
Page 1 of
(page number not for citation purposes)

5

Diastereoselective and enantioselective reduction
of tetralin-1,4-dione

E. Peter Kündig* and Alvaro Enriquez-Garcia

Full Research Paper Open Access

Address:
Department of Organic Chemistry, University of Geneva, 1211
Geneva 4, Switzerland

Email:
E. Peter Kündig* - peter.kundig@unige.ch

* Corresponding author

Keywords:
asymmetric; catalysis; ketone; reduction; tautomer

Beilstein Journal of Organic Chemistry 2008, 4, No. 37.
doi:10.3762/bjoc.4.37

Received: 26 August 2008
Accepted: 05 October 2008
Published: 22 October 2008

© 2008 Kündig et al; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
Background
The chemistry of tetralin-1,4-dione, the stable tautomer of 1,4-dihydroxynaphthalene, has not been explored previously. It is readily

accessible and offers interesting opportunities for synthesis.

Results
The title reactions were explored. L-Selectride reduced the diketone to give preferentially the cis-diol (d.r. 84 : 16). Red-Al gave

preferentially the trans-diol (d.r. 13 : 87). NaBH4, LiAlH4, and BH3 gave lower diastereoselectivities (yields: 76–98%). Fractional

crystallization allowed isolation of the cis-diol and the trans-diol (55% and 66% yield, respectively). Borane was used to cleanly

give the mono-reduction product. Highly enantioselective CBS reductions afforded the trans-diol (72% yield, 99% ee) and the

mono-reduction product (81%, 95% ee).

Conclusion
Diastereoselective and enantioselective reductions of the unexplored tetralin-1,4-dione provides a very convenient entry into a

number of synthetically highly attractive 1,4-tetralindiols and 4-hydroxy-1-tetralone.
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Introduction
In this article, we briefly review synthetic approaches to 2,3-

dihydro-1,4-naphthoquinone, more simply named tetralin-1,4-

dione (2). This symmetric diketone is the stable tautomer of 1,4-

dihydroxynaphthalene (1). Although known for many years, it

has never been used in synthesis. The reactions of 2 that are

reported in this article are those given in the title.

Tetralin-1,4-dione (2) is accessible by tautomerization, reduc-

tion, oxidation, and photolytic cycloreversion (Scheme 1 and

Scheme 2). Tautomerization takes place upon melting 1 under

an inert atmosphere or in a vacuum (>200 °C) [1-3]. The equi-

librium mixture at this temperature consists of 1 and 2 in a ratio

of 2 : 1 [3]. After cooling to ambient temperature, equilibration
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Scheme 1: Tautomerization of 1,4-dihydroxynaphthalene.

Scheme 2: Alternative routes of access to tetralin-1,4-dione.

ceases and extracts with non-polar solvents are enriched with

the more soluble 2. Tautomerization of 1 was also reported in

trifluoroacetic acid, with 2 being the largely dominant species in

solution [4].

Tetralin-1,4-dione  (2)  has  also  been  obtained  by  catalytic

hydrogenation of 1,4-naphthoquinone (3) using Wilkinson’s

catalyst (70% yield) [5], by oxidation of 1-tetralone (4) with

t-BuOOH and a dirhodium caprolactamate catalyst (27% yield

at 29% conversion) [6], and by photolysis of the Dewar benzene

5 at low temperature in a solid matrix [7] (Scheme 2).

While dione 2 is readily synthesized, it remains a chemically

unexplored curiosity.  This simple molecule,  and its  π-metal

complexes, drew our attention and interest for their potential in

synthesis. Using the tautomerization of 1 in trifluoroacetic acid

to generate 2 [4], we found that upon solvent evaporation the

tautomer obtained was dihydroxynaphthalene 1,  rather  than

diketone 2. During evaporation, the lower solubility of 1 led to

its  precipitation and this  shifted  the  equilibrium back.  This

problem was solved by adding toluene to the mixture before

evaporation under vacuum. This, and recrystallization (iPr2O)

afforded 2 in 72% yield [8]. The straightforward route allowed

the synthesis of gram quantities of 2  and the opportunity to

study its  uncharted chemistry.

