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Six-micron paraffin sections of paraformaldehyde-fixed specimens of 24 ovarian benign and
neoplastic specimens were assayed for tumor cell-specific oncogene expression by a sensitive,
quantitative in situ hybridization technique with probes for 17 oncogenes, beta-actin, and E. coli
beta-lactamase. In the benign, borderline, and invasive adenocarcinomas, multiple oncogenes,
including neu, fes, fms, Ha-ras, trk, c-myc, fos, and PDGF-A chains, were expressed at
significant levels relative to a housekeeping gene (beta-actin). In the mixed-Mullerian tumors, a
rather different pattern of oncogene expression was observed, characterized primarily by
expression of sis (PDGF-B chain).

For the adenocarcinomas, statistical analysis demonstrated that expression of several genes
(ffms, neu, PDGF-A) was closely linked to others (c-fos, c-myc) known to have important roles in
the control of cell proliferation, but only one gene,fmis, correlated very strongly with clinicopatho-
logic features (high FIGO histologic grade and high FIGO clinical stage) predictive of aggressive
clinical behavior and poor outcome. The authors discuss the role that tumor epithelial cell
expression of thefis gene product might play in the auto- and paracrine control of growth and
dissemination of ovarian adenocarcinomas.

In some cell culture systems, serial transfection of morphologically benign primary
cell lines with viral or cellular oncogenes can confer, stepwise, phenotypic traits
characteristic of malignant cells [ 1,2]. Such observations have inspired hypotheses that
a similar incremental progression of cellular oncogene activation (mutation, aberrant
over- or underexpression, and so on) occurs during the development of spontaneous
neoplasms [3-7]. Ovarian epithelial neoplasms are a system well-suited for testing
such hypotheses, since they encompass a broad spectrum of lesions, ranging from
benign hyperproliferative serous and mucinous adenomatous cysts, serous and muci-
nous adenomas of borderline malignant potential to invasively malignant well-
differentiated, moderately differentiated, and poorly differentiated serous, mucinous,
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and endometroid adenocarcinomas, and include less common histologies such as
mixed-Mullerian (mixed mesodermal) tumors, and others [8-10]. Clinical presenta-
tions also vary and range from small lesions confined within the ovarian capsule to
aggressively malignant neoplasms which have disseminated throughout the peritoneal
cavity and metastasized to distant visceral sites. At least for the adenocarcinomas,
clinical extent of disease and histologic grade at presentation correlate very strongly
with outcome [8-10]. We anticipated, therefore, that studies of cellular changes of
oncogene expression in ovarian neoplasia would provide us with valuable information
on those relationships which exist between prognostically important clinical and
pathologic characteristics and qualitative and quantitative changes in tumor cell-
specific oncogene expression.

In 1989, over 30 different genes have been identified as potential oncogenes
[6,7,11-13]. Most previously published reports have focused on the importance of the
expression of a single oncogene or oncogene class in tumor tissue or tumor-derived cell
lines [14-17]. In this paper, we report the use of a sensitive and quantitative in situ
hybridization technique [18-22] to assay levels of expression of 17 different oncogenes
in 24 ovarian benign and neoplastic specimens. This quantitative data was subjected to
statistical analyses, revealing many interesting relationships, some of which link
high-grade, high-stage presentations to genes not otherwise implicated in the biology of
epithelial neoplasms.

MATERIALS AND METHODS

Tissue Specimen Accrual, Preparation, and in Situ Hybridization (ISH)

