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Latent herpes simplex virus (HSV) infection of the trigeminal ganglion of guinea pigs and
latent varicella-zoster virus (VZV) infection of the trigeminal ganglion of humans were studied
by in situ nucleic acid hybridization. Guinea pig trigeminal ganglia were removed during the
period of viral latency (four to five weeks after corneal inoculation of HSV), and human ganglia
were removed at autopsy. Radiolabeled HSV and VZV DNAs were used to probe ganglion tissue
sections for viral-specified RNA. Hybridization detected only over neurons was present in 46
percent of ganglia from 22 latently infected guinea pigs and from 33 percent of ganglia from 10
human subjects. These results support the conclusion that some viral transcription occurred
during HSV and VZV latency.

INTRODUCTION

Evidence of virus infection of the nervous system is most simply concluded by the
isolation of infectious virus from tissues of the central or peripheral nervous systems.
With the advent of in vitro cell culture techniques, such isolations can be readily
performed, for example, with poliomyelitis virus [1]. For some virus infections of the
nervous systems, however, virus can be isolated only with difficulty, if at all. Examples
include subacute sclerosing panencephalitis and progressive multifocal leukoencepha-
lopathy. In these illnesses, evidence of viral infection may be concluded by the presence
of virus-like particles in brain tissue [2,3] and by the presence of viral antigens in brain
tissue, as detected by immunological means [4,5]. For other virus infections, even the
detection of viral proteins is not possible. Viral infections of this last type include latent
herpes simplex virus (HSV) and latent varicella-zoster virus (VZV) infections. Latent
HSV and VZV infections of sensory ganglion neurons are probably the substrates of
recurrent infections, including herpes labialis and genitalis (caused by HSV) and
shingles (caused by VZV) [6]. The relationship between latent HSV infection and
other diseases such as encephalitis is unclear, as is a possible pathogenic role for HSV
in diverse illnesses of the nervous system, including multiple sclerosis and psychiatric
illnesses.

Latent HSV infection of humans and experimental animals and latent VZV
infection of humans are infections of neurons, most typically neurons of sensory
ganglia. Infectious virus and viral antigens are not detected routinely in latently
infected tissues, although HSV can be isolated with special cell culture procedures. It is
possible that the failure to detect infectious HSV (and VZV) and viral antigens during
latency reflects inadequate sensitivity of present-day assay methods; however, most
investigators think that during latency HSV- (and VZV-) specified information is
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restricted and that HSV (and VZV) DNA is present in a noninfectious form [6]. The
production of infectious virus in recurrent HSV and VZYV infections is considered to be
the result of a reactivation process in which viral DNA, RNA, proteins, and viral
particles are synthesized via conventional virological mechanisms. Mechanisms
underlying the initiation of viral reactivation from the latent state are unknown. The
maintenance of a herpesvirus infection in a latent state implies viral or neuronal
mechanisms of control. These mechanisms are presumably altered with reactivation.

To investigate further HSV and VZV latency, we employed the technique of in situ
nucleic acid hybridization. By this procedure we utilized single-stranded and radiola-
beled viral DNA to probe trigeminal ganglion tissues for HSV- and VZV-specified
RNA. In investigations of latency we detected HSV RNA in trigeminal ganglion
tissues of experimentally infected animals, and VZV RNA in human trigeminal
ganglion tissues obtained at autopsy. Hybridization indicated the presence of at least
partial viral transcription during latent HSV and VZV infections.

MATERIALS AND METHODS
Experimental Animals and Viruses

Strain 333 of HSV type 2 (HSV-2) was grown in primary rabbit kidney cells by
standard methods. Virus harvested from these cultures was used for corneal inocula-
tion of guinea pigs to induce latent infection of the trigeminal ganglia. Random-bred
Hartley guinea pigs of both sexes weighing 200-250 g (Dutchland Laboratories,
Denver, PA) were used. Under general anesthesia, bilateral corneal scarification was
performed, and 5 x 10* plaque-forming units of virus were dropped on to each eye.
Animals were observed for four to five weeks and sacrificed under general anesthesia.
The trigeminal ganglia were removed and stored at —70°C. Cryostat sections (12 u) on
glass slides were fixed in ethanol at 4°C.

