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ABSTRACT

Variation in cellular gene expression levels has been
shown to be inherited. Expression is controlled
at transcriptional and post-transcriptional levels.
Internal ribosome entry sites (IRES) are used by
viruses to bypass inhibition of cap-dependent trans-
lation, and by eukaryotic cells to control translation
under conditions when protein synthesis is inhib-
ited. We aimed at identifying genomic determinants
of variability in IRES-mediated translation of viral
[Encephalomyocarditis virus (EMCV)] and cellular
IRES [X-linked inhibitor-of-apoptosis (XIAP) and
c-myc]. Bicistronic lentiviral constructs expressing
two fluorescent reporters were used to transduce
laboratory and B lymphoblastoid cell lines [15
CEPH pedigrees (n = 205) and 50 unrelated individ-
uals]. IRES efficiency varied according to cell type
and among individuals. Control of IRES activity has
a significant genetic component (h2 of 0.47 and 0.36
for EMCV and XIAP, respectively). Quantitative link-
age analysis identified a suggestive locus (LOD 2.35)
on chromosome 18q21.2, and genome-wide asso-
ciation analysis revealed of a cluster of SNPs on
chromosome 3, intronic to the FHIT gene, marginally
associated (P = 5.9E-7) with XIAP IRES function. This
study illustrates the in vitro generation of intermedi-
ate phenotypes by using cell lines for the evaluation
of genetic determinants of control of elements such
as IRES.

INTRODUCTION

Initiation of protein synthesis in the eukaryotic cell is a
complex process that leads to the assembly of the 80S

ribosome at the start codon of the mRNA. This occurs
through the interaction of the 7-methyl-guanilic acid resi-
due at the 50 terminus (50-m7G) cap structure with the
cap-binding complex, also known as eIF4F, which links
mRNA and the 40S ribosomal subunit through eIF3.
After recruitment to the mRNA 50end, the 43S initiation
complex (formed by 40S, eIF2.GTP.Met-tRNAi, and
eIF3) scans the 50-untranslated region (50-UTR) for the
start codon (1,2). Eukaryotic proteins can also be trans-
lated through an alternative mechanism, using internal
ribosome entry sites (IRES), which requires the direct
binding of the ribosome to a specific region of mRNA
preceding the AUG sequence.

IRES were first described in the uncapped 50-UTR of
the genome of two picornaviruses: poliovirus and ence-
phalomyocarditis virus (EMCV) (3,4). IRES have now
been reported in viruses from different families, as well
as in eukaryotic cells (5,6). They allow translation under
conditions of inhibition of general protein synthesis, such
as amino acid starvation (7), cell death (8–10), hypoxia
(11,12), heat shock (13), and during the G2/M phase of
the cell cycle (14–18).

IRES activity is under the control of general trans
acting factors (eIFs) and IRES-specific trans acting factors
(ITAFs) (19). ITAFs can modify ribosome recruitment
and the structure of the IRES RNA. Known ITAFs of
the X-linked inhibitor of apoptosis (XIAP) IRES are
the La autoantigen (La), heterogeneous nuclear ribonu-
cleoprotein C1/C2 (hnRNP C1/C2), and heterogeneous
nuclear ribonucleoprotein A1 (hnRNP A1) (20–22).
ITAFs of EMCV IRES are the polypyrimidine tract-
binding protein (PTB) and La (23,24).

Efficiency of IRES-mediated translation may vary
according to cell type, host species, and the individual
genetic background. We hypothesized that the study of
gene expression from bicistronic constructs transduced
into human B lymphoblastoid cell lines (LCLs) from
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three-generation families [the CEPH (Centre d’Etude du
Polymorphisme Humain) resource] (25,26) would allow
the identification of genes controlling the activity of viral
and eukaryotic IRES.

In this study, we developed an experimental approach
to assess genomic determinants of variability in EMCV,
X-linked inhibitor-of-apoptosis (XIAP), and c-myc IRES
activity in different cell lines and in CEPH LCLs. We
identified that variation in the control of EMCV and
XIAP IRES activity has a significant genetic component,
and we completed (i) a genome-wide linkage analysis to
detect quantitative trait loci (QTL), and (ii) a genome-
wide association analysis that identified two suggestive
loci involved in the control of the XIAP IRES activity.

