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Fever has been extensively studied in the past few decades. The hypothesis that hypothalamic
thermosensitive neurons play a major role in both normal thermoregulation and in fever
production and lysis has particularly helped to advance our understanding of the neuronal
mechanisms underlying the response to pyrogens. Furthermore, new data in the study of host
defense responses induced by pyrogenic cytokines such as interleukin 1, interferon a2, tumor
necrosis factor a, and interleukin 6 have demonstrated that those factors have multiple, yet
coordinated, regulatory activities in the central nervous system, so that our understanding of the
role of the brain in the activity of these agents requires a new perspective and dimension. Thus,
recent evidence from our laboraotry indicates that blood-borne cytokines may be detected in the
organum vasculosum laminae terminalis and transduced there into neuronal signals. Such signals
may then affect distinct, but partially overlapping, sets of neuronal systems in the preoptic area of
the anterior hypothalamus, mediating directly and/or indirectly the array of various host defense
responses characteristic of infection that are thought to be induced by blood-borne cytokines.

INTRODUCTION

The cytokine interleukin 1 (IL-1) induces various centrally mediated host defense
responses to infectious pathogens. These include, among others, fever, acute-phase
glycoproteinemia, increased counts of white blood cells and levels of adrenocorticotro-
pic hormone (ACTH), and enhanced slow-wave sleep. Fever has been the most studied
of these responses, perhaps because it is the most manifest and often the earliest sign of
infection. Indeed, central nervous system (CNS) mechanisms of fever have been
extensively studied for the past 30 years. More recent studies have revealed that fever
can be induced, in addition to IL-1, by a variety of other cytokines also secreted by
certain activated immune cells, e.g., interferon a2 (IFN), tumor necrosis factor a
(TNF), and IL-6. Moreover, these factors also modulate in the CNS several of the
other host defense responses. The aim of this paper is to review very briefly the central
neuronal mechanisms of thermoregulation and fever and, using this knowledge as a
stepping stone, to discuss our latest findings in terms of centrally mediated host defense
responses generally induced by blood-borne cytokines.
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ROLES OF HYPOTHALAMIC THERMOSENSITIVE NEURONS

In Vivo: Neuronal Substrates of Thermoregulation

The involvement of the hypothalamus in body temperature regulation was first
established in the late 1930s, mainly on the basis of data from animals in which the
hypothalamus was lesioned or surgically separated from the rest of the brain. Such
animals were unable to maintain their body temperatures (Tba) in various ambient
temperatures [1 ]. More direct evidence implicating the hypothalamus in TW regulation
was derived from experiments in which the anterior hypothalamus was heated [2-4] or
cooled [3-5] through implanted devices. In these studies, hypothalamic heating
induced panting, cutaneous vasodilation, sweating, and a fall in Tb,. Conversely,
hypothalamic cooling elicited shivering, cutaneous vasoconstriction, and a rise in Tb.
The latter condition mimics fever production, and the former fever lysis. These
observations thus predicted the existence of specific hypothalamic elements, the
excitability of which could be affected by a local temperature change.

In the early 1960s, hypothalamic neurons sensitive to small, local temperature
changes were found in anesthetized cats and dogs [6-9]. Two types of neurons were
described: warm-sensitive neurons, which increased their firing rates (FR) with higher
than normal (ca. 370C) hypothalamic temperature, and cold-sensitive neurons, which
increased their FR with lower than normal hypothalamic temperatures. Two criteria
for assessment of neuronal thermosensitivity have been proposed: the Qlo and the
thermal coefficient (imp/s/OC). Neurons are classified as warm-sensitive if their Q10 is
larger than 2.0 [10,11] or their positive thermal coefficient is at least 0.8 imp/s/OC, or
cold-sensitive if they exhibit a negative thermal coefficent of at least -0.6 imp/s/OC
[12-14].
According to the "Glossary of Terms for Thermal Physiology" [Pfluigers Arch