All tissue specimens were obtained from patients of the Hunter Radiation Therapy
and Ob/Gyn clinics of the Yale University School of Medicine, in accordance with
Yale HIC protocol 3303. Small biopsies (maximum, -3 mm thick) of ovarian
neoplastic or benign tissues were obtained during therapeutic or diagnostic procedures
(by PES, EIK, SKC, and JTC) and placed into freshly prepared PGP fixative
(4 percent paraformaldehyde, 0.5 percent glutaraldehyde, 0.1 M Na-phosphate [pH
7.5]) within one to two minutes of harvest. Fixation was continued for four to six hours.
Specimens were processed for embedding in paraffin, six-micron sections cut, prepared
for, and carried through in situ hybridization and nuclear track emulsion autoradi-
ography, as has been described elsewhere [18-24]. Probes for ISH were prepared by
appropriate restriction digest of chimeric plasmids with cloned oncogenes, labeled with
35S-dCTP by random primer extension [25], using alpha-35S-labeled dCTP to give
specific activities averaging 5 x 108 dpm/mcg DNA [26], and were complementary to
coding sequences of beta-actin [27] (PstI), and enterobacterial beta lactamase [28]
(EcoRI, PstI), c-myc [29] (third exon; Clal, EcoRI), N-myc [30] (third exon; AccI,
Aval), L-myc [31] (second and third exon; SmaI, EcoRI), c-fos [32] (NcoI, XhoI),
myb [33] (KpnI, XbaI), p53 [34] (EcoRI, BglII), Ha-ras [35] (SstI, PstI), Ki-ras [36]
(EcoRI), N-ras [37] (SalI, NcoI), sis [38] (PstI, XbaI), PDGF-A chain [39] (SstI,
Hindlll), erbB [40] (BamHI), neu [41] (BamHI),fes [42] (PstI),fms [43] (PstI), ros
[44] (EcoRI, PvuII), and trk [45] (NcoI, EcoRI). Sections of confluent monolayers of
BeWo cells [46] (grown in Weymouth's + 10 percent fetal calf serum, 370C, 5 percent
C02) were processed with each experimental run as positive controls. In our
experiments, BeWo cells show consistently elevated levels of expression of c-myc, fis,
andfos complementary mRNAs and were useful positive controls (see Fig. 1) [47,48].
Non-neoplastic ovarian tissues are included as negative controls (e.g., cases 1 and 2).
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Computer-Assisted Grain Count Acquisition and Data Analysis

The hematoxylin- and eosin-stained ISH autoradiograms are analyzed by light
microscopy and grain counts quantitated with the aid of the Olympus Corporation Cue
2 VISION Image Analysis System. Randomly chosen fields of epithelium or stroma
are visualized and grain counts quantified with the Cue 2 Image Analysis System,
which automatically resolves black silver grains from cell features to size and count
total silver grains for each -7,750-micron2 (100x) oil immersion field. Ideally, enough
fields are viewed and silver grains counted for a specific histologic feature (e.g., tumor
epithelium, tumor stroma, and adjacent normal tissue) to yield a total of 500-1,000
grains. Grain counts per field are converted to hybrids per micron3 by multiplicative
factors' which take into account section thickness, size and specific activity of probes,
exposure duration, and microscope field size. Pearson's correlation test was applied to
the tabulated data for each probe with the aid of the PRODAS Professional Database
Analysis System, Version 3.2 (Conceptual Software, Houston, TX) to yield R-values
and p-values of the pairwise comparisons of oncogene and actin mRNA hybrids per
micron3 with each other, FIGO grade (0-3) and FIGO stage (0-IV). Borderline
lesions were assigned a nominal grade of 0.5 to reflect their histologic status
intermediate between benign (grade 0) and well-differentiated, invasive (grade 1)
adenocarcinomas [8,49].

RESULTS

Quantitative in situ hybridization analyses were carried out with specific probes for
beta-actin [27], pBR322 [28], and 17 oncogenes [29-45] on two benign, three
borderline, one grade 1 (mucinous), six grade 2 (serous), seven grade 3 (serous and
poorly differentiated) adenocarcinomas, and five anaplastic mixed-Mullerian tumors
(MMT) of the ovary. Representative data sets of hybrids per micron3 are presented for
the BeWo human choriocarcinoma cell line [46] and the tumor epithelium and
stroma of a grade 3 papillary serous adenocarcinoma of the ovary (Fig. 1). For the
adenocarcinoma, we demonstrate the localization of c-myc, fos, and fms mRNA to
tumor epithelium but not stroma.