MATERIALS AND METHODS

IRES sequences

IRES sequences were identified from the literature and
from a dedicated IRES database (http://www.rangueil.
inserm.fr/IRESdatabase/) (Supplementary materials).
The EMCV IRES was subcloned from pWPI (provided
by D. Trono, http://tronolab.epfl.ch/). The cloned EMCV
IRES corresponds to that previously used by Pham et al.
(27). XIAP and c-myc IRES were amplified from a cDNA
library for the purpose of the study. The cloned XIAP and
c-myc IRES correspond to those previously used by by
Holcik et al. (28), and by the group of A. E. Willis
(29,30), respectively.

Lentiviral vectors

All plasmids and lentiviral vectors used in this study are
listed in Table 1.

pEF1_EMCV_ (pSIN.EF1.cPPT.mRFP.IRESEMCV.
eGFP.WPRE): mRFP was amplified from pCH9-mRFP
(kindly provided by M. Nassal) and added to PmeI sites.
This fragment was inserted into the pSIN.EF1.
cPPT.IRESEMCV.eGFP.WPRE (pWPI, provided by
D. Trono) using the PmeI site present between the
elongation factor alpha promoter (EF1-a) and the
EMCV IRES sequence. Two additional restriction
enzyme sites, Bsu36I and NdeI, were inserted before and

after the IRES sequence, respectively. The EMCV IRES
was substituted by c-myc and XIAP IRES by cloning
between the Bsu36I and NdeI to generate pEF1_cmyc_,
and pEF1_XIAP_.

Cell culture

Adherent cell lines 293T (human renal epithelial cell line),
HeLa (human cervical cancer cells transformed by human
papillomavirus 18), Huh-7 and Hep3B (human hepatocar-
cinoma cell lines) (31,32), SW1417 and HT-29 (human
colorectal adenocarcinoma cell lines) were grown in
Dulbecco’s modified Eagle’s medium (Gibco, Invitrogen,
Carlsbad, CA, USA) supplemented with 100U/ml of peni-
cillin G, 100 mg/ml of streptomycin, and 10% fetal calf
serum (FCS, Inotech, Labor AG, Basel Switzerland).
Raji (human B cells from Burkitt’s lymphoma, ATCC

CCL86) and Jurkat (human T cells from an acute T cell
leukemia, ATCC TIB-152) cell lines were cultured in
RPMI 1640/Glutamax-I medium (Invitrogen, Carlsbad,
CA, USA) supplemented with 10% FCS (Inotech).
CEPH cell lines, obtained from the Coriell Institute for
Medical Research (http://ccr.coriell.org/), were cultured in
RPMI 1640/Glutamax-I supplemented with 15% FCS.
CEPH pedigrees studied were 102, 884, 1328, 1331,
1332, 1333, 1334, 1340, 1341, 1345, 1346, 1347, 1362,
1408 and 13292, representing 205 cell lines. In addition,
in genome association analysis, we investigated 50 unre-
lated HapMap LCLs.

Lentiviral production and transduction

Lentiviruses were produced in 293T cells by co-transfect-
ing the Gag-Pol construct (pCMV_R8.92), the Rev
expression plasmid (pRSVRev), the VSV G protein envel-
ope construct (pMD.G), and the construct of interest
expressing the 2 reporters genes (mRFP and eGFP)
(Table 1). Transduction was performed by spinoculation
of 2� 105 non-adherent cells with 400ml of lentivirus-
containing supernatant or 1� 105 adherent cells with
200 ml of supernatant, 3 h, 1500g, 228C in 24-well plates.
After 72 h, cells were harvested, washed and fixed
with Cellfix (Becton Dickinson, Franklin Lakes, New
Jersey, USA). For CEPH cells, transduction was per-
formed by spinoculation of 5� 104 cells with 100 ml of

Table 1. Plasmids used in this study: final (in bold) and intermediate constructs

No. Plasmids Characteristics, component Source

p1 pSIN.cPPT.CMV.eGFP.WPRE Lentiviral vector carrying CMV.eGFP transgene Provided by D.Trono
modified by S. Fleury

p2 pCH9-mRFP Plasmid carrying the mRFP sequence Provided by M. Nassal
p3 pBS pBluescript SK+ Stratagene, Basel, Switzerland
p4 pWPI or pSIN.EF1.cPPT.IRESEMCV.eGFP.WPRE Lentiviral vector carrying