410:567-587, 1987], the Qlo denotes "the ratio of the rate of a physiological process at
a particular temperature to the rate at a temperature 100C lower, when the logarithm
of the rate is an approximately linear function of temperature." The thermal coeffi-
cient, which represents thermosensitivity of a neuron, is, according to Boulant and
Hardy [14], determined by its change in firing rate (imp/s) for a given change in
temperature (OC). In practice, the thermal coefficient is customarily determined over a
4-50C range of temperature in which the individual neuron appears most thermosensi-
tive. The Qlo expression for the thermosensitivity has its own shortcomings. For
example, the Qlo cannot be applied to cold-sensitive neurons because it has no negative
values. It produces a bias in favor of neurons with low FR. By definition, it would be
inappropriate if the Qlo were applied to a temperature range of less than 1I0C over
which the neurons appear most warm-sensitive. On the other hand, the thermal
coefficient gives more weight to thermosensitive neurons with high FR. The criteria for
assessment of neuronal thermosensitivity differ from laboratory to laboratory. From
the theoretical point of view, it would therefore seem more appropriate to use both the
Qlo and the thermal coefficient to eliminate all the biases associated with these criteria.
The medial preoptic area (POA) of the hypothalamus was found to contain the

largest number of such thermosensitive neurons, apparently scattered randomly within
this region. Proportions of warm-sensitive, cold-sensitive, and thermally insensitive
neurons were 30 percent, 10 percent, and 60 percent, respectively [15]. Nearly 70 to 80
percent of the thermosensitive neurons in the POA also responded to peripheral
thermal stimulation. They were usually affected in the same direction by thermally
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stimulating the POA and by ambient temperatures [16,17], suggesting convergence of
thermal signals on these neurons in the POA. Based on this and other evidence, the
hypothesis was proposed that homeostatic thermal balance is controlled by hypotha-
lamic thermosensitive neurons that integrate central and peripheral thermal signals
[18]. According to this hypothesis, warm-sensitive neurons receive excitatory synaptic
inputs from peripheral warm receptors and from local warm signals, while cold-
sensitive neurons receive excitatory synaptic inputs from peripheral cold receptors and
local inhibitory inputs from warm-sensitive neurons. There is, as yet, however, no
direct evidence to establish a functional role for these neurons in thermoregulation.

Fever

Other substances that cause Tbo rises include exogenous and endogenous pyrogens
and prostaglandin E (PGE), a putative fever mediator. Responses of thermosensitive
neurons in the POA to these substances are generally consistent with their observed
thermoregulatory effects. Of these, exogenous (e.g., endotoxin) and endogenous pyro-
gens (EPs) have been the most studied since the first report in the early 1 960s that the
activity of hypothalamic warm-sensitive and cold-sensitive neurons decreased and
increased, respectively, in conjunction with fever after intravenous (iv) administration
of bacterial or EPs [19,20]. These activity changes started between 15 and 30 minutes
after pyrogen injection, and returned to their preinjection levels 75 to 115 minutes
afterward. Administration of acetylsalicylate, an antipyretic, facilitated their recovery
coincident with the fall in Tbo. When microinjected directly into the POA, leukocytic
pyrogen (a mixture of pyrogenic cytokines) decreased the FR of warm-sensitive
neurons and increased that of cold-sensitive neurons within a short time [21 ]. Sodium
acetylsalicylate, similarly microinjected, blocked the pyrogen-induced changes [21].
These results indicate that hypothalamic thermosensitive neurons are themselves
sensitive to EP and suggest the possibility that the pyrogen might directly affect these
neurons. Lately, a similar result was reported in anesthetized rats in which minute
amounts of purified human (p) IL-1 were iontophoretically applied in the immediate
vicinity of thermosensitive POA neurons [22]; viz., pIL-1 affected thermosensitive
neurons consistently for over 40 minutes with an onset latency of six minutes. Sodium
acetyl salicylate co-applied iontophoretically blocked the IL-1 effect. Thus, it was
concluded that thermosensitive neurons in the POA may play a major role not only in
the central control of thermoregulation but also in fever production. It is, however,
important to note again that no direct evidence exists to support this hypothesis.
Moreover, it does not take into account that circulating pyrogens cannot enter the
brain and directly affect the activity of hypothalamic thermosensitive neurons (see the
final section of this paper). Although the amount of iontophoretically applied IL- 1 was
extremely small, the injected IL-1 could diffuse and affect a number of neurons in
addition to thermosensitive neurons. The question, therefore, still remains as to
whether thermosensitive neurons are per se sensitive to IL-1 or are driven trans-
synaptically by other neurons or glial cells sensitive to IL- 1. The latter hypothesis is of
particular interest since these cells are able to synthesize IL-I in the brain [23].

