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A duplication at chromosome 11g12.2-11g12.3 is
associated with spinocerebellar ataxia type 20
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Spinocerebellar ataxia type 20 (SCA20) has been linked to chromosome 1112, but the underlying genetic
defect has yet to be identified. We applied single-nucleotide polymorphism genotyping to detect structural
alterations in the genomic DNA of patients with SCA20. We found a 260 kb duplication within the previously
linked SCA20 region, which was confirmed by quantitative polymerase chain reaction and fiber fluorescence
in situ hybridization, the latter also showing its direct orientation. The duplication spans 10 known and 2
unknown genes, and is present in all affected individuals in the single reported SCA20 pedigree. While the
mechanism whereby this duplication may be pathogenic remains to be established, we speculate that the criti-
cal gene within the duplicated segment may be DAGLA, the product of which is normally present at the base of
Purkinje cell dendritic spines and contributes to the modulation of parallel fiber-Purkinje cell synapses.

INTRODUCTION

The most common cause of the autosomal dominant cerebellar
ataxias is simple sequence repeat expansion (SCAs 1-3, 6—8,
10, 12, 17) (1-3). Missense mutations have also been identified
in six SCAs (the Japanese 16q-linked SCA, SCAs 5, 11, 14, 15,
27) (4-9), and more recently genomic deletion at /TPRI has
been associated with SCA15 and SCA16 (9,10), which can
now therefore be recognized as the same condition.

Single-nucleotide polymorphism (SNP) genotyping is a power-
ful method for detecting chromosomal duplications and deletions
with high resolution and efficiency. This technique was employed
to discover the mutational mechanism of SCA15 (9).

Spinocerebellar ataxia type 20 (SCA20) is a dominantly
inherited cerebellar ataxia that is clinically distinct from the
other SCAs. Notably, dysphonia is present together with dys-
arthria; and palatal tremor (“palatal myoclonus’) is typical. In
the eye movements, saccades are hypermetric, and there is no
nystagmus. A unique neuroradiological finding is a progress-
ive calcification of the dentate nucleus of the cerebellum,
which likely precedes the onset of clinical manifestations.
The age of onset of the disease ranges from 19 to 64 years
(11,12).

Genetic linkage was found to the pericentromeric region of
chromosome 11 (11). Since this region overlapped the SCAS5
disease locus, locus homogeneity was considered, although
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Figure 1. Infinium HumanHap550 SNP genotyping chips. (A) The top two panels show the results from one affected family member and the bottom two panels
show the results from an unaffected family member. The horizontal band in each panel represents heterozygous signal from two-allele SNP markers distributed
along chromosome 11. The arrow indicates a duplicated region that was shared by the two affected family members. (B) A higher magnification view showing

the duplication more clearly (circled in red).

the SCAS5 and SCA20 clinical pictures differ considerably; but
subsequent discovery of the SCAS gene, B-III spectrin
(SPTBN2) (6), allowed the demonstration that the two diseases
are genetically distinct (13).

RESULTS

The SNP microarray genotyping identified a structural vari-
ation in two affected SCA20 individuals, in comparison to
two unaffected family members. The profile obtained from
the log R ratio and the B allele frequencies indicated a
genomic duplication at chromosome 11ql12.2-11ql2.3,
which is within the region to which SCA20 had previously
been linked (11) (Fig. 1). The duplication is defined by the
SNPs rs4963307 and rs10897193, which are 260 kb apart.
We examined 62 contiguous SNPs across the duplicated
region in two affected family members (GD1907 and
GD1918); using the B allele frequency metric, we were able
to assign the two affected family members a genotype
at each of these SNPs of A/A/A (n=16), A/A/B (n=24),
A/B/B (n = 20) and B/B/B (n = 48; we were unable to confi-
dently call 16 genotypes). At 32 of these SNPs, one of the
affected family members was called either A/A/B or A/B/B;
in no instance did we observe an A/A/B genotype in one indi-
vidual and an A/B/B genotype in the other. These data are con-
sistent with the notion that the duplication originally occurred
by intrachromosomal duplication. A search of repeats in NCBI
Genome Viewer revealed a large number of repeats at the
flanking ends of the duplicated region, but none at both ends
that were identical. The duplicated region contains 10
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Figure 2. A schematic diagram taken from the UCSC Genome Browser,
Human March 2006 (v174) Freeze of chromosome 11 showing the ten
genes within the SCA20 duplicated critical region and the two SNPs that
delineate the duplication, rs4963307 and rs10897193. The schematic
diagram also illustrates where the BACs lie in relation to the SNPs on chromo-
some 11.