This paper details the results of our studies of reductions of the

carbonyl functions in diketone 2.

Results and Discussion
Diastereoselective bis-reduction of 2
Reduction of tetralin-1,4-dione (2) with a number of reducing

agents afforded mixtures of diastereoisomeric cis-diol 6  and

trans-diol 7 in the ratios shown in Table 1. It is important to

mention here that these reactions do not occur when tautomer 1

is used.

Table 1: Diastereoselective reduction of tetralin-1,4-dione (2).

Entry Reducing agenta Ratiob

6 : 7
Yieldc

1 NaBH4 58 : 42 98%
2 LiAlH4 32 : 68 94%
3 Red-Al 13 : 87 76%
4 BH3·THF 61 : 39 93%
5 L-Selectride 84 : 16 98%

aSee Supporting Information File 1 for details. b 1H NMR ratios in
DMSO-d6. cIsolated mixture of 6 and 7.

The reductions with NaBH4 (Table 1, entry 1) and BH3·THF

(entry 4) gave the diols in high yields but with low diastereose-

lectivity, slightly favoring the cis-diastereoisomer 6. In contrast,

reduction with LiAlH4 (entry 2) and, more pronounced, with

[Al(H2)(OCH2CH2OMe)2][Na]  (Red-Al)  favored the  trans-

diastereoisomer  7.  Fractional  crystallization  of  the  13  :  87

mixture (entry 3) afforded pure 7 in 55% yield. The reason for

the diastereoselectivity in this reaction may have its origin in

the delivery of the second hydride from the same aluminium

moiety  (Scheme  3).  Conversely,  lithium tri-sec-butylboro-

hydride (L-selectride) afforded a product enriched with cis-

tetralin-1,4-diol  (6)  (entry  5).  The high diastereoselectivity

presumably  is  a  consequence  of  the  bulky  reducing  agent.

Following  the  first  reduction  and  formation  of  the

4-(boranyloxy)-1-tetralone, addition of a second equivalent of

L-selectride would be expected to occur from the less hindered

face. Hydrolysis then yields preferentially the cis-diastereoi-

somer 6.  The ca. 5 :  1 mixture of 6  and 7  could not be effi-

ciently separated by flash chromatography but recrystallization

from iPr2O gave cis-1,4-dihydroxytetralin (6) in 66% yield.

Diols  6  and  7  have  been  reported  previously.  They  were

obtained  by  treatment  of  tetralin  with  NBS to  give  a  1  :  1
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Scheme 3: Proposed origin of diastereomeric preference in the reduction of 2.

mixture of the corresponding cis and trans-dibromides, which

were  converted  into  diacetates  with  AgOAc  (81%  yield).

Saponification and fractional recrystallization from MeOH /

Et2O then afforded pure 6 and 7 though isolated yields were not

reported [9].  The meso-diol  6  has  been used as  substrate  in

enantioselective oxidation [10] and in asymmetric acylation [9,

11].

We  conclude  that  while  conditions  for  an  efficient  highly

diastereoselective one-step reduction of both carbonyl func-

tions in 2 have not been realized, enrichment of one or the other

diastereoisomer by choice of  reducing agent  is  feasible and

acceptable yields of  pure diastereoisomers can be obtained.

Enantioselective bis-reduction of 2
Asymmetric reduction of dione 2 was probed next. This was

carried out successfully as shown in Scheme 4 and gave, after

two  recrystallizations  from  diisopropylether,  (−)-(1R,4R)-

tetralin-1,4-diol (R,R-7)  in 72% yield and 99% ee [8].  Only

small amounts (ca. 7%) of the cis stereoisomer 6 were detected

by 1H NMR in the crude product. The synthesis of diol 7  in

highly enantiomerically enriched form is thus easier than that of

the racemate.