Since the discoveries that PGE induces hyperthermia after injection into the third
ventricle of cats, rabbits, and rats [24-26] and that antipyretics reduce both fever and
levels of PGE in ventricular or cisternal cerebrospinal fluid (CSF) [27-29], the view
has been widely held that PGE is synthesized in the brain and mediates fever
production. Levels of PGE2 increase in the CSF of various species during fever rise
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[28-32]. PGE was also detected as early as six to nine minutes after the beginning of
incubation of rat hypothalamic slices with leukocytic pyrogen [33]. Studies in rats,
rabbits, guinea pigs, cats, and monkeys have demonstrated that the sites most sensitive
to PGE are located in and around the POA [26,34-37,62]. Despite this fact, the
neuroelectrophysiological effects of PGE on thermosensitive neurons in the POA have
not unanimously supported the PG hypothesis of fever. A gross form of PGE applica-
tion such as intraPOA (iPOA) microinjection [38] or intracerebroventricular (icv)
injection [39] decreased the FR of warm-sensitive neurons and increased that of
cold-sensitive neurons. lontophoretically applied PGE, however, increased the FR of a
small number of POA neurons regardless of thermosensitivity [40] or that of the
majority of warm-sensitive, but not cold-sensitive, neurons [41]. This result may
suggest that PGE does not act directly on thermosensitive neurons. It is, however,
unlikely that such conflicting electrophysiological results are accounted for by the
different anesthetics used since a study using POA slice preparations (that contain no
anesthetic) also produced inconsistent results [42].

In Vitro: Neuronal Studies

The development of the brain slice method for electrophysiological study has helped
to address some of these issues since the thermosensitivity of POA neurons in slice
preparations [12,43], and also tissue cultures [44,45], is unchanged compared to that
in in vivo preparations. Thus, it was found that some warm-sensitive neurons retained
their thermosensitivity in a synaptic-blocking medium that contained high Mg"+ and
low Ca+ +, suggesting that they were inherently thermosensitive. It has been suggested,
however, that only warm-sensitive neurons are inherently thermosensitive, with cold
sensitivity merely being the result of the inhibitory drive exerted by warm-sensitive
neurons upon cold-sensitive neurons [13,14]. On the other hand, other results have
suggested that inherently thermosensitive neurons include both warm-sensitive and
cold-sensitive neurons [46]; in the latter case, Ca"+ was completely removed from the
medium to enhance the synaptic blocking effect. Several studies have, however,
demonstrated that lowering the calcium concentration of the medium induces synaptic
blockade without affecting nerve conduction [47], while removing the calcium alto-
gether causes hyperexcitability of the tissues [48]. Thus, the conclusion that cold
sensitivity is also intrinsic may have been due to the different compositions of the
media. Intracellular recordings from thermosensitive POA neurons of rats [49,50] and
green sunfish [51] showed that no cold-sensitive neurons in either species exhibited
characteristics prototypical of true thermodetectors, further supporting the hypothesis
that only warm-sensitive neurons are inherently thermosensitive. As to whether
thermosensitive POA neurons are themselves sensitive to cytokines, the latest evidence
suggests that IFN affects thermosensitive POA neurons in a calcium-free/high-
magnesium medium [52]. The interpretation of this result, however, requires caution
since IL- I and TNF do not stimulate the release of phospholipase A2 in a calcium-free
medium [53,54].