known and 2 unknown genes (Fig. 2). Quantitative real-time
polymerase chain reaction (PCR) was performed on eight
different genes to evaluate the extent of the duplication and
to assess the SCA20 family members. As expected, this analy-
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Figure 3. Gene dosage analysis of the SCA20 duplicated region. Results are the mean of three replicates done in triplicate experiments and are expressed as
2724C 1 3D, (A) Gene dosage results obtained for the entire SCA20 duplicated region comparing an unaffected family member to an affected family
member. The genes outside the duplication are SY77 and INCENP. (B) A representative gene dosage result for the entire SCA20 pedigree that was tested

for one of the duplicated genes, DAGLA exon 5.

sis indicated that the duplication co-segregated with the
disease haplotype in the SCA20 family (Figs 3 and 4).
Based on examination of copy number metrics of the Human-
Hap550 BeadChip, none of the 1129 control samples showed a
duplication in the same region.

To determine the orientation of the large genomic repeat,
we used Genome-wide Analysis of Palindrome Forma-
tion (GAPF), a procedure that enriches for palindromes
(i.e. inverted repeats) in genomic DNA (14). This approach
is based on a relatively simple and efficient method to

make ‘snap-back DNA’ from palindromic sequences by
intra-molecular base-pairing, followed by elimination of
non-palindromic single-strand DNA using S1 nuclease. This
procedure has previously been used to show that DNA inverted
repeats are non-randomly distributed and enriched in cancer
cells (14). To analyze the SCA20 region in high-resolution
in an affected individual, we modified the GAPF assay to
use genomic tiling arrays, with probes spaced every 10 bp
along the SCA20 region of the chromosome. We did not
detect a GAPF-positive signal in the genomic area known to
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Figure 4. The SCA20 family pedigree showing the individuals who carry the duplication that is segregating with the disease. Individuals in the family who do
not carry the disease haplotype do not have the duplication (Normal). Three individuals were not tested as indicated because their DNA was unavailable.

Figure 5. Fiber FISH analysis on EBV-transformed lymphocytes of patient
00101063 from the family. The DNA fibers were hybridized with two
BACs which span each end of the breakpoint, namely, RP11-467L20 visual-
ized in red and RP11-61G16 visualized in green. In the lower part of the
image the signals on one fiber are shown. The upper part of the figure
shows only the RP11-467L20 (red) signal on this fiber; the middle part of
the figure shows only the RP11-61G16 (green) signal on the fiber. The alter-
nating green-overlap-red-green-overlap-red pattern is apparent. It is important
to note that the red and green signals in the centre are not overlapping: this
indicates a direct tandem duplication.

be duplicated, indicating that the duplication is unlikely to be
an inverted repeat (data not shown), but presumably direct.

To confirm that the duplication is direct, we used fiber fluor-
escence in situ hybridization (FISH) with three BAC clones,
RP11-467L20, RP11-61G16 and RP11-810P12, in different
combinations. Most informative was the co-hybridization of
RP11-467L20 in red and RP11-61G16 in green. Both clones
map for the largest part within the duplication (Fig. 5);
RP11-467L20 spans the proximal breakpoint, and RP11-61G16
spans the distal breakpoint of the duplication. The alternating
red—green—red—green pattern of signal sequence is consistent
with the duplication being of direct orientation (Fig. 5).

