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Abstract
Background/Aims—Dietary factors and intestinal bacteria play an important role in the rapidly
increasing incidence of obesity and its associated conditions, such as steatosis and insulin resistance.
In the current study, we evaluated the effect of probiotics, and their mechanisms on diet-induced
obesity, steatosis and insulin resistance.

Methods—Wild-type male C57BL6 mice were fed either normal or high fat diets. Some mice
received VSL#3 probiotics. Animal weight, hepatic steatosis, insulin resistance, and their relationship
to hepatic NKT cell number and inflammatory signaling were evaluated.

Results—High fat diet induced a depletion of hepatic NKT cells thus leading to insulin resistance
and steatosis. Oral probiotic treatment significantly improved the high fat diet-induced hepatic NKT
cell depletion, insulin resistance and hepatic steatosis. This effect was NKT cell -dependant, resulted
from the attenuation of the tumor necrosis factor-alpha and I Kappa B Kinase inflammatory signaling,
and led to an improved sensitivity in insulin signaling.

Conclusions—Probiotics improve high fat diet-induced steatosis and insulin resistance. These
effects of probiotic are likely due to increased hepatic NKT cell numbers and reduced inflammatory
signaling.
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Introduction
Obesity and related health problems, particularly those associated with fatty liver disease and
insulin-resistance, are increasing rapidly (1–3). Of the various environmental factors that might
contribute to the rising incidence of obesity-related diseases, changes in dietary habits merit
particular consideration since diets that are enriched in certain macronutrients (e.g., saturated
fats) induce both obesity and insulin resistance in experimental animals and humans (4,5),
while other studies showed improved hepatic steatosis with polyunsaturated fatty acid
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supplements(6,7). This may explain why westernized diets are associated with an increased
prevalence of obesity and type 2 diabetes. However, modification of dietary habits and
lifestyles has not been well accepted and has not been successful in the general population in
reducing the incidence of obesity and insulin resistance. Better and more easily accepted
interventions are badly needed to change the current trend in obesity and insulin resistance.
Therefore, it is crucial to understand the mechanisms of diet-induced obesity and to identify
potential interventions. Intensive efforts aimed at clarifying mechanisms that underlie diet-
induced obesity and insulin resistance have identified the inflammatory process and gut
bacteria as important factors.

Growing evidence has pointed to a correlative and causative relationship between inflammation
and insulin resistance. Human population studies have linked insulin resistance to systemic
inflammation(8,9). The pro-inflammatory TNF-α/IKK-β signaling pathway has been shown
to mediate insulin resistance associated with obesity in many rodent models(10,11).
Constitutive activation of IKK-β in liver causes both hepatic and systematic insulin resistance
(12). Conditional disruption of IKK-β in skeletal muscle fails to prevent obesity-induced
insulin resistance(13). Taken together, these observations suggest that the liver may be the
principal tissue responsible for inflammation-mediated insulin resistance. In the liver, the
inflammatory process is, at least partially, regulated by a group of “unconventional” T cells
that express both natural killer (NK) receptors and T cell receptors (NKT cell). These NKT
cells balance the production of pro-inflammatory and anti-inflammatory cytokines(14).
Therefore, alterations of hepatic NKT cell function might lead to the relative over-production
of pro-inflammatory cytokines, such as TNF-α, hence, causing both tissue-specific and
systemic inflammation and insulin resistance.

Intestinal bacteria are known to play a critical role in obesity and insulin resistance.
Colonization of germ-free mice with conventional gut bacteria causes a significant increase in
body fat, despite a decrease in food intake(15). Recently, Gordon and colleagues have
demonstrated that germ-free mice colonized with gut bacteria from obese mice gained a greater
amount of weight than mice colonized with gut bacteria from lean mice on the same diet
(16). Germ-free mice are also resistant to high fat diet-induced obesity related metabolic
changes (17). Although many physicochemical determinants, such as intra-luminal pH, may
effect the composition of gut bacteria, it is the amount and type of substrate available for
bacterial growth that has the most significant influence (18). There is an increased abundance
of Bacteroidetes and decreased abundance of Firmicutes in obese humans subjected to a fat-
restricted diet (19). Probiotics, that is, live microbial food supplements which help maintain
the balance of intestinal micro-flora, have shown in a number of studies to be effective in the
treatment of insulin resistance in both rodents (20), and humans (21). In our previous study,
we showed that probiotic therapy improved steatohepatitis and insulin resistance in leptin
deficient, ob/ob mice(20).