Similar data for actin and 17 oncogene probes are presented for all 24 specimens in
Tables 1 and 2. T-test comparison of hybrid values for the 14 adenocarcinomas to the
five benign and borderline malignant neoplasms identify onlyfms and PDGF-A hybrid
levels as significantly higher in the invasive adenocarcinomas, although several other
genes (neu, fes, Ha-ras, trk, c-myc, as well as fis and PDGF-A) are expressed at
higher levels in the neoplastic epithelial cells than a housekeeping gene, beta-actin. For
the small collection of MMTs,fos and myc were both expressed at higher levels than
actin, while higher expression of fos transcripts differentiated the MMTs from the
benign and borderline neoplasms.

'For example, for a 1 kb probe labeled to 5 x Io8 dpm/,ug specific activity, one hybrid emits - 1.4 "S beta
particles after a 48-hour (our standard) exposure to yield one silver grain in a photoemulsion whose detection
efficiency was 100 percent. Our estimates of hybrids per micron2 and hybrids per 100 x field are presented in
terms of such an ideal emulsion, since the absolute efficiency of NTB-2 emulsion for isotopes such as 35S is
not precisely known. Basic physical dosimetric constraints, however, limit photoemulsion detection
efficiency for "S-beta particles to -10 percent (and conceivably much less), and, hence, one grain could
represent the beta emissions of seven or more radiolabeled hybrids and the hybrids per cubic micron values
which we derive actually underestimate the true number of radioactive hybrids present.
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TABLE 2
T-Test Comparison of Hybrids Per Micron3 (x 106) Values of 14 Adenocarcinomas, Five Benign and

Borderline, and Five Mixed-Mullerian Ovarian Tumors

5 Benign and
14 Adenocarcinomas Borderline 5 Mixed-Mullerian

Probe Mean SE Mean Mean SE Mean Mean SE Mean

Actin 425 84 409 112 247 60
p53 299 75 46 30 123 89
fmsaAc 2,662 522 384 222 935 595
neua.b 2,955 1,104 985 499 1,085 465
erb-B 4,897 3,117 1,540 760 2,105 1,231
feSa?b 3,594 1,519 1,434 546 2,008 822
ros 959 344 126 126 142 63
trkab 2,568 1,001 1,079 1,006 828 412
PDGF-A bO 1,428 234 145 92 550 323
sis 202 95 59 59 880" 403
Ki-ras 744 331 302 275 3,780 3,530
Ha-rasab 2,193 643 1,106 824 1,959 1,814
N-ras 582 280 158 71 289 129
fOSa,b 1,397 355 146 74 820'ab.c 190
myb 470 210 48 48 703 353
C-myc,b 2,824 696 973 505 1,054d b 289
L-myc 93 29 95 62 70 43
N-myc 284 68 54 34 118 49

T-test comparisons were carried out on the means and standard errors (SE) of the mean of the hybrids
per micron3 (x 106) values for the 14 adenocarcinomas, five benign and borderline, and five mixed-
Mullerian tumors relative to each other as well as to a housekeeping gene (actin) and a cell proliferation
gene (p53). Statistically significant comparisons (p-value < .05) are indicated by symbols abc. and d as
defined in the key.

'Significantly greater than actin
bSignificantly greater than p53
cSignificantly greater than same gene in benign and borderline tumors
dSignificantly greater than in adenocarcinomas

In Table 3, we present the statistically significant pairwise correlations observed for
the data summarized in Tables 1 and 2 for the five benign and borderline and 14
ovarian adenocarcinoma specimens. Of particular interest are the strong correlations
seen between FIGO histologic grade with levels of fms, PDGF-A, fos, and c-myc
hybrids; the significant correlation of stage with levels offms hybrids; and the strong
correlations offms and PDGF-A levels with each other and withfos and c-myc hybrid
levels. Other less obvious but significant correlations between different oncogene
probes are also revealed by this analysis and summarized in Table 3. When the five
mixed-Mullerian tumors are compared as a group to the five benign and borderline
neoplasms and the 14 ovarian adenocarcinomas, levels of sis (PDGF-B chain)
expression were found to correlate significantly with the presence of MMT histologic
features (R-value, 0.50801; p-value, 0.02638) whilefms (R-value, -0.40290; p-value,
0.08721) and PDGF-A (R-value, -0.43548; p-value, 0.06328) expression correlated
nearly significantly with their absence.
Ras oncogene mRNA expression was also noted in the tumor epithelium of most of

