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Abstract
Limits on the storage capacity of working memory significantly impact cognitive abilities in a wide
range of domains1, but the nature of these capacity limits has been elusive2. Some researchers have
proposed that working memory stores a limited set of discrete, fixed-resolution representations3,
whereas others have proposed that working memory consists of a pool of resources that can be
allocated flexibly to provide either a small number of high-resolution representations or a large
number of low-resolution representations4. Here we resolve this controversy by providing
independent measures of capacity and resolution. We show that, when presented with more than a
few simple objects, observers store a high-resolution representation of a subset of the objects and
retain no information about the others. Memory resolution varied over a narrow range that cannot
be explained in terms of a general resource pool but can be well explained by a small set of discrete,
fixed-resolution representations.

To separately measure the number of items stored in working memory and the precision of
each representation, we used a short-term recall paradigm5,6 in which subjects report the
remembered colour of a probed item by clicking on a colour wheel (Fig 1a). If the probed item
has been stored in working memory, the recalled value will tend to be near the original colour.
If the probed item has not been stored, then the observer will have no information about the
colour, and the responses should be random. These two types of trials are mixed together in
the data (Fig 1b), but the components can be recovered via standard estimation methods. This
produces one parameter (Pm) representing the probability that the probed item was present in
memory at the time of the probe and another parameter (SD) representing the precision of the
representation when the cued item was present in memory.

Experiment 1 (N=8) tested this model using set sizes of 3 or 6 coloured squares (Fig 1c). SD
did not vary significantly across set sizes (F < 1), whereas Pm was approximately twice as great
at set size 3 as at set size 6 (F(1,7)=761.26, p<0.001). Our simple fixed-resolution model
provided an excellent quantitative fit to the data, whereas a model in which all items are encoded
could not fit the data (see supplementary notes). This result rules out the entire class of working
memory models in which all items are stored but with a resolution or noise level that depends
on the number of items in memory5. Control experiments demonstrated that these results
cannot be explained by a lack of time to encode the items or by a lack of sensitivity, and
additional analyses demonstrated that the observers remembered continuous colour values
rather than colour categories (see supplementary notes).
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These results demonstrate that observers store a small number of representations with good
precision. However, it is possible that performance is influenced both by a limited number of
“storage slots” and a limited pool of resources7. As an analogy, consider three cups (the slots)
and a bottle of juice (the resource). It would be impossible to serve juice to more than three
people at a time, but it would be possible to pour most of the juice into a single cup, leaving
only a few drops for the other two cups. Thus, allocating most of the resources to a single
representation could increase the precision of that representation, leaving “only a few drops”
of resources for the other representations, which would then be highly imprecise. We call this
the slots+resources model.

The storage of information in visual working memory could instead be an all-or-none process
that either creates a representation of a given precision or creates no representation at all. This
would be analogous to a limited set of prepackaged juice boxes of a fixed size. The juice boxes
are still a type of resource, but one that is highly constrained by the small number and fixed
size of each box. That is, if three juice boxes are available, an individual could be given 0, 1,
2, or 3 boxes. Similarly, if three memory slots are available, all three could be used to represent
a single object. If each representation stores an independent sample of the stimulus, and
observers simply report the average of the three representations at the time of test, this will
lead to an increase in the precision of the report. We call this the slots+averaging model. Note
that storing a single object in multiple slots would be rational strategy, and this sort of averaging
is common in models of perception8–10.

For both the slots+resources and slots+averaging models, SD will be improved when the set
size is reduced below the number of available slots. Moreover, both models predict that this
improvement will follow a square root function (see supplementary notes). This is exactly what
was observed in Experiment 2 (Fig 2), in which observers (N=8) were presented with 1, 2, 3,
or 6 objects: SD increased as the set size increased from 1 to 3 but then remained constant as
the set size increased to 6. In contrast, Pm declined very slowly as set size increased from 1 to
3 and then decreased suddenly at set size 6. This pattern of results can be explained
quantitatively by both the slots+resources model (adjusted r2 = 0.96) and the slots+averaging
model (adjusted r2 = 0.99) (see Fig 2 & supplementary notes), but it differs significantly from
the predictions of a pure resource model (p < .001, χ2 test).