In the current study, we evaluated the effect of probiotics on high fat diet-induced obesity, fatty
liver and insulin resistance. More importantly, we investigated mechanisms underlying the
immuno-modulatory function of probiotics and their role in the inflammatory process and
insulin resistance. Results from our current study may have profound therapeutic implications
for the management of obesity-related fatty liver diseases and insulin-resistance.

Methods
Animal experiments

Adult (age 6–8 week) male wild-type C57BL-6 mice were purchased from Jackson
Laboratories (Bar Harbor, ME). The mice were fed with commercial diets (BioServ, Inc.,
Frenchtown, NJ) containing either high amounts of fat (HF, #3282, 60% kcal from fat) or
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normal amounts of fat (ND, 11% kcal from fat) for 8–12 weeks. The mice were pair-fed
between the ND and HF group to achieve isocaloric status. CD1d null mice of a C57BL/6 strain
were kindly provided by Dr. Mark Soloski and maintained in our laboratory. All mice were
maintained in a temperature- and light-controlled facility. Some HF- or ND-fed mice were
given VSL#3 probiotics (a mixture of viable, lyophilized bifidobacteria, lactobacilli ands
Streptococcus thermophilus, 1.5 × 109 colonies/mouse/day) by oral gavage for 4 weeks after
the mice had been on HF or ND diets for 8 weeks. The probiotics were freshly resuspended in
sterile water daily, just prior to use. Heat-killed probiotics were used as part of control. To
study the insulin signaling pathway, mice were injected with either saline or 25mU/kg of insulin
via the portal vein 5 min. before harvesting the liver. All animal experiments fulfilled NIH and
JHU criteria for the humane treatment of laboratory animals.

Isolation and cell-surface labeling of hepatic mononuclear cells (HMNCs)
HMNCs were isolated as previously described (22). HMNCs were then labelled with a CD1d
tetramer (NIH tetramer facility) loaded with a ligand (PBS-57, an analogue of α-GalCer) or
anti-mouse fluorescent antibodies against CD8, CD4, NK1.1 (Pharmingen, San Diego, CA).
After surface labeling, HMNCs were evaluated by flow cytometry (Becton Dickinson, Palo
Alto, CA), and the data analyzed using Cell Quest software (Becton Dickinson).

Glucose tolerance test (GTT)
Following an overnight fast, mice were given a dose of glucose (1.5 gram/kg, i.p.). Blood
glucose from the tail vein (2 µl of blood sample) was measured using an Accu-Check®
glucometer with range of 20 – 600 mg/dl (Roche Diagnostics).

Liver Histology and Triglyceride content
Thin slices of liver tissue were stained with hematoxylin. Ten 200X light microscope fields
were assessed on each section and scored for the severity of steatosis as previously described
(20). The histology was evaluated by an experienced hepatologist (ZL) in a blind fashion. Total
lipids were extracted from liver tissue according to published method(23). Triglyceride content
was measured with a kit according to manufacturer’s instruction (Sigma-Aldrich #TR0100)

Cell purification and adoptive transfer
Donor NKT cells were isolated from normal livers of wild-type C57BL-6 mice. After isolation,
HMNCs or splenic cells were labelled with surface marker antibodies (anti-TCRβ and anti-
NK1.1). NKT cells (NK1.1+, TCRβ+) were isolated using a FACSVantage SE high speed sorter
(Becton Dickenson), and injected into recipient mice (1×105 cells/mouse via tail vein injection)
that had been on a HF diet for 12 weeks. Cells from the NKT cell negative fraction were injected
into the control group. The effects of NKT adoptive transfer were evaluated after 3 days.

RNA Isolation and Evaluation of Hepatic Gene Expression
RNA was isolated as described previously(24,25). cDNA was synthesized from 5 µg of total
RNA using oligo(dT) as a template and the SuperScriptII kit (Invitrogen). Quantified PCR
amplifications were performed using TagMan Gene Expression Assays PCR Master Mix and
primer sets (Applied Biosystems, Foster City, CA). Negative controls were performed without
cDNA in the reaction mixture. The results were normalized against glyceraldehyde-3-
phosphate dehydrogenase gene expression.