Human Tissues

Trigeminal ganglia were obtained at routine autopsy 6 to 12 hours after death. Two
individuals had died of chronic neoplastic diseases; none had histories of recent VZV or
HSYV infections. Tissue sections (12 u) were stored in ethanol at —70°C.

Preparation of Viral DNA Probes

The HSV probe used to examine guinea pig ganglia was prepared from purified
HSV DNA. DNA was obtained from purified HSV virions as described previously [7].
Purified HSV DNA was radiolabeled in vitro by nick translation, by the method of
Rigby et al. [8]. In the presence of DNA polymerase nicks in DNA were filled with
3H-labeled nucleotides to produce radiolabeled DNA. Nick translated *H-labeled
HSV DNA had a specific activity of approximately 2 x 107 cpm/ug of DNA; 20,000
cpm/ul. Strain 80-2 was used for the preparation of the VZV DNA probe. By using
cloned VZV DNA fragments, a combination of recombinant VZV DNAs spanning the
entire viral genome was prepared [9]. The VZV DNA probe was labeled in vitro by
nick translation using [**S] dATP. Probe VZV DNA contained approximately 10,000

cpm/pl.
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FIG. 1. Area of HSV
cytopathology in Vero mon-
olayer cells tested with *H-
labeled HSV DNA probe, A,
or with *H-labeled bacterio-
phage lambda DNA probe,
B.

In Situ Hybridization

Although HSV DNA was labeled with *H and VZV DNA with *S, in situ
hybridization reactions, carried out by the methods of Brahic and Haase [10], were
similar. Probe DNA was denatured, and 10 ul of probe mixture containing 50 percent
formamide and sodium chloride, 0.3 M sodium citrate, 0.3 M buffer (SSC buffer) was
then overlaid on ganglion tissue sections (4 to 5 x 10* cpm of probe/slide). In some
instances, ganglion target tissues were treated with DNase or RNase prior to
hybridization. Hybridization was permitted to occur for 48 to 60 hours. Following
hybridization, sections were washed extensively with SSC buffer and were then
dehydrated in ethanol. Slides were covered with photographic emulsion (Kodak
NTB-2) and exposed for four weeks (HSV) or three days (VZV). Following exposure
in light-tight boxes, slides were developed and stained with Giemsa. Tissue sections
were examined for the presence of silver grains, which indicated hybridization of probe
DNA to viral nucleic acid present in the cells of the target tissue. Duplicate or
triplicate sections of each ganglion tested were studied microscopically for evidence of
silver grains. Sections on each slide were not sequential. Total numbers of neurons in
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FIG. 2. Flow 5000 (hu-
man embryo) cells (Flow
Laboratories) infected with
VZV and tested with *S-

1 labeled VZV DNA probe, A,
. or with ¥S-labeled bacterio-
k"ﬁl,' : phage lambda DNA probe,
B.

- () e, |

sections, and proportions of neurons showing evidence of hybridization (hybridization;
positive) were determined.

RESULTS

Hybridization Controls

Prior to use on tissue sections, viral DNA probes were tested on infected monolayer
cells. To evaluate the HSV DNA probe, in situ hybridization was performed on
HSV-infected Vero cells. Results were compared with similar hybridizations carried
out with a bacteriophage lambda DNA probe control. As shown in Fig. 1A, the HSV
probe hybridized to areas showing HSV cytopathic effects, whereas bacteriophage
lambda DNA did not (Fig. 1B). Similarly, whereas the VZV DNA probe hybridized to
human embryo cells infected with VZV (Fig. 2A), the bacteriophage lambda DNA
probe did not (Fig. 2B). In studies in which the HSV DNA probe was used in
hybridization experiments on cells infected with VZV, essentially no hybridization was
noted (data not shown).
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FIG. 3. Trigeminal gan-
glion tissue from a guinea
pig sacrificed during the
period of acute HSV gan-
glion infection (three days
post-corneal inoculation of
HSV) and tested with the
HSV DNA probe.