Differential Cytokine Effects

It was found that although all three cytokines, IL-1, TNF, and IFN, cause fever
when microinjected iPOA, the febrile responses each evokes differ. Thus, IL-1: elicits
fevers with rapid onsets and relatively short durations, whereas the fevers after IFN are
more delayed in onset and longer in duration, and those after TNF are bimodal [55]. It
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was also found that IL-I: elevates plasma Cu levels as much as 67 percent over control,
but that IFN and TNF are inactive in this respect [56]. We asked, therefore, whether
such differential effects could be similarly expressed by thermosensitive POA neurons
in slice preparations. In conformity with previous observations, the addition to the
medium of IL-1A, IFN, or TNF decreased the FR of the majority of warm-sensitive
neurons and increased that of most cold-sensitive neurons in the preparations. When
the responses of individual thermosensitive neurons to two or more of these cytokines
were examined, however, nearly two-thirds of all neurons responded differentially; e.g.,
a warm-sensitive neuron was inhibited by IL-1: but excited by TNF. This result,
therefore, does not contradict the possibility that each of these cytokines may stimulate
a different population of thermosensitive neurons that possess partially overlapping
characteristics. Observations that not every POA thermosensitive neuron exhibits
sensitivity equally to osmotic, glucose, and reproductive steroid stimulation [57-59]
strengthen our finding. It is conceivable that different neuronal sets composed of units
with various combinations of sensitivities are responsive to one or more of these
cytokines and mediate various responses.
Our results in POA slices showed that a significant number of some thermally

insensitive neurons also increase or decrease their FR in response to the cytokines. A
similar effect of crude leukocytic pyrogen on thermally insensitive POA neurons in
slices of guinea pig brain has been previously reported [60]. The importance of these
results may lie in the possibility that thermally insensitive POA neurons may mediate
nonfebrile cytokine-induced responses. For example, fever induced by icv IL-I is
blocked by antipyretics, but the enhanced slow-wave sleep is unaffected by this
treatment [61]. Similarly, the hyperproteinemia induced by iPOA IL-I is not blocked
by antipyretics [62]; indeed, POA thermal stimulation does not evoke acute-phase
responses [63]. These results suggest that thermally insensitive hypothalamic neurons
may be involved in the modulation of other, nonfebrile host defense responses mediated
by the cytokines.

HOW ARE BLOOD-BORNE CYTOKINE SIGNALS TRANSDUCED INTO
NEURONAL SIGNALS IN THE CNS?