Immunoprecipitation and Western Blot
Whole protein extracts of liver tissue were resolved either by 10% SDS-PAGE directly or
immunoprecipitated with antibodies against the insulin receptor (IR), IRS-1 or IRS-2 (Cell
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Signaling, Beverly, MA) first and then resolved by 10% SDS-PAGE according to standard
procedures. Samples were then transferred to 0.45-µm nitrocellulose membranes (Bio-Rad,
Hercules, CA), and incubated overnight with various antibodies against total IκB-α,
phosphorylated Iκ B-α (Cell Signaling), anti-phosphotyrosine (PY20), Akt(1/2) and activated
Akt (pSer473) (Cell Signaling, Beverly, MA) at 4 °C. Chemiluminescent signals were
quantitated by density measurement using ImageJ software (NIH).

ELISA-based assay for DNA binding activity of NF-κB
Nuclear extracts were obtained from mice liver tissues using the NE-PER nuclear and
cytoplasmic extraction reagents kits (Pierce, Rockford, IL) according to the manufacturer’s
instructions. The DNA binding activity of NF-κB was determined using the ELISA-based
TransAM NF-κB Family kit (Active Motif, Carlsbad, CA) according to the manufacturer’s
protocol.

Statistical analysis
All values are expressed as mean ±SE. Treatment related differences were evaluated by
ANOVA. The paired-individual means were compared by t-test

Results
High fat diet- induced hepatic NKT cell depletion precedes the development of glucose
intolerance and hepatic steatosis

Our previous study showed that HF diet causes obesity, hepatic steatosis and NKT cell
depletion (22). However, it was difficult to interpret whether hepatic NKT cell depletion was
the cause or the consequence of steatosis. To better understand the causal relationship between
hepatic NKT cell depletion and steatosis, a time course analysis of HF diet-induced hepatic
NKT cell depletion and steatosis was performed. Our results showed an early onset of hepatic
NKT cell (CD1d tetramer positive cells in Fig. 1A) depletion once the animals started the high
fat diet. Because the number of total hepatic mononuclear cells (HMNC) remained unchanged,
the decreased percentage of CD1d tetramer positive cells reflected the decreased amount of
hepatic NKT cells. There was also a major overlap between hepatic CD1d tetramer positive
and CD3+ NK1.1+ cells. The majority of CD1d tetramer positive NKT cells were CD3+

NK1.1+ and vice versa (Fig. 1B, C). The depletion of NKT cells appeared to be liver specific
since the splenic NKT cells remained unchanged (Fig. 1D). In addition, CD4+ NKT cells were
the predominant hepatic NKT cell fraction depleted (Fig. 1D). Mice receiving HF diet also
developed insulin resistance and hepatic steatosis (Fig. 1E, F, Table 1). However, the insulin
resistance and steatosis only became apparent after eight weeks of HF diet, therefore, hepatic
NKT cell depletion preceded the development of insulin resistance and steatosis. The HF diet
induced hepatic NKT cell depletion; insulin resistance and steatosis were reversible when the
HF diet mice were switched back to a normal diet (Suppl. Fig. 1).

Probiotics improved HF diet-induced hepatic NKT cell depletion
Gut bacteria have been shown to be important regulators of diet-induced obesity and associated
metabolic syndrome e(15,16). Bacterial glycosphingolipids have also been shown to activate
NKT cells in vivo(26,27). Therefore, we evaluated whether probiotic treatment that modifies
gut flora has any effect on hepatic NKT cells. We used VSL#3, a probiotic extensively tested
in animal models of intestinal inflammation and demonstrated that viable VSL#3 bacteria
strains can be cultured from the stool after the oral administration of VSL#3 probiotic to mice,
rats, or human subjects(28,29). Our results showed that probiotics significantly improved HF
diet-induced hepatic NKT cell depletion (Fig. 2), but had little effect on hepatic NKT cells of
ND-fed mice (Fig. 2). In addition, heatkilled probiotics had no effect on HF diet-induced
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hepatic NKT cell depletion (data not shown). These indicated that the effect of probiotics on
hepatic NKT cells is likely by restoring alternations caused by HF diet, rather than by affecting
the hepatic NKT cells directly.