DISCUSSION

We have demonstrated by quantitative real-time PCR that all
the affected individuals in the single known SCA20 family

have a duplication on chromosome 11q12.2—11q12.3, within
the previous linked SCA20 region (11). The orientation is
direct: that is to say, the DNA of the duplicated segment
runs in the same direction as the original segment. Since the
duplication lay well within the linkage region, it was expected
that all affected individuals with the disease haplotype would
also carry the duplication; but it was useful to corroborate this.
As no controls of similar ethnicity were found with this dupli-
cation, it is unlikely that this alteration is a common copy
number variant (CNV). However, since many CNVs are
rare, it is nonetheless possible that the observed duplication
is a rare ‘private’, neutral (non-pathogenic) CNV. A pointer
against this possibility is that benign CNVs do not generally
affect multiple transcripts, but are more likely to involve
only a single gene, or to be localized to intergenic regions
of the genome. The balance of evidence thus strongly suggests
that the observed duplication is truly pathogenic, and is the
cause of SCA20 in this family. As SCA20 is the first SCA
to implicate a CNV, it remains to be seen if CNVs have a
role in other dominant or sporadic forms of ataxia.

Further evidence that could be adduced were there to be
known individuals, whose phenotype was recorded, and carry-
ing a chromosomal duplication encompassing this region.
However, we could find only one such duplication case in
the cytogenetic literature (15,16), a 6-year-old child, who
had a more severe neurological deficit, presumably due to
the broader effects of his relatively large (11q11-11q13.3)
duplication. A CT brain scan was reported as normal; but
the inferred absence of dentate calcification cannot, at this
young age, exclude SCA20.

The nature of the genes within the segment may support the
proposition of pathogenicity of the duplication, and a gene nor-
mally expressed in cerebellum could be important to this disease
mechanism. Of the 10 annotated genes within the 260 kb dupli-
cated interval, diacylglycerol lipase « subunit (DAGLA) (17), a
neural stem cell-derived dendrite regulator, is the most attractive
in this respect. The remaining genes, listed following, have little
support for candidacy: hypothetical protein LOC745, chromo-
some 11 open reading frame 9 (Ci/lorf9) (18), hypothetical
protein LOC746, chromosome 11 open reading frame 10
(C1lorf10) (19), flap structure-specific endonuclease 1 (FENI)



(20), fatty acid desaturase 1 (FADSI), fatty acid desaturase 2
(FADS?2), fatty acid desaturase 3 (FADS3) (21), RAB3A-
interacting protein (rabin3)-like 1 (RAB3IL1) (22), bestrophin-1
(vitelliform macular dystrophy protein 2) (BESTT) (23), ferritin,
heavy polypeptide 1 (FTHI) (24) and an otherwise undefined
predicted gene (UCSC Genome Browser, Human Mar. 06
Assembly).

DAGLA is interesting as a SCA20 candidate because of its
known function and its association with the ataxia interactome
(25). Its protein product catalyzes the hydrolysis of diacylglycerol
(DAG) to 2-arachidonoyl-glycerol (2-AG), an endocannabinoid
with an important role in retrograde trans-synaptic suppression
of synaptic transmitter release (26). From mouse studies, the
gene is highly expressed in two particular neuronal classes of
the brain, cerebellar Purkinje cells, where its protein product is
present in the dendritic field, and pyramidal cells of the CAl
region of the hippocampus. The dendritic field of the Purkinje
cell receives input from the parallel fibers of the granule cells,
and this input is modulated at the synaptic junction; DAGLA
has its highest expression at the base of the Purkinje cell dendritic
spines near the anatomical site of this synapse. It is not clear
why an incorrect amount (150%) of DAGLA production (if the
duplication does indeed cause this) should lead to a gradual com-
promise of cerebellar function; but the observation in SCA1S5
provides a notable parallel, in which an incorrect amount (50%)
of another factor, /TPR1, expressed at high level in the Purkinje
cell, is associated with a quite similar very slowly progressive
pure cerebellar degenerative phenotype (9).

The only known disease-associated gene within the region
is BESTI, which is mutated in Best macular dystrophy
(BMD) (MIM: 153700), also known as vitelliform macular
dystrophy type 2. The pathogenesis is due to abnormal
accumulation of lipofuscin within and beneath the retinal
pigment epithelium cells. BEST! forms calcium-sensitive
chloride channels, and may conduct other physiologically
significant anions such as bicarbonate (27). No obvious
connection to the phenotype of SCA20 is evident.

