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Abstract

Computational models were used to explore the idea that morphogenesis is regulated, in part, by
feedback from mechanical stress according to Beloussov's Hyper-restoration (HR) Hypothesis.
According to this hypothesis, active tissue responses to stress perturbations restore, but overshoot,
the original (target) stress. To capture this behavior, the rate of growth or contraction is assumed to
depend on the difference between the current and target stresses. Stress overshoot is obtained by
letting the target stress change at a rate proportional to the same stress difference. The feasibility of
the HR Hypothesis is illustrated by models for stretching of epithelia, cylindrical bending of plates,
invagination of cylindrical and spherical shells, and early amphibian development. In each case, an
initial perturbation leads to an active mechanical response that changes the form of the tissue. The
results show that some morphogenetic processes can be entirely self-driven by HR responses once
they are initiated (possibly by genetic activity). Other processes, however, may require secondary
mechanisms or perturbations to proceed to completion.

1 Introduction

Embryogenesis involves a carefully coordinated series of morphogenetic events, which are
carried out by a relatively limited number of basic cellular processes, including migration,
multiplication, and the stretching and folding of epithelia (cell sheets). These events are
regulated by a dynamic interaction between genetic and environmental factors (chemical and
mechanical), with adjustments being made continually through feedback mechanisms. The
nature of this interaction remains a central question of developmental biology.

The developmental biologist L.V. Beloussov has postulated that mechanical stress plays a key
role in regulating morphogenesis. Based on more than three decades of observations and
experiments on embryos, he has proposed the following Hyper-restoration (HR) Hypothesis
(Beloussov, 1998; Beloussov et al., 1994; Beloussov and Grabovsky, 2006):

Whenever a change is produced in the amount of local stress applied to a cell or local
region of tissue, the cells or tissue will respond by actively generating forces directed
toward the restoration of the initial stress value, but as a rule overshooting it.
Whenever such changes in stress are unevenly distributed or are anisotropic, then the
responses induced will be directed toward reducing (with an overshoot) whichever
deviations were greatest.1

Address for correspondence: Professor Larry A. Taber, Department of Biomedical Engineering, Washington University, Campus Box
1097, St. Louis, MO 63130, tel: (314) 935-8544, fax: (314) 935-7448, e-mail: lat@wustl.edu.

1The first sentence represents essentially the original wording of the HR Hypothesis (Beloussov, 1998; Beloussov et al., 1994).

The second sentence was added later (Beloussov and Grabovsky, 2006), apparently to handle multidimensional and inhomogeneous
stress fields.
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In other words, embryonic tissues respond to load perturbations by actively generating forces
that return the current stress o toward (but overshooting) a target stress . The overshoot leads
to additional perturbations, which induce a new response, and so on until the proper form is
created. This idea suggests that embryos are capable of a certain amount of self-assembly,
possibly governed by a set of construction rules or morphogenetic laws.

While some attempts have been made to formulate the HR Hypothesis in quantitative terms
(Belintsev et al., 1987; Beloussov and Grabovsky, 2006; Beloussov and Grabovsky, 2007),
most of the supporting evidence is qualitative in nature. For example, Beloussov and colleagues
have used tissue dissection to map regions of tension and compression in embryos (Beloussov
etal., 1975; Beloussov et al., 1990; Beloussov et al., 2000; Beloussov et al., 2006; Beloussov,
1998; Beloussov et al., 1994).2 These researchers also have proposed qualitative models that
illustrate how a series of HR responses can, in theory, drive a number of basic morphogenetic
processes, including gastrulation, neurulation, and convergent extension (Beloussov, 1998;
Beloussov et al., 1994). While these models seem plausible, intuition can be misleading in
highly nonlinear systems such as the embryo (as will be demonstrated). Hence, there is need
to test whether such models are consistent with physical laws.

The purpose of the present study is to explore whether morphogenesis based on the HR
Hypothesis is consistent with the fundamental principles of mechanics. The HR Hypothesis is
formulated within a continuum mechanics framework and applied to mathematical models for
several representative problems in epithelial morphogenesis, including stretching and bending
of sheets, invagination of cylindrical and spherical shells, and formation of the global shape
of the early embryo. Limitations of the HR concept and the importance of the stress overshoot
are illustrated. Our models show that the HR response is sensitive to inhomogeneities in system
parameters, which, we speculate, may be controlled by regional genetic activity. Comparisons
between numerical and experimental results show mixed success in the ability of the HR
Hypothesis to capture actual morphogenetic behavior.