Probiotics improved HF diet- induced obesity, insulin resistance and steatosis
Our previous study showed that probiotic therapy improves steatohepatitis and insulin
resistance in leptin deficient, ob/ob mice(20). Here, we evaluated the effect of probiotics in HF
diet -induced obesity, insulin resistance and steatosis. Our results show that probiotics
significantly reduced weight and improved insulin resistance (Fig. 3A, D,Table 1) and steatosis
(Fig. 4A–C,Table 1) in animals fed HF diet, but had little effect on those fed ND diet (Fig. 3A,
3D and 4D). To investigate the role of hepatic NKT cells in the effect of probiotics, normal
hepatic NKT cells were isolated and adoptive transferred to HF diet fed mice. There was no
change of diet intake among mice that received NKT cell adoptive transfer (data not shown).
Adoptive transfer NKT cells significantly improved HF diet induced obesity, insulin resistance
(Fig. 3B, E,Table 1) and steatosis (Fig. 4E, F,Table 1), regardless of whether the donor NKT
cells were isolated from the liver or spleen (data not shown). Previously, other investigators
also showed that adoptive transfer of NKT cells ameliorates non-alcoholic steatohepatitis and
glucose intolerance in leptin deficient ob/ob mice(30). To further confirm the pivotal role of
NKT cells in the effect of probiotics, NKT cell deficient CD1d null mice(31) were fed HF diet
and treated with probiotics as described above. The result showed that HF diet fed CD1d null
mice had little improvement of their insulin resistance (Fig 3C, F) after probiotic treatment.
There was a slight, but not statistically significant decrease of steatosis (Fig. 4G–I, table 1)
indicating that, at least the majority of the effects of probiotics are NKT cell dependant,
although we cannot rule out an additional action of probiotics over and above a NKT effect.
There was also a statistical difference between the ND and HF + probiotic and the ND and HF
+ NKT groups indicating that, although probiotic and adoptive transfer treatments improve
animal weight significantly, the treatment did not normalize animal weight. This could be either
dose dependant or due to the involvement of additional unknown mechanisms.

Probiotics reduced inflammatory signaling in HF diet fed mice
Hepatic NKT cells regulate hepatic cytokine production and balance pro-inflammatory and
anti-inflammatory response. To evaluate the effect of hepatic NKT cell depletion on hepatic
cytokine expressions in HF diet mice, and more importantly, to evaluate the effect of probiotics
treatment and NKT cell adoptive transfer, the expression of TNF-α and IL-4 expressions were
evaluated in the liver of ND and HF diet mice as well as HF diet mice treated with probiotics
and NKT cell adoptive transfer. TNF-α has been identified as a key pro-inflammatory cytokine
that mediates insulin resistance(10,11). IL-4, on the other hand, is the key anti-inflammatory
cytokine that mediates NKT cell dependant insulin resistance in NOD mice(32). HF diet
significantly increased the expression of TNF-α and reduced the expression of IL-4 (Fig. 5A).
Probiotics and adoptive transfer NKT cell treatment improved the elevated TNF-α expression
and the suppressed IL-4 expression in HF diet mice (Fig. 5A). TNF-α activates IKK-β, a
prerequisite for wild-type mice with diet-induced obesity to develop insulin resistance(33).
Following this lead, the hepatic IKK-β activities in mice fed HF and ND diet were evaluated,
as well as the effects of probiotic treatment and NKT cell adoptive transfer. IKK-β
phosphorylates Iκ Bα. Therefore, the ratio of phospho-Iκ Bα/total-Iκ Bα represents IKK-β
activity. The expression of total-IκBα in whole liver extract was measured by Western blot.
The phospho-IκBα expression was then measured by stripping and re-probing the same
membrane. HF diet fed mice have significantly increased IKK-β activity, as indicated by an
increased ratio of phospho-IκBα/total-Iκ Bα (Fig. 5B). Probiotic treatment and adoptive
transfer of NKT cells reduced IKK-β activity (Fig. 5B). We further evaluated NF-κB binding
activities, the down stream signal for IκBα, with similar findings. HF diet fed mice have
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significantly increased NF-κB binding activity. Probiotic treatment and adoptive transfer of
NKT cells reduced NF-κB binding activity (Fig. 5C).

