarity is calculated using Pearson correlation.

For this, the mean expression in any available tissue is used. This

value can be used for prioritisation (multiplied by the user-defined

weight), sorting and filtering. In the latter case, only genes with a

correlation higher than the specified factor are shown.

The computation of the similarity of the user specified tissue

specific expression is performed by comparison of each tissue’s

expression/median with the specified value. If the value is above

the user input and the operator is ‘greater then’ or if it is below

and ‘smaller then’ was selected, a positive score will be

generated; in other cases the score will be negative. The score

is calculated by division of the real expression/median by the

user entered value, if the result is negative, the inverse will be

taken. All scores for one gene are added to generate the final

similarity score.

Figure 5. Results page (screenshot). GeneDistiller prints all results on a single HTML page. The genes are listed in the selected order, in case of
prioritisation strategies also with their over-all scores and sub scores for different parameters. The gene specific data is presented with hyperlinks to
the original data sources. Keywords or values that were used for filtering or highlighting are printed in bold letters. The same applies to values that
are present in other genes known to be related with the selected disease (epilepsy, in this case). Please note that many NCBI GeneRIFs and OMIM
reports for SCN1A were omitted in this figure to improve readability.
doi:10.1371/journal.pone.0003874.g005

Table 1. Integrated data sources.

Genes & transcripts

NCBI Entrez Gene [21] http://www.ncbi.nlm.nih.gov/sites/entrez?db = gene

ENSEMBL [22] http://www.ensembl.org/index.html

NCBI GeneRIFs [23] http://www.ncbi.nlm.nih.gov/sites/entrez?db = gee

Genetic markers

dbSNP [24] http://www.ncbi.nlm.nih.gov/sites/entrez?db = Snp

UniSTS [4] http://www.ncbi.nlm.nih.gov/sites/entrez?db = unists

Mitochondrial proteins

Maestro [25] http://www.nature.com/ng/journal/v38/n5/suppinfo/ng1776_S1.html

Mitopred [26] http://www.nature.com/ng/journal/v38/n5/suppinfo/ng1776_S1.html

Protein domains, families and paralogs

ENSEMBL [22] http://www.ensembl.org/index.html

InterPro [27] http://www.ebi.ac.uk/interpro/

Pfam [28] http://www.sanger.ac.uk/Software/Pfam/

Protein functions

GeneOntology [15] http://geneontology.org/

Pathways

KEGG [29] http://www.genome.jp/kegg/

Cellular localisations

GeneOntology [15] http://geneontology.org/

Phenotypes / diseases (human)

OMIM [1] http://www.ncbi.nlm.nih.gov/sites/entrez?db = OMIM

Phenotypes (mouse)

MGD [30] http://www.informatics.jax.org/

Interactions

UniHI [31] http://www.mdc-berlin.de/unihi

Gene expression

GeneAtlas [32] http://wombat.gnf.org/index.html

External IDs

Swiss-Prot [33] http://expasy.org/sprot/

UCSC [5] http://genome.ucsc.edu/

The table lists the different data sources that are included in Gene Distiller. The data is regularly updated.
doi:10.1371/journal.pone.0003874.t001
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Querying fields with a hierarchical structure (e.g. GeneOntol-

ogy) will also find descendants (subclasses) of an entity, e.g.

querying for DNA repair will also find genes, which do not carry

this term but its subclasses base-excision repair or mismatch repair

instead. To achieve this, a recursive query is carried out using a

PL/pgSQL function. Results are written into a temporary table

and then used by GeneDistiller to either restrict a query or to

highlight values (or their subclasses) matching the user’s request.
API. The query interface and the results page accept input

submitted as GET or POST requests and will generate and return

the according HTML page. All settings which can be made in the

query interface can also be included in such a call. A complete list

of the options with examples is given on GeneDistiller’s website.

Please note that the use of the data collected in GeneDistiller

might require a license.
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