EF1.cPPT.IRESEMCV.eGFP transgene
Provided by D. Trono

p5 pEF1_EMCV_
(pSIN.EF1.cPPT.mRFP.IRESEMCV.eGFP.WPRE)

mRFP from p2 in p4 This study

p6 pEF1_cmyc_
(pSIN.EF1.cPPT.mRFP.IREScmyc.eGFP.WPRE)

c-myc IRES (PCR on human cDNA) in p5 after
deletion of EMCV IRES

This study

p7 pEF1_XIAP_
(pSIN.EF1.cPPT.mRFP.IRESXIAP.eGFP.WPRE)

XIAP IRES (PCR on human cDNA) in p5 after
deletion of EMCV IRES

This study

p8 pEF1del_EMCV_ p5 after ClaI and PacI deletion of EF1a promoter This study
p9 pEF1del_cmyc_ p6 after ClaI and PacI deletion of EF1a promoter This study
p10 pEF1del_XIAP_ p7 after ClaI and PacI deletion of EF1a promoter This study
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lentivirus-containing supernatant 3 h, 1500g, 228C in 96-
wells plate. After 72 h, cells were harvested, washed and
fixed with Cellfix (Becton Dickinson). Expression of fluor-
escent proteins, mRFP and eGFP, was analyzed by flow
cytometry (FACSCalibur, Cellquest software, Becton
Dickinson). Experiments were performed twice in tripli-
cate at one week interval.

Investigation of alternative splicing

Splicing was investigated by RT-PCR. Seventy-two
hours post-spinoculation, DNA and RNA from 10
CEPH cell lines (C6, Pedigree:884; ID: GM13120; K1;
Pedigree: 1346; ID: GM10857; L2, Pedigree:1340; ID:
GM07019; HM4; Pedigree:1459; ID: GM12873; HM8,
Pedigree:1454; ID: GM12813; HM10, Pedigree:1447; ID:
GM12761; HM11; Pedigree:1447; ID: GM12762; HM12;
Pedigree:1447; ID: GM12763; HM16, Pedigree:1444;
ID: GM12751; HM33, Pedigree:1420; ID: GM12005),
were isolated by using Qiagen, AG, Hombrechtikon,
Switzerland, QIAamp DNA Mini Kit and Qiagen
Rneasy Mini Kit according to the manufacturer instruc-
tions. After DNase I treatment, 800 ng purified cellular
RNA was reverse-transcribed using Expand RT (Roche
Diagnostics Ltd. Rotkreuz, Switzerland), dNTPs mix
(Invitrogen) and RNase inhibitor (Roche). PCR was per-
formed to amplify the region of interest by using the pri-
mers forward SG1667 (50-ATCTTGGTTCATTCTCAAG
CCTCAGAC-30), and reverse SG1669 (50-AGCTCGAC
CAGGATGGGCAC-30). Detailed analysis of XIAP
IRES used the IRES-specific primer MA.pr-216
(50-ACACGACCGCTAAGAAACATTC-30). For ampli-
fication, an initial denaturation step at 948C for 15min
was followed by 35 cycles at 948C for 30 s, 668C for 30 s,
and 728C for 2min, and a final extension step at 728C for
10min. PCR products were separated in a 1% agarose gel
and visualized by ethidium bromide (EtBr) staining.
Amplification products were gel-extracted and sequenced.

Heritability, linkage and association studies

To establish the heritability of the control of IRES activ-
ity, lymphoblastoid cell lines from CEPH 15 families
were transduced with lentiviruses (EF1_EMCV_LVs and
EF1_XIAP_LVs). IRES activity was calculated by the
ratio of mRFP expressing cells to eGFP expressing cells,
as determined by flow cytometry. SOLAR software
allowed the calculation of heritability using the poly-
genic-screen command (http://www.sfbr.org/solar/) (33).
A genome-wide quantitative linkage analysis was per-

formed on the CEPH pedigrees to identify chromosomal
loci involved in the control of the IRES activity. Single
nucleotide polymorphism (SNP) genotyping data, con-
sisting on 2600 autosomal SNPs, available in public
databases (http://snpdata.cshl.edu/population_studies/
linkage_maps/) were used (34). This dataset consists of
a scan of 22 autosomal chromosomes with a 3.9-cM reso-
lution. Multipoint linkage with the SNP map was per-
formed using MERLIN (35) with the –VC option, after
elimination of Mendelian inconsistencies (PEDCHECK)
(36) and unlikely genotypes (PEDWIPE). To calculate
the empirical significance of the linkage results, we

performed 500 simulations for each quantitative trait
using the simulate command from Merlin with different
seed numbers. We extracted the highest result from each
simulation to build significance distributions. All simula-
tions were performed using a cluster of 32 HP/Intel
Itanium 2 based servers at the Vital-IT Center (http://
www.vital-it.ch/).