the specimens but did not significantly correlate with either tumor grade or stage, nor
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TABLE 3
Statistically Robust Correlations of Oncogene Expression Data: Two Benign, Three Borderline,

and 14 Adenocarcinoma Specimens'

var 1 var2 R-value p-value var 1 var2 R-value p-value

0.70728
0.69096
0.64948
0.59813
0.51557

0.00071
0.00105
0.00262
0.00683
0.02386

PDGF-A
PDGF-A
PDGF-A
PDGF-A
PDGF-A

Grade
fos
c-myc
fms
neu

0.69096 0.00105
064764 0.00272
0.60063 0.00654
0.58521 0.00848
0.52628 0.02063

Stage fis 0.49204 0.03236

p53 n-myc 0.65866 0.00217

erbB fos 0.74699 0.00024
erbB neu 0.50042 0.0291
erbB c-myc 0.47308 0.04079
erbB fis 0.46754 0.04354

neu fos
neu c-myc
neu N-ras
neu PDGF-A
neu fis
neu erbB
neu n-myc

fes myb

fos
c-myc
grade
ros
PDGF-A
neu
stage
erbB

0.78503
0.71614
0.61469

0.00007
0.00056
0.0051

sis Ki-ras 0.72985 0.00039

fos
fos
fos
fos
fos
fos
fos

myb

0.52628 0.02063 c-myc
0.50506 0.02741 c-myc
0.50042 0.0291 c-myc
0.47535 0.0397 c-myc

c-myc
0.73103 0.00038 c-myc

c-myc
0.80647 0.00003 c-myc
0.73817
0.70728
0.58685
0.58521
0.50506
0.49204
0.46754

0.73312
0.64257
0.58685

0.00031
0.00071
0.00826
0.00848
0.02741
0.03236
0.04354

0.00036
0.00301
0.00826

I-myc

n-myc
n-myc
n-myc

c-myc
fms
neu
erbB
PDGF-A
Grade
ros

0.84154 0.00001
0.80647 0.00003
0.78503 0.00007
0.74699 0.00024
0.64764 0.00272
0.59813 0.00683
0.49048 0.033

fes 0.73312 0.00036

fos
fms
neu
ros
PDGF-A
N-ras
Grade
erbB

n-ras

p53
Ha-ras
neu

0.84154 0.00001
0.73817 0.00031
0.71614 0.00056
0.64257 0.00301
0.60063 0.00654
0.5227 0.02167
0.51557 0.02386
0.47308 0.04079

0.57144 0.01059

0.65866 0.00217
0.56135 0.01239
0.47535 0.0397

Ha-ras n-myc 0.56135 0.01239

Ki-ras

ros fos 0.49048 0.033 N-ras
N-ras

trk ros 0.73312 0.00036 N-ras

sis 0.72985 0.00039

neu

l-myc
c-myc

0.61469 0.0051
0.57144 0.01059
0.5227 0.02167

aSummary of statistically "robust" correlations on the data from Table 1

were any significant pairwise correlations noted between hybrid levels complementary
to the three ras gene probes.

DISCUSSION

By the careful analysis of a collection of 24 human ovarian specimens specially fixed
and processed for in situ hybridization, we have obtained quantitative data on tumor
cell-specific expression of actin and 17 oncogene transcripts. Overall, ovarian neoplas-