Physical consequences of the HR hypothesis are illustrated through a series of examples taken
from epithelial morphogenesis. To fix ideas, we first describe the analytical method used to
model growth and contraction in one dimension. Then, the method used to solve each problem
is detailed, along with any needed extensions of the 1-D analysis.

It is important to realize that epithelia use several mechanisms to actively change their
dimensions. For example, they can shorten via cell intercalation,3 programmed cell death
(apoptosis), or cytoskeletal (CSK) contraction. In the embryo, CSK contraction is the most
common mechanism for shortening. For convenience, we do not distinguish between specific
processes and herein refer to any type of active lengthening as “growth” and any type of active
shortening as “contraction.”

One-dimensional Theory for Morphomechanics

Volumetric growth is modeled using the theory of Rodriguez et al. (1994), where further details
can be found. Briefly, the total deformation of an infinitesimal material element is decomposed
into a non-stress-generating growth relative to the current zero-stress configuration and a stress-
generating elastic deformation due to loading and to enforcing geometric compatibility

2Interestingly, Beloussov et al. (1975) used this cutting technique several years before it became popular in characterizing residual stress
in mature tissues (Chuong and Fung, 1986; Fung, 1997; Vaishnav and VVossoughi, 1983).

During intercalation, cells in one row force their way between cells in adjacent rows, causing the epithelium to shorten in the direction
of cell movement and lengthen in the orthogonal direction (Keller et al., 2000).

Biomech Model Mechanobiol. Author manuscript; available in PMC 2009 December 1.
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between growing elements. For a pseudoelastic bar, the decomposition of the total stretch ratios
in Cartesian (x, y, z) coordinates can be written in the form

}.\':/Ie.\'/lg_\" /l_v:/le_\'/lg_\"s /l::/le:/lg: 1)

where the Ag; (i = X, y, ) are growth stretch ratios relative to the reference zero-stress state
(e.g., at t = 0), and the A are elastic stretch ratios (due to stress) relative to the current zero-
stress state. With x being the axial direction, we do not consider transverse growth of the bar
and set Agy = Ag; = 1. Moreover, contraction is simulated by negative growth. According to the
terminology discussed above, therefore, growth and contraction are given by Agj > 1 and Ag; <
1, respectively.

In this theory, stress depends only on the elastic deformation, which, for an incompressible
bar, is constrained by the condition Je = AeyheyAe; = 1. The constitutive relation for Cauchy
stress is (Taber, 2001)

_ /lg,' 0 W(;

gi=

Jo 0, P 2)

where W, (A is the strain-energy density (SED) function and p is a Lagrange multiplier, which
is needed to enforce isovolumic elastic deformation. (Summation is not implied for repeated
subscripts.) Material testing has indicated that the stress-strain response of embryonic epithelia
is relatively linear for moderately large stretching (Zamir and Taber, 2004; Wiebe and
Brodland, 2005). In the present study, therefore, we assume neo-Hookean behavior with

- 2 2 2
Wo=C(A2+A2+2%, - 3) 3)

where C is a material constant. Setting oy = o, = 0 provides p, and the axial stress in the bar
becomes

o =2C(2, - 4;)). @)

Morphomechanical Laws in One Dimension

The specific mechanical stimulus for growth is a subject of ongoing debate (Humphrey,
2001; Taber, 1995; Cowin, 1996; Omens, 1998). Here, we assume that the local one-
dimensional growth/contractile response (in the x-direction) depends on stress through the
morphomechanical law

Agx (5)

where Dgy is the growth rate per unit length of an element in the current zero-stress state, ag
is the target (homeostatic) stress, and a is a positive constant. According to this equation, the
tissue lengthens when oy > a¢ and shortens when oy < g, consistent with experimental
observations of Beloussov (1998). Hence, if an epithelium is stretched and held at a fixed
length, it grows to reduce the elevated stress back toward the value of the target stress. If it is
shortened and held, the cells contract, increasing the stress back toward ay.