The slots+resources and slots+averaging models make different predictions about the range
over which precision can vary. Specifically the slots+resources model posits that majority of
resources can be devoted to one representation (leading to a very small SD), leaving “only a
few drops” of resources for other representations (leading to a very large SD). In contrast, the
slots+averaging model posits that the observed SD is never worse than the SD of a single slot
and is never better than the SD for a single slot divided by the square root of the number of
slots. To distinguish between these models, Experiment 3 (N=22) used a line in the sample
array to cue one of four coloured squares (Fig 3a). The cued square was probed on 70% of the
trials, and each uncued square was probed on 10% of trials. Neutral trials were also included,
in which all 4 locations were cued. The cue was simultaneous with the sample array so that it
would not influence perceptual processing11, and the duration of the sample array was
increased to 300 ms to provide adequate time for resource allocation10,12.

The slots+resources model predicts that observers will devote the lion’s share of resources to
the cued item, leading to a large difference in SD between valid, neutral, and invalid trials, but
only a small difference in Pm. In contrast, the slots+averaging model predicts that observers
will devote most of their slots to the cued location, which would lead to a large difference in
Pm between valid and invalid trials. This should also lead to a somewhat smaller SD on valid
trials than on neutral trials because of the benefits of averaging. However, this should lead to
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no difference in SD between neutral and invalid trials, because a given item receives either 0
or 1 slots on both neutral and invalid trials.

We found that Pm was substantially greater on valid trials than on invalid trials (F(1,21)
=203.87, p<0.001; Fig 3a), demonstrating that the observers attempted to maximize
performance for the cued item by devoting more slots to it. SD was slightly but significantly
smaller on valid trials than on neutral trials (F(1,21)=13.49, p<0.001), and the magnitude of
this difference was within the small range that can result from averaging slots. In addition, SD
was virtually identical on neutral and invalid trials (F < 1), indicating that the improvement in
SD on valid trials was not achieved by taking resources away from the uncued items. Thus,
despite the fact that the cued item was seven times more likely to be probed than each uncued
item, SD was only slightly improved for the cued item (compared to the neutral trials) and SD
was not reduced for the uncued items (compared to the neutral trials). It does not appear to be
possible to provide a representation with “only a few drops” of resources and thereby produce
an imprecise representation.

Computational neuroscience theories suggest that an all-or-none, fixed-resolution encoding
process may be required to create durable representations that can survive new sensory
inputs13,14. To assess the encoding process, Experiment 4 (N=8) used a masking manipulation
that emulates the masking effects of eye movements in natural vision. Specifically, we
presented masks at the locations of the coloured squares either 110 or 340 ms after the onset
of the squares (Fig 3b). At these intervals, masks interfere with working memory encoding but
not with perceptual processing15. If working memory representations gradually become more
precise over time, then presenting a mask array at an early time point could potentially reveal
the existence of low-precision representations. If, however, the process of creating durable
memory representations that can survive new visual inputs involves an all-or-none step, as
suggested by studies of the attentional blink phenomenon16, then the masks will only influence
Pm. We observed that decreasing the masking interval produced a large decline in Pm (F(1,7)
=47.70, p<0.001) but no change in SD (F < 1). Thus, the creation of working memory
representations that can survive new inputs involves an all-or-none step for simple objects
(although it is possible that some gradual accumulation of information occurs prior to this step
and is available in the absence of masking).