FIG. 4. Trigeminal gan-
glion tissue from a guinea
pig sacrificed during the
period of latent HSV infec-
tion (four weeks post-cor-
neal inoculation of HSV)
and tested with the HSV
DNA probe, A, or with the
same probe after treatment
of the tissue with DNase, B.
Arrows indicate neurons
with evidence of hybridiza-
tion.
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TABLE 1
In Situ Hybridization of Radiolabeled HSV DNA Probe to Latently Infected Guinea Pig Trigeminal
Ganglion Tissue

Probe Tested Trigeminal Ganglia with Percentage of Cells (Neurons)
and Conditions Hybridization/No. Tested (%) with Hybridization

HSV DNA 20/43 (46) 0.3-5.0
Bacteriophage

lambda DNA 0/43 (0) 0
HSV DNA with

DNase pretreatment 18/39 (46) 0.3-1.0
HSV DNA with

RNase pretreatment 3/38(8) 0.4-0.6

Acute HSV Infection of Trigeminal Ganglion

An additional control was utilized in studies of experimental HSV infection of
guinea pig trigeminal ganglion. Acute ganglion infection was evaluated in guinea pigs
sacrificed three days after corneal inoculation; at this time infectious cell-free virus is
present in ganglion tissue. As shown in Fig. 3, evidence of hybridization with the HSV
probe was detected. Hybridization occurred over groups of cells and was present over
neurons as well as non-neuronal cells. Hybridization was not apparent over ganglion
tissue from uninfected animals (data not shown).

Latent HSV Infection of Guinea Pig Trigeminal Ganglia

Evidence of hybridization was seen over occasional neurons from latently infected
guinea pigs when tested with the HSV DNA probe. As shown in Fig. 4A, clusters of
grains were localized over the nuclei of cells. In all instances, hybridization was limited
to neurons within ganglion tissue. When tissue sections were pretreated with DNase,
there was little or no decrease of subsequent hybridization (Fig. 4B); however, after
pretreatment with RNase, hybridization was markedly decreased or eliminated.
Hybridization to ganglia from latently infected animals was not detected when the
bacteriophage lambda probe was used. Hybridization results are summarized in Table

FIG. 5. Human trigemi-
nal ganglion tissue tested
with the VZV DNA probe.
Arrow points to neuron with
silver grains indicative of
hybridization.
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FIG. 6. Human trigemi-
nal ganglion not tested with
any radiolabeled DNA
probe. Dense perinuclear
grains (arrow) are the result
of autofluorescent lipofuscin
granules.

1. Of a total of 22 guinea pigs studied (43 trigeminal ganglia), hybridization was
detected in 0.3 to 5 percent of neurons in 17 animals (77 percent). Two hundred and
eighteen to four hundred and twenty neurons were examined for each ganglion.

Latent VZV Infection of Human Trigeminal Ganglia

Hybridization of the VZV DNA probe to human trigeminal ganglion tissue was also
detected (Fig. 5). Although tissue preservation was not as good as in the guinea pig
studies, clusters of grains were localized over neurons. Silver grains representing
authentic hybridization within neurons were differentiated from the typically perinu-
clear neuronal grains due to autofluorescent lipofuscin (Fig. 6). As indicated in Table
2, 0.08 to 0.3 percent of neurons in three ganglia from nine individuals were
hybridization-positive. For each ganglion, 448—607 neurons were examined. Evidence
of hybridization was not detected when the bacteriophage lambda DNA probe was
used.