Numerous attempts have been made to demonstrate entry of circulating pyrogens
[64,65] or IL-1 [66-68] into the brain, but so far unsuccessfully, suggesting that
circulating pyrogens may not, in fact, pass into the brain. Yet most host defense
responses [69-71] induced by systemic cytokines apparently involve the hypothalamus,
in particular the POA. Recent studies have demonstrated that lesions of the frontal
wall of the third ventricle including the circumventricular organ, organum vasculosum
laminae terminalis (OVLT, located outside the blood-brain barrier), suppressed not
only the febrile but also the acute-phase glycoproteinemic responses to systemic
endotoxin and EP [72-74]. In contrast, a marked enhancement of the febrile response
to systemic crude IL-I was reported in animals with smaller OVLT lesions [75], which
did not include the vascular plexus of the OVLT. The reason for this apparent
discrepancy is not clear; however, both results unquestionably suggest the importance
of the OVLT for fever production by circulating pyrogens. The enhanced febrile
response to systemic EP was also observed after injection of immunoadjuvants,
zymosan, lipopolysaccharide, and muramyl dipeptide, iv, or into the OVLT, but not
into the POA [76,77]. This result again suggests a role of the OVLT in fever. In this
context, PGE was suggested as a mediator for the febrile response acting within the
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OVLT [76,78]. It has, therefore, been proposed that the OVLT may be a site where
blood-borne cytokines might interact with the CNS. As the OVLT contains abundant
serotonin (5HT) terminals [79,80], we examined the possibility that OVLT neurons
might respond to both cytokines and 5HT by recording extracellular single-unit
activities in slice preparations from guinea pig brain. We found [81 ] that some OVLT
neurons increased their FR for more than 47 minutes after TNF, with an onset latency
of 6.5 mintues. These neurons also augmented their FR after 5HT for over 44 minutes.
The majority ofOVLT neurons, however, decreased their FR for more than 37 minutes
after 5HT, but these neurons did not respond to TNF. A long-term FR decrease after
5HT was often preceded by an increased FR recovery or decreased FR recovery period.
The response characteristics of the OVLT neurons to TNF were identical to those of
POA thermosensitive neurons to this cytokine. By contrast, the long-term FR change
of OVLT neurons observed after 5HT was unusual. Hypothalamic neurons tested with
the same dose of 5HT in our system changed their activity over no more than three to
ten minutes. It is not known as yet whether the responses of OVLT neurons to 5HT and
TNF are synaptically mediated; however, the neurons inhibited by 5HT did not
similarly decrease their FR after TNF. 5HT-induced inhibition is, therefore, probably
not of post-synaptic origin. It is interesting to speculate that the observed excitatory
responses of OVLT neurons to both 5HT and TNF may indicate that 5HT is a
transmitter of OVLT neurons sensitive to TNF, thereby transducing the message of
this circulating cytokine into neuronal signals in the OVLT for transfer into the POA
and other brain areas.

In conclusion, several important issues remain to be addressed. These are important
because they concern the fundamental yet unanswered question of what hypothalamic
thermosensitivity really is. First, neurons sensitive to temperature changes are also
found in regions outside the hypothalamus. These regions include the sensorimotor
cortex [85] and at least 18 nuclei in the diencephalon, including the POA and the
anterior hypothalamus [86,87], yet thermal stimulation of the sensorimotor cortex and
of some of these nuclei other than the POA and the anterior hypothalamus induces no
apparent thermoregulatory response. Second, hypothalamic thermosensitive neurons
exhibit sensitivity to at least 13 different substances [82-84]. All hypothermizing and
hyperthermizing substances excite, respectively, POA warm- and cold-sensitive neu-
rons. In addition, thermosensitive neurons are also sensitive to glucose, reproductive
steroids, osmotic changes, baro/volume receptor inputs, and aversive/emotional stim-
uli [83-84]. The results are taken to indicate that the hypothalamic thermosensitive
neurons play more than one role and are involved in the interactions between
homeostatic systems. There is, however, no direct evidence to support the idea that the
hypothalamic thermosensitive neurons are, in fact, involved in other homeostatic
functions. Therefore, taken together, these two issues raise the following questions: (a)
Is thermosensitivity site-specific to the hypothalamus, and is it so because only the
hypothalamic thermosensitive neurons may possess efferent connections to thermoeffec-
tors? (b) Are hypothalamic thermosensitive neurons uniquely sensitive to multiple
modalities, or is thermosensitivity merely one of many properties shared by neurons
generally, irrespective of their location? And if so, to what purpose?

Finally, it is important to note that the evidence that blood-borne cytokines induce
fever by their action on, for example, the OVLT, and not on the hypothalamic
thermosensitive neurons. It is highly unlikely that circulating cytokines actually enter
the brain and act directly on these neurons. Furthermore, it is interesting to note that
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circulating cytokines induce an array of host defense responses specific to infections,
one of which is fever. Many of these responses are centrally mediated, particularly
through the hypothalamus, and they seem to be functionally interconnected [69-71 ]. It
is, however, not known to what extent the OVLT is involved, in addition to fever
induction and possibly acute-phase glycoproteinemia, in the the host defense responses
induced by circulating cytokines, nor what system operates within the OVLT.
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