In his writings, Beloussov emphasizes the importance of the observed overshoot of target stress
following mechanical perturbation (Beloussov, 1998). One possible cause of such an overshoot
isadelay inthe active cellular response. In this case, however, either the stress would eventually
return to the original value of o after some oscillations, or sustained oscillations would occur

Biomech Model Mechanobiol. Author manuscript; available in PMC 2009 December 1.
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(Ramasubramanian and Taber, 2007). Any “permanent” changes in morphology likely would
be quite limited. Recently, Ramasubramanian et al. (2007) showed that substantial permanent
changes in form can be induced by specifying regional changes in target stress and suggested
that genes may set its value. Here, we consider another possibility: the value of o itself depends
on the current level of stress, evolving through the relation

0o=— Doy — 00p) (6)

where b is a positive constant. The sign in front of b is chosen so that o increases when oy
falls below aqg. According to Eq. (5), therefore, the tissue will respond to a drop in stress by
contracting to increase o to a value above the original value of oy, and vice versa.

Analysis of Bars in Series and Parallel

For two bars of equal initial length connected in series (Fig. 1), geometrical and equilibrium
considerations give M + Ay = 24 and Fq = Fy, where A, is the total stretch ratio and F,, the
axial force in bar n, and X is the combined (average) stretch ratio of the bars. Since there is
no transverse growth, changes in cross-sectional area are due solely to the elastic deformation.
For an incompressible bar, the undeformed area Ag and deformed area A are related by A =
Agheyhe; = Ao/hex. Therefore, the equilibrium condition becomes

01/Ae1=02/ A2 (7)
where o, and g, are axial Cauchy stresses and elastic stretch ratios, respectively, in bar n.

We also consider two bars connected in parallel, with bending prevented by roller supports
along the lateral surfaces (Fig. 2). For this problem, A1 = A, and o1/Ae1 = —02/Aep (1-D
approximation). For simplicity, the transverse stresses applied by the rollers are ignored as
small in comparison with the axial stresses.

For both problems, the governing equations were reduced to a single algebraic equation to
solve for A1, once the growth stretch ratios Ag; and Ag were known. In the computations, the
initial values of the A, were set to unity, and the stresses were computed immediately following
a prescribed perturbation at t = 0. Then, finite-difference integration of Egs. (5) and (6) yielded
the Agn and op for the next time step, the stresses were updated, and so on. AMATLAB program
provided the solution, with the routine fzero used to find Aq at each time step.

Analysis of Other Models

All other problems (bending of plates, invagination of shells, development of amphibian
embryo) were solved using the finite element program COMSOL Multiphysics (v 3.3; Comsol,
Inc.). This code allows access to the governing equations, which were modified to include
growth via the three-dimensional analog of Eq. (1), i.e.,

F=F, - F, (8)

where F is the total deformation gradient tensor, Fg is the growth tensor, and Fe is the elastic
deformation gradient tensor. In this paper, we assume that growth occurs along three orthogonal
directions given by the unit vectors ey, e,, and e3 relative to the initial geometry and take

ng /lg16161+/lg26262+/1g3e3e3. (9)

Growth laws for the A4; are included in COMSOL as supplementary differential equations to
be solved along with the equations of solid mechanics. Further details of the analysis relevant
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for implementation in COMSOL are given in Appendix A. More complete discussions of the
general theory for growth can be found elsewhere (Rodriguez et al., 1994).

In the multidimensional models, growth was assumed to occur in specified directions, with the
morphomechanical laws for each direction taken in the forms of Egs. (5) and (6). For cylindrical
bending of plates, the analysis is plane strain, and growth was included in the x-direction only.
A similar analysis was used for invagination of cylindrical shells, with only circumferential
growth included (6-direction). For invagination of spherical shells, the deformation is
axisymmetric with growth occurring in both the circumferential (¢) and meridional (¢)
directions, i.e.,

Ao

.
I)g():E:a()((T[) - 000), Dw:t:%((w - 00p)

Oop=—bo(0g — T9),  O0p=— by(Ty — T0p) (10)

Relations for the amphibian embryo are discussed later. In all problems, appropriate symmetry
conditions were used to reduce computation time.