The remaining genes do not have high cerebellar
expression, and present no obvious features that would impli-
cate them in the mechanism of SCA20. C//orf9, whose func-
tion is unknown, is not highly expressed in the cerebellum,
although it is expressed in other regions of the brain, such
as the brainstem and basal ganglia (18). FEN/ is an endonu-
clease that cleaves the 5" end overhanging flap structure that
is generated by displacement synthesis when DNA polymerase
encounters the 5 end of a downstream Okazaki fragment.
FENI also possesses 5’ to 3’ exonuclease activity on nicked
or gapped double-stranded DNA, and exhibits RNase H
activity (20). Not much is known about Cilorfl0 (19),
except that it is located immediately upstream of the FENI
gene, but in the reverse orientation, with the 5’ ends overlap-
ping. FTH1 stores iron in a soluble, non-toxic, readily avail-
able form and is important for iron homeostasis. FTHI has
ferroxidase activity. Iron is taken up in the ferrous form and
deposited as ferric hydroxides after oxidation. Defects in fer-
ritin proteins are associated with several neurodegenerative
diseases. FADSI, FADS2 and FADS3 are fatty acid desa-
turases. Desaturase enzymes regulate desaturation of fatty
acids through the introduction of double bonds between
defined carbons of the fatty acyl chain. This cluster of fatty
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acid desaturases is thought to have arisen evolutionarily
from gene duplication, based on the similar exon/intron of
its constituent genes (21). RAB3ILI (22) is a Ras-like
GTPase that regulates synaptic vesicle exocytosis. RAB3ILI
is a physiologic guanine nucleotide exchange factor for
Rab3A.

If indeed the duplication is the cause of SCA20, then
its discovery has enabled us to place SCA20 among other
neurological diseases caused by chromosomal duplication
(Charcot—Marie—Tooth disease type 1A being the classic
example). Whether an extra copy of the DAGLA gene is suffi-
cient, of itself, to determine the SCA20 phenotype, or whether
involvement of other genes within or near the duplicated
region is necessary for the disease, awaits clarification. Identi-
fication of additional SCA20 families, or other adults with
interstitial cytogenetic duplication involving proximal 11q,
who have had neurological evaluation and brain imaging,
would be very useful in this regard. In the absence of such sup-
portive evidence from other families, animal models with
overexpression of DAGLA and other candidate genes in the
segment may be needed to confirm the mechanism of the
duplication.

MATERIALS AND METHODS
Patient samples

Patient samples were collected as previously described (11).

SNP analysis

Structural alterations in genomic DNA were sought by SNP
analysis. Two affected and two unaffected individuals from
the original SCA20 pedigree were genotyped as per the man-
ufacturer’s instructions, using the Infinium HumanHap550
SNP genotyping chips, which contain 555, 352 unique SNPs
(Illumina Inc, San Diego, CA, USA). Data were collected on
an Illumina BeadStation scanner, and genotypes generated
from the genotyping module (v2.3.25, Illumina Inc). Signal
intensities (log R ratio) and SNP B allele frequencies were
assessed via the visualization tool in the BeadStudio
package (Genome viewer), as outlined in Simon-Sanchez
et al. (28). Allele frequencies (‘theta values’) were obtained
for individual SNPs, and corrected for cluster position.
These data then give the log R ratio, which is the log, ratio
of the observed normalized R value for each SNP, divided
by the expected normalized R value for that SNP’s theta value.

Scores close to 1, 0.5 and 0, indicate B allele homozygosity,
heterozygosity and A allele homozygosity, respectively, while
deviations from these values, in contiguous SNPs, indicate a
change in the copy number at that locus. An increase in
copy number (>1) denotes a likely duplication, and a decrease
(<1), a deletion.