Association analysis of quantitative phenotypes and
corrections for multiple testing were performed using the
PLINK software (http://pngu.mgh.harvard.edu/�purcell/
plink/anal.shtml). Genotypes were downloaded from the
HapMap project URL (http://www.hapmap.org/cgi-perl/
gbrowse/gbrowse/hapmap), HapMap public release no.
19. Results of genome-wide association studies were visua-
lized and annotated using WGAviewer (37).

RESULTS

IRES activity in different cell lines

The optimal arrangement of the bicistronic construct
included the coding sequences for mRFP as first and for
eGFP as second cistron, separated by the IRES of EMCV,
c-myc or XIAP (data not shown).

The various lentiviruses delivering the constructs were
used to transduce and generate seven stable cell lines of
different origins. In addition to the common laboratory
293T and HeLa cell lines, we used two B lymphocyte
cell lines [CEPH (HM8; Pedigree:1454; ID: GM12813)
and Raji] in anticipation of the genetic study of loci
involved in the control of IRES activity that uses CEPH
LCLs. Jurkat cells were chosen as example of T-lympho-
cyte cells.

In all cell lines, XIAP constructs were found to harbor
the most efficient IRES, followed by EMCV, and c-myc
constructs (Figure 1). All three IRES exhibited cell type-
dependent translational activity. IRES activity (eGFP/
mRFP) ranged from 0.09 (293T) to 0.37 (HeLa) for
c-myc IRES, 1.09 (293T) to 1.96 (Huh-7) for EMCV
IRES, and 2.33 (293T) to 16.20 (HeLa) for XIAP IRES.

Stringent conditions to assess IRES activity

To analyze the potential presence of a cryptic promoter in
IRES constructs, we designed constructs without the
EF1a promoter (Table 1). In this setting, expression of
the second transgene implies that the DNA coding for
the IRES possesses cryptic promoter activity. Such activ-
ity was excluded in the constructs under investigation
(Supplementary materials). As control, we used a HCV
IRES construct that presents cryptic promoter activity,
as previously observed (38).

Alternative splicing would potentially bypass the first
cistron while allowing the expression of the second cistron
from the EF1a promoter (39). To check for this possibi-
lity, we analyzed cDNA by RT-PCR. Splicing was
observed in XIAP IRES constructs. Two PCR products
of 1241 bp corresponding to full length bicistronic RNA
transcript and 1074 bp were sequenced (Figure 2A). The
smaller transcript is a spliced form of the full length tran-
script missing the XIAP IRES sequence (Supplementary
materials). Transfection of 293T cells with plasmids
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containing the full length or the spliced XIAP IRES
sequence (Figure 2B) demonstrates that only the full
length transcript is able to produce the green fluorescent
protein. Although the transduced CEPH cell lines
expressed both mRNAs forms, the full length transcript
was present in all stable cell lines (Figure 2C).

IRES activity in CEPH cell lines

EMCV and XIAP IRES constructs were used for the ana-
lysis of CEPH cell lines. We excluded c-myc IRES con-
structs because of limited activity in B cells. Upon
transduction, 178 of the 205 cell lines remained viable.
We observed inter-individual differences of 3.08-fold and
4.74-fold for EMCV and XIAP IRES activity, respectively
(Figure 3). Some individuals consistently presented
extreme (low and high) IRES activity for both constructs
investigated. However, we did not observe a correlation

between EMCV and XIAP IRES activity among individ-
uals (r2: 0.035; P value: 0.0127). EMCV and XIAP IRES
activities in 50 unrelated HapMap cell lines ranged from
0.657 to 1.638 and from 2.200 to 9.271 respectively.

Heritability of IRES activity

To determine the fraction of the total phenotypic varia-
tion in the CEPH population that was genetically deter-
mined, i.e. that is attributable to variation among
individual genotypes (40), we assessed the heritability
(h2) of the various studied phenotypes in the 15 CEPH
families. The heritability estimates were h2 of 0.47 and
0.36 for EMCV and XIAP IRES, respectively.