One difficulty in the numerical implementation of stress-dependent growth is that small errors
in stress can build into large errors as morphomechanical laws are integrated. This is
particularly true for incompressible or nearly incompressible materials, which are notoriously
problematic from a numerical viewpoint. To reduce these errors, we considered the tissue as
slightly compressible in all finite-element problems, with the SED function taken in the
modified neo-Hookean form

W,=C(I, - 3)+k(J, — 1)*/2 (11)

where C is amaterial constant, x is the bulk modulus, Jo = det F¢, and 7, =7, */*tr C, is a modified

first invariant of the right Cauchy-Green deformation tensor, C,=F. - F,. We checked the
effects of this assumption by running the models with different bulk moduli. In all cases, the
results changed slightly quantitatively but were similar qualitatively, so the effects on the
present qualitative study should not be significant.

To model an internal fluid in the shell problems, an auxiliary weak constraint condition was
included to hold the cavity volume constant. In this formulation, the fluid pressure was
represented by a Lagrange multiplier.

The main purpose of this paper is to investigate the behavior of epithelia governed by the HR
Hypothesis and the fundamental principles of mechanics. The present study is qualitative in
nature. Thus, physical units are immaterial, and we take C=a=b =1 (and « = 100) in all
regions of all models, unless stated otherwise. In addition, for simplicity, all models begin with
zero residual stress, and the initial value of the target stress is set to zero. Hence, the models
are initially in a stress-free homeostatic state to be perturbed att = 0.

Because the results from even these relatively simple models can be relatively complex and
not always intuitive, specific mechanisms are described below in sometimes unabashed detail.
Comparisons to experimental data also are discussed below. For readers who want only an
overview, the main results are summarized at the end of each of the following subsections, and
the general behavior of the models can be gleaned by studying the figures and accompanying
captions.

Biomech Model Mechanobiol. Author manuscript; available in PMC 2009 December 1.
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Bars in Series

To illustrate some basic consequences of the HR Hypothesis, we consider the response of two
bars in series that are stretched instantaneously at t = 0 and held at Ay = 1.2. Both bars then
grow and contract according to Egs. (5) and (6). Results are shown for three cases (Fig. 1).

In the first case, both bars have identical properties (Fig. 1a,&’), i.e., this is the special case of
a single bar. The initial tension induces the target stress to become compressive (Fig. 1a), and
the bars respond by growing longer relative to their zero-stress state (Agx > 1, Fig. 1a’), thereby
lowering the stress. Growth ceases as oy — og. The key point here is that the initial tension is
transformed into compression, illustrating overshoot of the original target stress of 65 =0, a
major tenet of the HR Hypothesis.

Once a new equilibrium is achieved in the above example, continued changes in form await a
new perturbation, or possibly a new chemical or molecular signal. Things can change
dramatically, however, when the bars have different properties. For example, consider the
problem in which the HR response is faster in bar 2 [by =1 and b, = 2 in Eq. (6)]. In this case,
the target stress in bar 2 drops below that in bar 1 (Fig. 1b). Both bars then try to meet their
individual target stresses, but this is not possible, as equilibrium demands that both bars carry
the same stress. Eventually, the stress comes to lie between the two target stresses, with bar 1
contracting (A-g < 0) and bar 2 growing (A-g > 0) (Fig. 1b"). A new morphogenetic equilibrium
is never attained, as bar 1 continues to shorten while bar 2 lengthens to create a simple pattern.

A similar response occurs when the bars have different stiffnesses but the same morphogenetic
parameters. Here, we consider the problem where bar 2 is twice as stiffasbar 1 (C; =1,C, =
2). When loaded, bar 1 stretches or compresses more than bar 2, and therefore undergoes a
greater change in cross-sectional area. Because the axial force must be the same in both bars,
the Cauchy stress in bar 1 always is slightly above that in bar 2 (in tension or compression),
and integrating Eq. (6) leads to diverging target stresses, one on either side of the (slightly
different) stresses in the bars, as in the previous problem (Fig. 1c). Again, a new morphogenetic
equilibrium is never reached, as the more compliant bar 1 lengthens indefinitely while bar 2
shortens (Fig. 1c").