Probiotics improve hepatic insulin signaling sensitivity in HF diet fed mice
We further evaluated the effect of HF diet-induced NKT cell depletion on the hepatic insulin
signaling pathway. Insulin activates the insulin receptor tyrosine kinase (IR), which
phosphorylates and recruits substrate adaptors, such as IRS-1 and IRS-2. Tyrosine
phosphorylated IRS then displays binding sites for numerous signaling partners. Among them,
PI3K has a major role in insulin function, mainly via the activation of the Akt/PKB cascades
(34,35). Protein extracts were prepared from whole liver tissues of ND and HF diet fed mice
as well as HF mice treated with probiotics and adoptive transfer NKT cells. The protein extracts
were immunoprecipitated with antibodies against IRS-1 or IRS2 and immunoblotted with the
antibody specific for phosphotyrosine (PY). Akt activation was determined by immunoblotting
of the original lysates with antibodies specific for total Akt and phospho-Akt (pSer473) and
then comparing the ratio of phosphor-Akt/total-Akt. Insulin stimulation failed to induce IRS
phosphorylation and Akt activation in HF diet fed mice compared to their ND controls,
indicating hepatic insulin resistance (Fig. 6). Adoptive transfer NKT cells and probiotics
treatment restored the insulin signaling capacity in HF diet fed mice (Fig. 6).

Discussion
Despite mounting evidence associating dietary factors with obesity-related diseases, the
mechanisms underlying their pathogenesis are not well understood. Recently, we reported that
a HF diet that induces obesity, insulin resistance and hepatic steatosis also leads to hepatic
NKT cell depletion. However, it was not clear whether the depletion of hepatic NKT cells was
the cause or the consequence of overall metabolic dysfunction. In the current study, we obtain
several lines of evidence to support the theory that the hepatic NKT cell is the key mediator of
HF diet-induced metabolic abnormalities: (a) NKT cell depletion is observed long before
steatosis and insulin resistance can be detected (Fig. 1), (b) adoptive transfer of NKT cells from
a normal donor reverses HF diet-induced steatosis and insulin resistance (Fig. 3, 4 and Table
1), (c) the effects of probiotic treatment on insulin resistance and steatosis are NKT cell
dependant (Fig. 3, 4 and Table 1) and (d) methionine-choline deficient (MCD) diet fed mice,
which also develop significant steatosis but no insulin resistance(36), do not have hepatic NKT
cell depletion despite steatosis (Suppl. Fig. 2). Based on this evidence, we believe that HF diet-
induced NKT cell depletion is a contributing factor for steatosis and insulin resistance, rather
than a consequence of these pathologies. Recently, Cani and colleagues reported that a high-
fat diet increases plasma lipopolysaccharide (LPS) level, which also contributes to the
pathogenesis of insulin resistance and increased liver triglyceride content(37). It is possible
that the endotoxinemia caused by high fat diet reduces intrahepatic NKT cells and leads to
worsened or amplified insulin resistance.

The ability of probiotics to restore hepatic NKT cells and improve HF diet-induced insulin
resistance and fatty liver are novel findings and intriguing. A previous study showed that one
probiotic, butyrivibrio fibrisolvens, increased splenic NKT cells(38). NKT cells regulation of
inflammatory processes and chronic inflammation is known to be associated with insulin
resistance and fatty liver disease(33). Our observation proves the hypothesis that probiotics,
through modulation of hepatic NKT cells, reduce inflammatory signaling and ultimately lead
to improved insulin resistance and to improved fatty liver disease. Our data show that probiotic
treatment has no effect on fatty liver and insulin resistance in CD1d null mice, indicating that
the response to probiotics involves NKT cell activity. Interestingly, the CD1d null mice do not
exhibit insulin resistance, fatty liver or inflammation on the normal diet, suggesting that
absence of NKT cells alone is not sufficient to cause obesity-related disorders. It indicates that
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there is a critical interaction between losing NKT cells, rather than just their absence, and the
development of HF diet-induced insulin resistance and fatty liver. We hypothesize that CD1d
null mice have developed compensatory mechanisms to regulate inflammatory processes other
than by NKT cells. Since the anti-inflammatory activities of probiotics are mediated by NKT
cells, which are lost in CD1d null mice, we are currently investigating the mechanisms of
probiotic modulation of NKT cells and inflammation.