To demonstrate that the present results can generalize to other stimulus dimensions, we
repeated Experiments 2 and 3 with shapes rather than colours. We used shapes defined by
Fourier descriptors17, which vary along continuous quantitative dimensions. The results were
largely identical to the results obtained for colour, with approximately the same Pm for these
shapes as for the simple colours in Experiment 2 (see supplementary notes). Most notably, SD
did not increase as the set size increased from 3 to 6 items and was virtually identical for neutral
and invalid trials. Because the Fourier descriptor method provides a mathematically17,
perceptually18,19, and neurally20 meaningful way to describe shapes of any complexity, this
analytic approach could be used to determine whether the present pattern of results would be
obtained with more complex objects. Object complexity can have a large impact on
performance in change detection tasks7, but this may reflect greater sample-test similarity for
complex objects21 or the need to store each part of a multipart object in a separate slot22,23.
Alternatively, complex objects may require some kind of limited resource that is not needed
for the simple objects studied here.

Together, the present experiments resolve an issue that has been debated for decades4,5,24,
25, showing that a model with a small set of discrete, fixed-resolution representations can
provide a quantitative account of memory performance across a broad range of experimental
manipulations. This model does not completely eliminate the concept of resources, because
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the slots themselves are a type of resource. However, the slots+averaging model defines exactly
what the resource is and describes strict limits on how flexibly this resource can be allocated.

Methods Summary
The stimuli and task are shown in Fig 1a. Subjects viewed a sample array and then, following
a brief delay, reported the colour of one item from this array (indicated by a thick outlined box)
by clicking on a colour wheel. There is good agreement between this procedure and the more
commonly used change-detection procedure (see supplementary notes).

Methods
Eight subjects between 18 and 35 years old participated in each colour memory experiment
except the cuing experiment, in which 22 subjects participated due to the low probability of
the invalid trials. Subjects provided informed consent and received course credit or monetary
compensation. All reported having normal colour vision and normal or corrected-to-normal
visual acuity.

The stimuli in all experiments were presented on a CRT monitor with a grey background (15.5
cd/m2) at a viewing distance of 57 cm. The monitor was calibrated with a Tektronix J17
LumaColor colorimeter. Each coloured square in the sample array subtended 2 × 2° of visual
angle. Each square was centred on an invisible circle with a radius of 4.5°. The positions were
randomly chosen from a set of 8 locations equally spaced along the circle. The colour wheel
was 2.2° thick and was centred on the monitor with a radius of 8.2°. It consisted of 180 colour
values that were evenly distributed along a circle in the CIE L*a*b* colour space. This circle
was centred in the colour space at (L=70, a=20, b=38) with a radius of 60. Its centre was chosen
to maximize its radius and therefore the discriminability of the colours. All colours had equal
luminance and varied mainly in hue and slightly in saturation. The sample array colours were
randomly selected from this set of colours. The colour wheel was presented at a random rotation
on each trial to minimize contributions from spatial memory.

In the basic paradigm (Experiments 1 and 2), each trial consisted of a 100-ms sample array
followed by a 900-ms blank delay period and then a probe display that remained present until
a response was made (see Fig 1a). The probe display contained the colour wheel and an outlined
square at the location of each item from the sample array. One of these squares was thicker
(0.20°) than the others (0.04°), which cued the subject to recall the colour of the corresponding
item from the sample array by clicking the appropriate colour on the colour wheel with the
computer mouse. Accuracy was stressed, and the responses were not timed. Except as noted
below, 150 trials were tested in each experimental condition (e.g., each set size). The different
trial types (e.g., different set sizes) were presented in an unpredictable order in each experiment.

In the control experiment that involved varying the level of perceptual noise (Supplementary
Fig 1), the set size was held constant at three items and the duration of the sample array was
reduced to 30 ms to ensure that the masks would be effective. Each coloured square in the
sample array was covered with a set of either 75 or 150 simultaneously presented coloured
dots, randomly distributed over a circular region with a diameter of 4.4° that was centred on
the coloured square. Each dot subtended 0.2 × 0.2° of visual angle and was drawn in a colour
that was randomly sampled from the set of 180 colour values used for the coloured squares.

In the cuing experiment (Fig 3a), the sample display contained a 1.6° cue line extending from
fixation toward one of the four coloured squares (on valid and invalid trials) or four lines
extending toward all four squares (on neutral trials). The duration of the sample display was
increased to 300 ms in this experiment to provide the observers sufficient time to shift attention
to the cued item; the interval between sample onset and probe onset remained 900 ms. Each
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observer received 350 valid trials, 150 invalid trials (50 per uncued location), and 150 neutral
trials. These trial types were randomly intermixed.