In summary, if two bars in series have different morphogenetic or mechanical properties, the
HR response can produce pattern with one bar lengthening while the other shortens without
bound. If the bars have the same properties, however, a new morphogenetic equilibrium is
achieved.

Bars in Parallel

The early embryo contains three epithelia (germs layers) that spread and slide relative to each
other while being constrained initially to a smooth surface (Gilbert, 2003). To examine the
basic HR behavior of such a system, we consider the stretching of two bars in parallel that
undergo uniaxial deformation without bending. Here, we assume that the bars are “glued”
together (no slippage), with the left end of the structure being fixed and the right end free. The
initial perturbation is a 5% contraction of bar 2, i.e., A4>(0) = 0.95, after which both bars grow
and contract according to Egs. (5) and (6). Again, results are shown for three cases (Fig. 2).

First, we consider the case where all parameters are the same for both bars. Initially, the
contraction generates tension in bar 2 and equal compression in bar 1 (Fig. 2a). Consequently,
the HR response sends the target stresses to tension in bar 1 and compression in bar 2. Bar 1
then contracts while bar 2 grows (on top of the initial contraction, Fig. 2a’), bringing the stress
in each bar toward their corresponding values of . The system eventually reaches a new
morphogenetic equilibrium in which the bars are shorter by an amount equal to half of the
initial contraction in bar 2.

Biomech Model Mechanobiol. Author manuscript; available in PMC 2009 December 1.
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If the bars have different stiffnesses, the behavior is similar. However, if the HR response rates
differ, both bars grow or contract together without bound. For example, when bar 1 responds
faster (b1 = 2, b, = 1), the contraction of bar 1 dominates the initial growth response of bar 2,
and the bars begin to contract together (Fig. 2b,b"). The opposite occurs if the HR response of
bar 2 is faster (b; = 1, b, = 2), as both bars eventually grow longer without bound (Fig. 2c,c").

In summary, if the growth/contraction rates of two bars in parallel differ, the HR response to
mechanical perturbation can induce unbounded lengthening or shortening of the bars. If the
bars have the same properties, however, a new morphogenetic equilibrium is achieved.

Bending of Bilayered Plates

Epithelial bending plays a prominent role in a number of morphogenetic processes, including
neurulation, cardiogenesis, and foregut formation. This section considers cylindrical bending
of rectangular plates composed of two layers. The left end of the plate is fixed, the right end

is free to move, and the initial perturbation is either an external load or contraction of one layer.

First, we consider the response of a uniform plate, i.e., both layers have the same properties
(Fig. 3a—d). The plate is subjected to a temporary bending moment, given by applying equal
and opposite forces to a relatively rigid block attached at the right end (Fig. 3). In this example,
the perturbing forces change parabolically in time from zero att =0 to a peak att = 0.1 and
back to zero for t > 0.2. Both layers grow or contract according to Egs. (5) and (6) for all t >
0. The amount of bending is quantified by the normalized curvature near the center of the plate
(see Appendix B).

If there is no stress overshoot (b; = b, = 0), then the bending stress returns to zero, thereby
matching the target stress (op = 0), immediately after the load is removed. Growth has occurred
before that time, however, and the beam remains bent in a new homeostatic configuration (Fig.
3a). (Note that downward bending corresponds to positive curvature.) In contrast, stress
overshoot (b1 = by =1) produces renewed and unbounded bending after load removal, behavior
that can be explained by observing how oy, og, and Agx evolve.

Itis important first to note that the bending stress distribution across the plate thickness changes
from nearly linear to roughly parabolic when the applied load is removed (Fig. 3b). This reflects
the equilibrium requirements of zero axial force and bending moment in the absence of external
loads. Moreover, the stresses are nearly equal at the lower and upper surfaces (Y =0and Y =
0.2, respectively).

To explain the continued bending, we examine the temporal changes in oy and g (Fig. 3c).
The initial perturbation causes compression at Y = 0 and tension at Y = 0.2, inducing target
stresses of opposite signs to develop at these locations. In response, the plate contracts at Y =
0 and grows at Y = 0.2 (Fig. 3d), causing a resumption of downward bending after the load is
removed. The bending continues indefinitely (Fig. 3a), because the equilibrium constraints
discussed above keep the stresses at the top and bottom of the beam nearly equal, thereby
preventing them from approaching their diverging targets. These results illustrate the
conceptual complexity of the bending problem.