As discussed earlier, intestinal bacteria are the key mediators that regulate food energy harvest
and utilization. In the current study, we demonstrate that intestinal bacteria also play an
important role in regulating hepatic inflammatory processes. Modification of intestinal bacteria
by probiotics significantly suppressed HF diet-induced activation of the TNF-α/IKK-β
signaling pathway, which is the critical signaling for diet-induced insulin resistance. These
data suggest that strategies designed to down regulate inflammatory mediators with probiotics
have promising potential in patients with NAFLD. We also demonstrate that the effects of
probiotics are mediated by hepatic NKT cells, a key component of the innate immune system.
In the liver, NKT cells regulate cytokine production and balance pro-inflammatory and anti-
inflammatory responses. NKT cells recognize a group of glycolipid antigens bound to the MHC
class I-like molecule, CD1d, expressed with β2 micro globulin on various antigen presenting
cells(39). Recently, bacterial glycosphingolipids from Gram-negative bacteria have also been
shown to activate NKT cells in vivo(26,27). Therefore, it is possible that intestinal bacteria or
probiotics carry antigens that can modulate hepatic NKT cells directly, or indirectly by
affecting non-parenchymal cells, such as Kupffer cells, that express CD1 and present antigen
to NKT cells. Our current study does not distinguish the direct stimulating effect of probiotics
from the indirect effect of probiotics through intestinal bacterial modulation, nor address the
possibility of involvement of non-parenchymal cells. However, the lack of effect of probiotics
on hepatic NKT cells in ND diet-fed mice implies that the effect of probiotics is through
modulation of gut flora. Further studies are needed to separate these two mechanisms.

In conclusion, based on our observations in the current study, we hypothesize that dietary
factors, through interaction with intestinal bacteria, modulate hepatic NKT cells, thus causing
an inflammatory process which contributes to insulin resistance and steatosis. Further study
of the mechanisms of our hypothesis will help to elucidate the pathogenesis of diet induced
obesity, insulin resistance and NAFLD and may have profound implications in identifying
targets for therapy in obesity-related diseases.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. High fat diet decreases hepatic NKT cells and leads to insulin resistance and fatty liver
Wild type C57BL6 mice were fed either high fat diet (HF) or normal diet (ND). Hepatic
mononuclear cells (HMNC) were isolated and NKT cells were identified with CD1d tetramer
loaded with a ligand and co-labeled with CD4, CD8, CD3 and NK1.1. A) Histogram of CD1d
tetramer labeling of HMNC from HF diet mice at different time points. Each panel represents
a fixed number of HMNC counted at a certain time point. There is progressive NKT cell (CD1d
tetramer positive at the right side peak) depletion after 2 weeks on HF diet. The total HMNC
amount remained unchanged. The decreased percentage of CD1d tetramer positive cells
reflected the decreased amount of hepatic NKT cells. B) Dot plot of hepatic CD3+ NK1.1+