In the backward masking experiment (Fig 3b), the sample array always contained three items.
An array of masks was presented 110 or 340 ms after the onset of the sample array, with a
duration of 200 ms. The interval between sample offset and probe onset remained constant at
900 ms. Each mask consisted of a 2 × 2 arrangement of coloured squares, each of which
measured 0.55 × 0.55°. Each mask was centred at the location of one of the three items in the
sample display.

Data Analysis
The data from a given observer in the colour experiments consisted of a set of distances between
the reported colour value and the original colour value in each condition, which reflects the
degree of error in the reported colour. Histograms of these error values were used to visualize
the distribution of responses (as in Fig 1c). Maximum Likelihood Estimation26 was used to
decompose the data from each subject in each condition into three parameters that represent a
mixture of a uniform distribution of errors (for trials on which the probed item was not encoded
in memory) and a von Mises distribution of errors (for trials on which the probed item was
encoded). The von Mises distribution is the circular analogue of the Gaussian distribution and
was used because the tested colour space was circular27. The uniform distribution was
represented by a single parameter, Pm, which is the probability that the probed item was present
in memory at the time of the probe (which is inversely related to the height of the uniform
distribution). The von Mises distribution was represented by two parameters, its mean (μ) and
its standard deviation (SD). μ reflects any systematic shift of the distribution away from the
original colour value. No systematic shifts were expected or observed in any of the present
experiments, so this parameter will not be considered further. SD reflects the width of the
distribution of errors on trials when the probed item was encoded in memory, which in turn
reflects the precision or resolution of the memory representation.

The slots+averaging model was fit to the estimated Pm and SD parameters in the experiment
in which set sizes 1, 2, 3, and 6 were tested. We computed the total number of slots (Ki) by
multiplying Pm by the set size (using the data from set size 3). We then assumed that the slots
were randomly distributed among the available items in the sample array, allowing multiple
slots to be assigned to a given object if the set size was lower than the number of slots. The SD
at set size 3 was used to estimate the precision of a single slot. The SD from a set of N samples
is equal to the SD from a single sample divided by the square root of N (see supplementary
notes). Thus, by knowing the SD of a single slot and the average number of slots assigned to
the probed item in a given condition, it is possible to predict the SD for that condition.

In the slots+resources model, the SD at set size 1 was used to estimate the maximum precision
when all resources are devoted to a single object. For modelling the data from larger set sizes,
the SD simply increases as a function of the square root of the number of objects being
represented, up to the number of slots (which is estimated as in the slots+averaging model).
For simple manipulations of set size, the predictions of the slots+resources model are equivalent
to those of the slots+averaging model except that the SD values are estimated on the basis of
the data at set size 1 rather than the data at set size 3.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
a, Colour recall task. b, Mixture model of performance, showing the probability of reporting
each colour value given a sample colour at 180°. When the probed item is present in memory,
the reported colour tends to be near the original colour (blue broken line). When the probed
item is not present in memory, the observer is equally likely to report any colour value (red
broken line). When collapsed across trials, the data comprise a mixture of these two trial types
(solid line), weighted by the probability that the probed item was stored in memory. c, Results
of Experiment 1 (N=8).
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Fig 2.
Pm and SD results from Experiment 2 (N=8). The lines show the SD predictions of a pure
resource model (black dashed line), the slots+averaging model (gray solid line), and the slots
+resources model (black dotted line). Error bars show within-subjects 95% confidence
intervals28.
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Fig 3.
a, Stimuli and results from Experiment 3 (N=22). The cue appeared simultaneously with the
sample array. b, Stimuli and results from Experiment 4 (N=8). A colour wheel and probe array
appeared at the end of the trial, 900 ms after sample offset. Error bars show within-subjects
95% confidence intervals28.
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