Next, we consider a problem in which contraction of the lower layer provides the initial
stimulus (Fig. 3e-h), which bends the beam downward (positive curvature, Fig. 3e). The
morphogenetic response initially is turned off, and the lower layer contracts gradually by 1%
(to Agx = 0.99) for 0 <t<0.1 (Fig. 3h). Then, with the contraction of this layer held constant
(a; = 0) for t > 0.1, the upper layer responds according to Egs. (5) and (6). For the case of no
overshoot (b, = 0), the plate gradually unbends (Fig. 3e). If overshoot occurs, however, the
unbending eventually transforms into bending in the opposite direction. For relatively small

Biomech Model Mechanobiol. Author manuscript; available in PMC 2009 December 1.
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values of by, a new equilibrium is attained with negative curvature, but the negative (upward)
bending continues unbounded if b, is large enough (see Fig. 3e, curves for by =0.1and 1). In
this problem, the discontinuous growth between layers causes relatively complex stress
distributions, which must satisfy the equilibrium conditions of zero axial force and bending
moment at all times (Fig. 3f).

Hence, depending on the parameter values, the HR response can lead to perpetual bending in
both problems. However, whereas the bending is in the same direction as the perturbation
caused by an external load, bending occurs in the opposite direction when the initial
perturbation is generated internally. To understand the behavior of the second model, we
examine plots of oy, ag, and A4 at the top of the plate as functions of time. (Recall that only the
upper layer responds to stress in this model.) Contraction of the lower layer initially bends the
plate downward, causing tension to develop at the top (Fig. 3g). This tension induces growth
that unbends the plate. Eventually, this growth generates compression at the top that sends
oy below o, and the top of the plate then begins to contract (Fig. 3h), forcing the plate to start
to bend upward. If the HR response is relatively slow, oy eventually catches &g, and bending
stops. Otherwise, e.g., for by = 1, the contraction and upward bending continue. Interestingly,
a similar unbounded response occurs whenever both layers grow with by # bs. In fact, the plate
bends opposite to the direction of the perturbation no matter which layer has the larger value
of b (results not shown).

In summary, when external loads cause a bending perturbation of a bilayered plate, the HR
response leads to unlimited bending in the same direction as the perturbation. When contraction
of one layer perturbs the plate, however, unlimited bending occurs in the direction opposite
the initial perturbation. When there is no overshoot of the target stress, the plate reaches a new
morphogenetic equilibrium.

Invagination of Shells

Next we consider the problem of invagination, i.e., the inward folding of epithelia. This
problem plays a central role, for example, in gastrulation (formation of the primitive gut) and
neurulation (formation of the spinal cord). These processes are crucial to proper development
after the first cell divisions create the blastula, which is essentially a fluid-filled epithelial shell.
To afirst approximation, neurulation can be modeled as the formation of a longitudinal groove
in a cylindrical shell, while gastrulation in the commonly studied sea urchin embryo can be
treated as axisymmetric dimpling of a spherical shell.

For the neurulation problem, we consider deformation of a circular cylindrical shell in plane
strain relative to the longitudinal direction (Fig. 4). To include regional morphogenetic activity,
the apical region is divided into two layers, where the relatively thin upper layer (layer 1)
contains either contractile apical microfilaments or swelling gel (Davidson et al., 1995).

Experiments have shown that neurulation involves contracting apical microfilaments, which
cause the cells to become wedge-shaped (Burnside, 1973; Schoenwolf and Smith, 1990). Odell
etal. (1981) presented a cylindrical (ring) model based on this premise and the assumption that
the microfilaments are stretch-activated, i.e., they contract when stretched beyond a certain
threshold value. In their model, contraction of a single cell initiates a contractile wave that
travels away from the source in either direction, producing inward bending with the contracting
sides of the cells located along the concave side of the invagination. Appropriate choices for
model parameters yielded results in good qualitative agreement with observed morphology.