The absolute configuration of (−)-(1R,4R)-7  agrees with the

reliable stereochemical model for the CBS reduction. To our

knowledge there is no viable published alternative synthetic

Scheme 4: Enantioselective reduction of 2.

access to this C2 symmetric chiral diol. Compound (−)-(1R,4R)-

7  was  previously  obtained  by  HPLC  separation  of  a  1  :  1

mixture of the cis- and trans-diols obtained in 55% yield from a

four step sequence from (R)-1-tetralol [12].

Mono-reduction of 2
Mono-reduction was achieved with a reduced amount of borane

compared to the reduction detailed above. For the bis reduction,

a molar ratio of 2 / BH3 of 0.83 was used. Adjusting the ratio to

2.2  (see  experimental  part)  afforded  rac-9  in  good  yield

(Scheme  5).

The high yield in mono-reduction is in accord with the expected

higher reactivity of the dione 2 compared to the mono-ketone 9.
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Scheme 6: Enantioselective mono-reduction of 2.

Scheme 5: Mono-reduction of 2.

Enantioselective mono-reduction of 2
With an efficient protocol for the synthesis of rac-9 and of R,R-

7 in hand, research then focused on the more challenging task of

enantioselective  mono-reduction.  First,  CBS reduction  was

performed by slow (1 h) addition of dione 2  to a solution of

BH3·THF (0.45 equiv) and catalyst 8.  However, background

reduction by BH3·THF was competitive under these conditions

and while (−)-(4R)-4-hydroxy-1-tetralone (R-9) could be isol-

ated in 93% yield, its enantiomeric excess was a modest 53%

ee.

A  way  to  achieve  a  high  ee  in  mono-reduction  was  via

1-trimethylsiloxy-4-oxotetralin-1-carbonitrile (10) as protected

equivalent of dione 2. Slow addition over 2 h of a THF solution

of ketone 10 to a solution of BH3·THF (0.6 equiv) and catalyst

8 in THF at −30 °C gave, after MeOH quenching and TBAF

deprotection, (−)-9 in 85% yield and 95% ee (Scheme 6).

Cyanohydrin silylether 10 partially hydrolyzes on silica and, as

it turned out, isolation of this intermediate is not required and

this provided a reliable and efficient sequence to highly enantio-

merically enriched 9 (Scheme 5). In the course of this optimiza-

tion, we also isolated cyanohydrin 11.

We note literature precedent for procedures for the asymmetric

synthesis of 9. The first involves as the key step kinetic resolu-

tion by enzymatic hydrolysis of the corresponding acetate with

porcine pancreatic lipase giving (−)-9 in 47% yield and 95% ee

[13]. A second approach uses a Pd-catalyzed asymmetric oxida-

tion of meso-tetralin-1,4-diol (6) with (−)-sparteine (20 mol %)

to give (+)-9 in 72% yield and 95% ee [10].

We note that chiral 1,4-disubstituted tetralins are of interest in

medicinal  chemistry.  An example is  the commercial  antide-

pressant drug sertraline (Zoloft ®) [14-16]. A number of natural

products  such  as  preussomerin  A  [17],  catalponol  [18],

junglanoside  A  [19],  and  isoshinanolone  [20]  contain  the

4-hydroxy-1-tetralone unit. 4-Hydroxy-1-tetralone (9) itself is a

naturally occurring compound isolated from Ampelocera eden-

tula  with activity against  cutaneous leishmaniasis  [21].  The

straightforward access to highly enantiomerically enriched 9

reported here will be useful.

Conclusion
Diastereoselective and enantioselective reductions of the unex-

plored tetralin-1,4-dione provides a very convenient entry into a

number of synthetically highly attractive 1,4-tetralindiols and

4-hydroxy-1-tetralone.
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Supporting Information File 1
Experimental procedures, full spectroscopic and analytical

data of compounds 2, 6, 7, 9–11.
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