cells that were gated on CD1d tetramer positive cells. C) Histogram of hepatic CD1d tetramer
cells that were gated on CD3+ NK1.1+ cells. D) Flow cytometric analyses of hepatic and splenic
NKT cells. Depletion of CD4+ NKT cells is more prominent than total NKT cells. There was
no change in splenic NKT cells. E) Glucose tolerance tests. Significant glucose intolerance
only appears after 8 weeks of HF diet. F) Liver histology. Hepatic steatosis is not apparent
until 8 weeks of HF diet. (*p<0.05 vs ND) (n=3 at each time points with duplicated
experiments).
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Figure 2. Probiotics improve hepatic NKT cell depletion in HF diet mice
Mice were fed HF or ND diets for 8 weeks, and then half the mice were treated with probiotics
(HF+probiotics, ND+probiotics), and the other half were treated with vehicle (HF, ND) for an
additional 4 weeks. All mice were maintained on either HF diet or ND diet. A) Representative
flow cytometry dot plot of hepatic NKT cells. The total amounts of hepatic mononuclear cell
(HMNC) remain similar between experimental groups. Therefore, the percentage of HMNC
represents the amount of hepatic NKT cells in the liver. B) Mean (+SD) results from triplicate
experiments are graphed (n=8/exp). *p<0.05 vs HF. C) Mice from different treatment groups
consumed a similar amount of calories. Therefore the effects of probiotic were not due to
decreased oral intake.
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Figure 3. Probiotics improve obesity and insulin resistance in HF diet mice via a NKT cell dependant
manner
Mice were treated the same as described in Figure 2. A) Animal weight. D) Glucose tolerance
tests. (n=8/exp with triplicate experiments). In separate experiments, NKT cells were isolated
from the livers of normal mice and then injected to recipient mice that had been on HF diet for
12 weeks (HF+NKT). Control HF mice received the same amount of splenic T cells (HF+T).
The animals were then evaluated 4 days after adoptive transfer. B) Animal weight. E) Glucose
tolerance tests. (n=6/exp with duplicated experiments). In addition, wild type (WT) and CD1d
null (CD1dko) C57BL6 mice (not age and weight matched) were fed for 8 weeks on either ND
or HF diets, and then some the HF diet mice were treated with probiotics (wt+HF+probiotics
or CD1dko+HF+probiotics), and the other HF diet mice were treated with vehicle (wt+HF or
CD1dko+HF) for an additional 4 weeks. ND diet mice all were fed ND diet continuously
(CD1dko+ND). C) Animal weight change. F) Glucose tolerance tests. (n=6/exp with duplicated
experiments). #p<0.05 vs ND, *p<0.05 vs HF. p=0.36 CD1dko+HF vs CD1dko+HF
+probiotics.
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Figure 4. Probiotics improve steatosis in HF diet mice via a NKT cell dependant manner
Mice were treated the same as described in Figure 2 and 3. Representative HE stains of liver
histology are shown.
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Figure 5. Probiotics reduces pro-inflammatory signaling in HF diet fed mice
Mice were treated the same as described in Figure 2 and 3. A) TNF-α and IL-4 expressions
were determined by quantitative RT-PCR and normalized with GAPDH expression. B)
Western blot of IκBα performed on whole liver extract. Representative autoradiographs are
shown. Mean (±SD) results from triplicate experiments are graphed. C) ELISA based NF-κB
binding activity assay. *p<0.05 vs HF. **p<0.01 vs HF. (n=8/exp with duplicated experiments)
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Figure 6. Probiotics improve insulin signaling sensitivity in HF diet mice
Mice were treated the same as described in figure 2 and 3. In addition, mice received either
saline or insulin injection before harvesting liver tissue. A) Western blot of phosphotyrosine
(PY), IRS-1 and IRS-2 performed on immunoprecipitates of IRS-1 and IRS2. B) Western blot
of p-Akt and Akt1/2 performed on whole liver extract. Representative autoradiographs are
shown. Mean (±SD) results are graphed. *p<0.05, **p<0.01 vs HF. (n=8/exp with duplicated
experiments)
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Table 1
Probiotics improve HF diet-induced insulin resistance and steatosis.

Mean ± SD Histological
steatosis score

Triglyceride
mg/g of liver

tissue

HOMA-IR

ND 0 ± 0** 5.05 ± 0.92** 0.78 ± 0.01*
HF 2.8 ± 0.42 45.75 ± 6.81 1.58 ± 0.25

HF+Probiotics 1.0 ± 0.94** 17.73 ± 10.19** 0.80 ± 0.10*
HF+NKT 1.9 ± 0.74** 19.01 ± 9.06** 0.76 ± 0.47

CD1dko+ND 0 ± 0 6.51 ± 2.08 NA
CD1dko+HF 2.25 ± 0.71§§ 28.01 ± 6.58§§ NA

CD1dko+HF+probiotics 2.13 ± 0.64p1 22.60 ± 2.63p2 NA

Mice were treated the same as described in Figure Legend 2 and 3. Serum glucose and insulin levels were measured after overnight fasting. HOMA-IR,
an established measure of insulin sensitivity(40), were calculated as glucose concentration X insulin concentration ÷ 22.5. Liver HE stained sections were
evaluated under 200X magnification. On each section, findings from 10 high power fields (HPF) were averaged to derive the data point for that mouse.
Hepatic triglyceride was extracted and measured. Mean values (±SD) for 3 mice of each group are shown.

*
p< 0.05

**
p< 0.01vs HF or ND

§§
p<0.01 vs CD1dko+ND

p1
0.71

p2
0.17 vs CD1dko+HF

J Hepatol. Author manuscript; available in PMC 2009 November 1.