Quantitative real-time PCR analysis

Quantitative real-time PCR for eight different genes was used
to assess gene dosage and to determine the extent of the dupli-
cation in all available family members (Fig. 4). Twenty-two
samples were studied with 13 probes across the region
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(Figs 3 and 4). Quantitative duplex PCR of genomic DNA was
performed on the ABI Prism 7900 Sequence Detection
System. B-globin was co-amplified as an internal control,
using the following primers: 5-TGGGCAACCCTAAGG
TGAAG-3" (B-Globin F, Exon 2) and 5'- GTGAGCCAG
GCCATCACTAAA-3" (B-Globin R, Exon 2), and a probe
labeled with 6-FAM with the sequence: 5'-CTCATG
GCAAGAAAGTGCTCGGTGC-3'. The probes for each
region examined were labeled with VIC. Specific primers
and probes (obtainable upon request) were designed using
the Primer Express Program for 7agMan MGB probes
(Applied Biosystems, Foster City, CA, USA). All primers
were purchased from Integrated DNA Technologies (Inte-
grated DNA Technologies, Coralville, IA, USA). Each PCR
reaction was performed in a total reaction volume of 15 wl
containing 25 ng genomic DNA, TagMan Universal PCR
Master Mix (Applied Biosystems), 900 nm primers and
250 nm probes. The PCR cycling conditions were standard,
95°C for 10 min, then 95°C for 15 s and 60°C for 1 min for
40 cycles. The plates for PCR each contained the genomic
DNA samples, control DNA and a no-template water control
in triplicate, and the experiments were performed in triplicate.
The quantification of each amplicon was determined as the
cycle at which the PCR amplification was in log phase in
fluorescent signal (Ct), relative to B-globin as the internal
control. The dosage of each region relative to B-globin was
normalized to the mean of the unrelated controls using the
2745 method (29). Values of 0.8—1.2 were assumed to be
normal, and values between 1.3 and 1.7 were considered
indicative of heterozygous duplication.

Genome-wide analysis of palindrome formation

In order to determine whether the SCA20 amplicon is in the
form of a large inverted repeat, the GAPF procedure was per-
formed as described previously (30), with modifications.
Genomic DNA (1.5 pg) was treated with either Kpnl or Sbfl
to enrich for DNA close to palindromic centers, or with no
enzyme. The restriction enzymes were then heat-inactivated.
To make snap-back DNA, genomic DNA was then boiled in
50 wl of water with 100 mm NaCl for 7 min and then placed
in an ice-water bath to cool quickly. After snap-back
treatment, DNA was treated with S1 nuclease (Invitrogen,
Carlsbad, CA, USA) and amplified by ligation-mediated
PCR. 7.5 mg DNA was labeled with biotin (GeneChip WT
Double-stranded Target Labeling Kit, Affymetrix, Santa
Clara, CA, USA) and hybridized to a Human Tiling 2.0R F
array (Affymetrix). A comparison of GAPF profiles between
affected and unaffected individuals was done with Tiling Analy-
sis Software (Affymetrix, Version 1.1). The probe intensities
were normalized using quantile normalization plus scaling,
and bandwidth was set at 250 bp. Results were visualized with
the Integrated Genome Browser (Affymetrix, Version 4.56).

Fiber FISH analysis

To confirm the GAPF interpretation of the duplication orien-
tation, we applied fiber FISH, according to the methodology
described previously (31,32), with some adaptations. In short,
the cells of EBV-transformed cell line were suspended in water

to a concentration of 1—5 x 10° cells/ml (5). Approximately
100 w1 of cell suspension was pipetted onto a Repel-Silane (GE
Healthcare)-coated slide, spread out over the entire surface of
the slide, and quickly dried using a hair-dryer. Two 50 ul
drops of 0.5% SDS, 50 mm EDTA, 0.2 M Tris—HCI, pH 7.0,
were pipetted onto a 24 x 60-mm coverslip. The slide with the
side containing the cells facing down was then lowered on
top of the coverslip. The slide was turned upside-down and
the coverslip was very carefully slid off. Again, the slide was
dried using a hair-dryer, and then incubated for 5 min in metha-
nol:acetic acid (3:1) to fix the DNA fibers. The dried slides were
used directly in the denaturation and hybridization procedures.
FISH was performed as described previously (33).

Analysis of control and population samples
for duplication at SCA20

We analyzed the disease locus for copy number alteration in
1129 samples, previously typed by us using the Infinium
HumanHap550 GeneChip product. These comprised 644
samples from neurologically normal subjects deposited at
the National Institute of Neurological Disorders and Stroke
Neurogenetics Repository (http://ccr.coriell.org/ninds/, unpub-
lished data) and 485 samples from 29 world populations (34).
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