Grade
Grade
Grade
Grade
Grade

fis
PDGF-A
stage
fos
c-myc

fis
fis
fis
fns
fis
fms
fms
fis

ros trk
ros c-myc
ros fis
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tic epithelial cells appear to express significant level (relative to actin) of many
different oncogene transcripts, including neu, fes, fis, trk, c-myc, and PDGF-A. Of
the 17 oncogenes studied, however, onlyfms hybrid levels correlate strongly with both
high FIGO clinical stage and/or high histologic grade, which are the two clinicopatho-
logic features of ovarian adenocarcinomas most strongly predictive of aggressive
behavior and poor outcome [8-10]. Sis expression correlated with the presence of
mixed-Mullerian as opposed to adenocarcinoma histologic features, an observation
which is not wholly unexpected, since the sis gene product (PDGF-B chain) has been
implicated by others as an autocrine mitogen in sarcomatous neoplasms [50]. Levels of
fos transcripts (a gene expressed at higher levels in many types of rapidly proliferating
cells) distinguished these aggressive, but rare, neoplasms from benign or borderline
specimens.
Many statistically significant correlations were observed between levels of expres-

sion of different mRNAs (Table 3), and many are not surprising in the context of what
is now known about the physiology of the genes involved. Thus, strong correlations
should be and were observed between levels offos and c-myc hybrids even though the
probes themselves have no homology, since both genes are known to be expressed
together in rapidly proliferating cells. Likewise, the correlations between the src family
oncogenes erbB, neu, ros, fms with fos and c-myc are reasonable if the erbB, neu, ros,
and fns protein kinases and their ligands play some role in the control of ovarian
epithelial cell proliferation [51,52]. Indeed, the presence of such biologically reason-
able correlations helps to provide valuable internal confirmation of the consistency and
validity of our in situ hybridization data and its statistical analyses.

Other correlations, such as those found for different src family oncogenes with each
other, may be a consequence of low-level homology and cross-hybridization between
the probes for one oncogene and the mRNA of another; however, no evidence of
significant correlation or cross-hybridization was even observed for the related (Ha-,
Ki-, and N-ras and c-, L-, and N-myc) gene probes to suggest that the hybridization
conditions used in our experiments were not adequately stringent. Hence, the strong
correlations observed for pairs of different src family oncogene probes may indicate
coordinate expression of multiple growth factor receptors (erbB, neu,fis, ros, trk) by
the tumor epithelial cells of our specimens, an interpretation consistent with the strong
correlations which we observed between expression of some of these src family genes
and expression of c-myc andfos (refer to Table 3).
The interpretation of some of the correlations (such as that offes with myb, sis with

Ki-ras, c-myc with N-ras, n-myc with Ha-ras, n-myc with p53 and Ha-ras, and N-ras
with neu) is not, however, apparent. They suggest possible coordinate expression of
otherwise unrelated genes and may help to identify possible pathways of signal
transduction in ovarian carcinoma cells involving co-expressed growth factor receptors,
ras-encoded GTP-binding proteins, and nuclear protein oncogenes.
The observed correlation between fis with both grade and stage for ovarian

adenocarcinomas warrants further discussion. Thefms oncogene, first characterized in
a feline retrovirus, is now known to code for the receptor for macrophage colony
stimulating factor M-CSF or CSF-1, a mitogen, chemoattractant, and phenotypic
activator of tissue macrophages [53,54] and trophoblast (which expresses high levels of
the c-fis gene) with important roles in wound healing, immune response, and the
implantation and development of the human placenta. Two other fms-related genes
have also been identified, c-kit and PDGF-receptor, both of which are homologous to
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fms primarily in the 3' protein domain with much less homology in 5' extracellular
sequences. If thefms gene expressed in ovarian neoplasms is mutant or rearranged
with a constitutively active protein kinase (as is the v-fms protein) [55,56], other
physiologic changes may not be needed to produce uncontrolled cell growth and a

malignant cell phenotype. Southern blot hybridization with probes derived from the 3'
and 5' halves of the human c-fms gene for three benign and 23 malignant ovarian
specimens failed to disclose any significant rearrangements of c-fms genomic structure
(data not shown), while Northern blot, cDNA PCR, immunohistochemical studies,
and immunological studies (to be submitted elsewhere) suggest the expression of a

normal or near-normal c-fms mRNA and protein by ovarian adenocarcinoma cells
both in vivo and in vitro.