DISCUSSION

The strength of in situ nucleic acid hybridization is the identification of viral nucleic
acids in tissue sections in instances in which the nucleic acids are present in few cells,
particularly where nucleic acid is present in a specific subpopulation of cells. Both of
these conditions pertain to HSV and VZV latency of sensory ganglion neurons.
Evidence has been provided that HSV and VZV latent infections of ganglia are
infections of neurons, and latent virus was detected only in relatively few neurons. In
our studies of HSV latency utilizing DNA-RNA in situ hybridization, 0.3 to 5 percent
of neurons in the 46 percent of trigeminal ganglia that were positive showed

TABLE 2
In Situ Hybridization of Radiolabeled VZV DNA Probe to Human Trigeminal Ganglion Tissue
Trigeminal Ganglia with Percentage of Cells (Neurons)
Probe Tested Hybridization/No. Tested (%) with Hybridization
VZV DNA 3/9 (33) 0.08-0.3

Bacteriophage lambda DNA 0/9 (0) 0
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hybridization. In studies of VZV in human trigeminal ganglia by DNA-RNA
hybridization, only 0.08-0.3 percent of neurons in the 33 percent of ganglia which were
positive showed hybridization.

When in situ hybridization is performed on human tissues obtained at autopsy, the
potential for virus reactivation between the time of death and removal of tissues needs
to be considered. Partial reactivation might have occurred in our VZV study and in
studies of HSV performed by Galloway and colleagues [11]. However, reports of
similar hybridization results for HSV in experimental animal tissues [7,12] support
the validity of the human studies.

It has recently been reported that cellular and HSV DNAs share homology [13-15].
For example, shared homology has been reported between human DNA and the
BamHI-S/P fragment of HSV DNA [14], and hybridization has been reported
between a small DNA segment from the distal portion of the TR, /IR, regions of HSV
DNA and human 28S ribosomal RNA and DNA [15]. Such homology presents
potential difficulty in the interpretation of hybridization results. Several consider-
ations, however, may limit the problem. First, if the region of the viral DNA with
shared homology is known, hybridization with recombinant DNA fragments encom-
passing this region can be used as a control for hybridization with other viral DNA
fragments. Studies with various animal species may show differing areas of “nonspe-
cific” labeling by other DNA fragments. The lack of labeled cells in control tissue
sections minimizes the overall problem. For RNA blot hybridization, a small degree of
shared homology may result in spurious bands, because hybridization with RNA of all
cells in the tissue samples is summed. For in situ hybridization, however, individual
cells are examined, and it is unlikely that minimal shared homology will result in
clusters of grains over the cells. If the presence of reactivated virus can be excluded as
the reason for hybridization, the labeling of few neurons in latently infected ganglia
with radiolabeled viral DN A would be open to two interpretations; both are of interest.
More likely it would indicate the presence of viral-specified RN As; less likely, it would
indicate the presence of cellular RNA that has specifically accumulated in latently
infected cells.

In studies of viral latency utilizing in situ hybridization, an important concern is
whether the probe is detecting reactivating or reactivated virus, as mentioned in the
preceding paragraphs. It is quite apparent that the detection of viral nucleic acid may
be improved by reactivation. For example, improved labeling of sensory ganglion
neurons after a brief period of in vitro cultivation was demonstrated by Stevens and
others in a DNA-DNA hybridization study [16]. In the present hybridization study
and in the studies mentioned above, cultivation was not performed. In our studies of
ganglia from latently infected animals, cell-free virus was not detected [unpublished
observation]. Therefore, within the limits of the sensitivity of the methods used to
detect infectious virus, it can be concluded that “complete” reactivation had not
occurred. That “incomplete” reactivation occurred, whereby limited viral RNAs were
expressed during latency, is possible. This hypothesis requires some discussion of the
definitions of latency. “Incomplete” reactivation may be common, or it may occur
occasionally in cells in which viral RNA is not expressed. “Incomplete” reactivation
may be an important process because it implies a level of cell and/or viral control on
the reactivation process. The determination of such limited expression of viral RNA
and protein is, in fact, a major objective of future studies.
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