Genome-wide linkage analysis

We performed a genome-wide linkage analysis on IRES
expression values from 15 CEPH pedigrees. No significant
QTL could be identified for EMCV IRES activity. XIAP
IRES activity was associated with a suggestive LOD score
in chromosome 18 [2.35, p=5E-04 (marker rs1144098)].
We determined empirical genome-wide significance levels
by multiple permutation analysis. This allowed us to
determine that the chromosome 18 peak is significant at
the 90% significance threshold, thus not reaching nominal
genome-wide significance (Figure 4).

Genome association analyses

In order to further dissect the linkage analysis result, we
assayed LCLs from 50 unrelated CEPH individuals that
had been genotyped at a high density within the frame-
work of the HapMap project (41). The association analy-
sis was performed in a 1, 5, 15 and 30 Mb region centered
on the initial linkage assignment using 218, 800, 3283 and
5954 tag SNPs, respectively. No SNP could be statistically
associated with the XIAP IRES activity after correction
for multiple testing. Thus, we used the initial SNP
(rs1144098) identified by the linkage analysis for further
analysis of the region.
Genotype data for rs1144098 were not available for the

Caucasian HapMap population. However, rs1144098 was
tagged by SNP rs948590 in the Yoruba HapMap popula-
tion. The latter SNP is in complete linkage disequilibrium
(r2=1.0) with rs1144097, rs1144099, rs9965768 and is in
high linkage disequilibrium with rs12607660 (r2=0.843),
rs1221882 (r2=0.872) and rs1221862 (r2=0.902) in the
Caucasian HapMap population. All associated SNPs are
localized in a �23kb genomic region in intron 1 of DCC
(deleted in colorectal cancer) on Chromosome 18q21.3.
This gene extends for over 1 Mb.
We then performed a genome-wide association study on

the 50 unrelated HapMap individuals using all 2.2 million
SNPs that have been generated for these samples (42).
Results of this analysis revealed that the top association
(p=5.9E-7) localized to chromosome 3 (Figure 4) within
intron 7 of the FHIT (‘fragile histidine triad’) gene. The
second and third ranked SNPs also mapped to the same
linkage disequilibrium block, thus FHIT is the best candi-
date gene resulting from this screen. Given the large
number of SNPs tested, the association does not survive
multiple testing correction either by Bonferroni or by

HM8 Raji Jurkat 293T Hela Huh-7 Hep3B

HM8 Raji Jurkat 293T Hela Huh-7 Hep3B

HM8 Raji Jurkat 293T Hela Huh-7 Hep3B
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Figure 1. IRES activity in cell lines of diverse origins. IRES activity
was estimated as the ratio between eGFP expression (second cistron)
and mRFP (first cistron) in the transduced population and normalized
by values from mock transduced cells. Each panel is representative
for one of two independent experiments performed in triplicate. Bars,
SEM; a.u., arbitrary units.
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multiple permutation tests. However, given the known
functions of FHIT as a signaling and tumor suppressor
gene, it remains an interesting candidate for mediating
IRES function.

DISCUSSION

The main results of this study include the observation that
(i) IRES efficiency depends on the cellular background;
(ii) differences in EMCV and XIAP IRES efficiency are
observed for lymphoblastoid B cell lines from multiple
individuals and family pedigrees; (iii) variability of IRES
activity has a genetic, heritable component; (iv) a quanti-
tative linkage analysis scan identified a suggestive chromo-
somal locus that mapped to intron 1 of the DCC gene on
chromosome 8 and (v) genome-wide association studies
revealed that a SNP intronic to the FHIT gene on chro-
mosome 3 showed the highest association. Both of these
loci are candidates for involvement in IRES function.
All three IRES exhibited cell type-dependent transla-

tional activity. Differences in IRES-mediated translation
in cells of different origins may reflect different titration of
general trans acting factors and ITAFs. XIAP IRES had
the highest level of activity in the experimental system.
A more precise assessment of activity attributed to

IRES-mediated translation included analyses for the pre-
sence of cryptic promoter activity and RNA splicing,
that would render spurious estimates of IRES activity.