Claims for importance for fms (or a closely related gene) in non-hematopoietic
neoplasms are not totally without precedent. Walker et al. [57] have recently reported
that overexpressed length fis-complementary transcripts were observed in tumori-
genic cell lines derived from MNNG- or gamma ray-mutagenized primary tracheal
epithelial cells. Similarly, Feldman and Eisenbach [58] have reported the association
of the expression of a fms-complementary transcript with metastatic phenotype in
several mouse carcinoma cell lines, while we have reported in vivo fms transcript
expression in many endometrial and breast carcinomas. If tumor cells do indeed
express a normal or near-normal c-fms gene product, then a source of CSF-1 would be
necessary to allow this receptor to exert phenotypic consequences on tumor cells which
express it. CSF-1 (M-CSF) [53,54,59] is present in many tissues where it is
synthesized by proliferating fibroblasts, activated macrophages, and other mesenchy-
mal cells, and it is possible that the ubiquitous low levels of this mitogen are adequate
to stimulate the proliferation of cells with high levels of M-CSF receptor. Such stromal
cell production of CSF-1 could be facilitated by tumor cell synthesis of stroma
mitogens such as PDGF-A, whose expression is strongly linked to tumor grade and
expression of fms in our ovarian adenocarcinoma specimens (Table 1); however,
stromal CSF-1 production is not the only available source for this cytokine in ovarian
carcinoma patients. We, and others, have reported ovarian tumor cell line expression of
CSF-1 in vitro and have observed markedly elevated plasma CSF-1 levels in ovarian
carcinoma patients with active disease [60]. Such high levels of circulating cytokine
may facilitate tumor growth and spread to metastatic site, a possibility under active
investigation. Less complete information in breast, lung, and endometrial adenocarci-
noma supports the hypothesis that similar CSF-1 /CSF-1 receptor para- and autocrine
interactions may be important in the development and progression of aggressive
epithelial malignancies at other sites. This mechanism, in and of itself, does not exclude
or diminish potentially important roles for the neu, erbB, ros, or ras oncogenes in
ovarian adenocarcinomas; it merely suggests that their expression is not closely linked
to those high-grade, high-stage presentations prognostic of poor clinical outcome.
One particular gene, neu, has been the focus of much controversy concerning its role

in determining the prognosis of breast and, perhaps, ovarian carcinoma patients
[61,62] and is worthy of further discussion here. We have observed that levels of neu

expression (like PDGF-A and fms) strongly correlate with c-fos andmyc expression
(Table 2) in ovarian (as well as breast [21]) carcinomas even though levels of neu

expression in benign and borderline lesions are not significantly different from those
observed in invasively malignant neoplasms (Table 2). In addition, we observed
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statistically significant correlations between levels of neu and fms expression in both
ovarian and breast neoplasms. Such observations have led us to predict that the neu
gene product is in some way involved in the control of epithelial cell proliferation in the
ovary and breast and that it is at least co-expressed (and may interact) with thefms
gene product. We are, however, still wary of any attempts [61] to relate levels of neu
gene expression with prognosis in ovarian cancer, since, in our analysis, neu expression
levels did not correlate significantly with either tumor grade or stage-both of which
are extremely strong prognosticators of short- and long-term outcome in ovarian
carcinoma patients treated with either standard chemotherapy or radiotherapy
[8-10].

Likewise, in many human tumors, expression, and often overexpression, of a
mutated ras oncogene is recognized to be an important step in the development of
malignant neoplasms [14-16]. In fact, nearly all of our borderline and invasively
malignant specimens show significant levels of ras-complementary hybrids (refer to
Table 1), and several of our anaplastic ovarian MMT specimens even show significant
hybridization to more than one ras probe. Our in situ hybridization techniques are not
able to discriminate mutant from wild-type ras gene expression in our specimens, but
we hope that further refinements of in situ hybridization and in situ transcription and
PCR techniques [63] and the recent development of antibodies able to discriminate
mutant from wild-type ras proteins [64] will help us to elucidate the role these
overexpressed ras oncogenes play in determining the malignant phenotypes of ovarian
adenocarcinoma cells.
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