Cryptic promoter activity, previously described in IRES
DNA constructs using the Hepatitis virus C IRES, was
not observed in the constructs under study. Alternative
splicing would potentially bypass the first cistron while
allowing the expression of the second cistron from
the EF1a promoter. Specifically, previous reports have
described skipping of the first cistron in XIAP IRES con-
structs (43,44). We also identified an alternative transcript
generated by a proportion of the XIAP IRES vectors in
the present study. Splicing used the same 30 splice site as in
Van Eden et al. (44) and Baranick et al. (39); however, it
led to loss of expression of the second cistron. Thus, the
eGFP expression observed in the different cell lines reflects
the XIAP IRES activity.

Variation in gene expression (transcription) has been
reported to occur within and among populations (45).
Such variation does not only depend on inter-species dif-
ferences but also on differences between individuals from
the same species (46–48). The determinants of gene expres-
sion levels can be studied through genetic approaches (49)
by using cells from pedigrees (linkage analysis) such as
those from CEPH (50) or by using cell lines from unre-
lated individuals (association studies). We decided to
apply both approaches to the analysis of variation of
translation levels.

In order to dissect the genetic determinants of IRES
activity, we used B LCLs immortalized by Epstein-Barr
virus (EBV) from the CEPH collection to perform
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genome-wide quantitative linkage analysis. The DNA
from each LCL has been genotyped at high resolution
and is publicly available allowing linkage and association
studies to be performed. CEPH LCLs have proven to be
useful in the identification of genomic markers influencing
sodium-lithium counter transport (51), variation in gene
expression (52–57), transcriptional response to ionizing
radiation (58), sensibility to chemotherapy cytotoxicity
(59), and we have used it successfully to map a suscept-
ibility locus to HIV-1 infection (60).
Evaluation of EMCV and XIAP IRES activity in

CEPH cell lines identified inter-individual differences of
3.08-fold and 4.74-fold, respectively. EMCV and XIAP
IRES-related phenotypes were heritable. Thus, variation
in IRES activity is determined by the individual genetic
background. Some individual cell lines presented extreme
(low and high) phenotypes of IRES activity for both IRES
elements (EMCV or XIAP), suggestive of dependence on
the same cofactors modulating IRES activity. Given the
evidence of significant heritability of the trait in the in vitro
system, we progressed to a genome scan. However, no
significant QTL was identified for EMCV IRES activity
despite high h2 values. We can hypothesize that EMCV
phenotypes are regulated by multiple loci contributing
modestly to the trait.
We identified a suggestive QTL associated with XIAP

IRES activity, and identified a marker SNP (rs1144098)
located in intron 1 of DCC. Given the large size of the
DCC gene, these results could suggest a role of this locus
in the control of XIAP IRES activity, although the resolu-
tion of quantitative linkage studies is usually in the order
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ity values for EMCV (A), and XIAP (B) in transduced CEPH cell lines.
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of 5–10 Mb, and other genes in the vicinity cannot be
excluded. DCC, a human receptor of netrin-1 (61), con-
tributes to pro-apoptotic signaling when not bound to its
ligand whereas an anti-apoptotic signal is induced in pre-
sence of netrin-1 (62). Similarly, XIAP is an important
regulator of apoptosis (63). Although XIAP is not in the
same pathway as DCC, these observations could suggest a
mechanistic interplay between DCC and XIAP.
We also performed a genome-wide association study on

unrelated individuals from the HapMap collection. From
this we identified SNPs in intron 1 of the FHIT gene as
showing the highest association. FHIT has been shown to
participate in the Src and Wnt signaling pathways (64,65),
and is thus a plausible candidate to be involved in the
modulation of IRES expression. Studies on a larger set
of cell lines from unrelated individuals will be needed to
validate this observation.
The need to progress from mapping data to functional

data is however complex, as well identified in recent
genome studies that search the genetic basis of complex
traits. In contrast from prior studies of monogenic disor-
ders, the step from linkage to precise cloning cannot be
readily done. In the present study, the linkage intervals are
still very large, the associated or linked markers may fall
within a gene, but this does not necessarily imply that the
causal variant is within short distance. Given current map-
ping precision, test of the involvement of the candidate
loci in controlling or modulating IRES activity is still
premature.
In conclusion, we demonstrate for the first time the

heritable control of IRES activity, and propose two sug-
gestive loci associated with the control of XIAP IRES
activity. The study also illustrates potential uses and lim-
itations of in vitro cellular phenotypes by using CEPH
pedigrees—even for the evaluation of genetic elements of
small size such as a 198 bp IRES sequence.
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