For neurulation governed by the HR Hypothesis, however, results for the plate problem of Fig.
3 suggest a different result. In that simulation, initial contraction in one layer eventually led to
bending with the contracted layer on the convex side of the bent plate. Because circumferential

Biomech Model Mechanobiol. Author manuscript; available in PMC 2009 December 1.
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bending of a cylindrical shell is similar mechanically to cylindrical bending of a plate, we
would expect similar behavior for a shell. Our model confirmed that such contraction produced
evagination, rather than invagination (results not shown).

The results from the plate bending problem suggest two possibilities: either contraction of the
inner layer or expansion of the outer layer provides the initial perturbation. Contraction of the
inner layer (main cell body) seems unlikely, as most actin is concentrated in rings around the
apex. In contrast, swelling of an outer layer of gel is theoretically possible, as suggested by
experiments and models for sea urchin gastrulation (Davidson et al., 1995), although not
neurulation to our knowledge.

Ilustrative results are shown for two cases (Fig. 4). Here, the shell is divided into three regions:
an upper inner region (1), a lower inner region (2), and an outer region (3) (see Fig. 4c). In
both simulations, the initial perturbation is provided by a prescribed circumferential expansion
in region 1, as given by ramping Aqe up to a value of 1.1 during 0 <t < 0.1 and holding it
constant thereafter (with Ay, = 1). In the first simulation, region 2 grows for t > 0 according to
the #-direction equations of (10), while region 3 remains passive. In the second simulation,
both regions 2 and 3 grow, with the growth coefficients being the same for both layers (ay =
by = 1). After the initial expansion (Fig. 4a), both models undergo unbounded invagination
(Fig. 4b—d), as region 2 grows indefinitely. The invagination is more localized in the second
model, as growth of region 3 tends to close the tube being created by the invagination (Fig.
4c¢). This behavior suggests that growth (or other deformation) in neighboring regions is
required for complete neural tube closure, consistent with results from other published models
of neurulation (Clausi and Brodland, 1993;Brodland and Clausi, 1995).

In the spherical shell model for sea urchin gastrulation, the cross-sectional geometry is the
same as for the cylindrical model (Fig. 5h), but axisymmetric deformation is assumed. First,
we solved the axisymmetric analog of the first cylinder model above, with a 10% expansion
of region 1 specified in both the circumferential and meridional directions during 0 <t<0.1
(Agg = hgp = 1.1 with Ay, = 1), while only region 2 grows (t > 0) according to Egs. (10).
Interestingly, the behavior of this model is dramatically different from that of the cylinder, as
the region nearest the apex of the shell continues to evaginate and never turns inward (Fig. 5a—
c). The source of the difference is the hoop stress gy. The initial upward bending of the shell
apex draws the shell inward circumferentially, producing compressive hoop stresses. The HR
response then kicks in with circumferential contraction that inhibits downward dimpling while
forcing further evagination (Fig. 5b).

For similar reasons, an initial contraction of region 1 leads to invagination (Fig. 5d-f), contrary
to the cylinder problem. Hoop stress effects also cause the deformation of the sphere to be more
local than that of the cylinder (compare Figs. 4c and 5¢). In these models, the solution stopped
converging as the growth stretch ratios became very small in the tightly bent corners of the
dimple. The presence of an internal fluid altered the shape of the dimple enough to allow a
little more invagination (Fig. 5g), and letting region 3 also grow allowed even more, although
the shape of the invagination is not realistic (Fig. 5h). Using other methods to improve
convergence, we found that further growth leads to a spherical ballooning of the dimple (not
shown), which also is an unrealistic result for gastrulation. The difficulty of deforming a
spherical shell may be one reason why a secondary process after the initial dimpling is required
to complete gastrulation in the sea urchin (Hardin and Cheng, 1986).

In summary, a local initial contraction or expansion of the outer layer of a cylindrical shell
elicits an HR response that causes evagination or invagination, respectively. The same
perturbations induce the opposite responses in a spherical shell.
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Early Amphibian Development

In his book, Beloussov (1998) discusses how some aspects of embryonic development can be
considered as a succession of mechanical events driven and linked by hyper-restoration of
stress. For illustration, he describes in qualitative terms the steps involved in amphibian
gastrulation. To test his ideas, models are presented here for two parts of this process: (1) the
initial stage of gastrulation and (2) early shaping of the head and body of the embryo.

Gastrulation in amphibians is more complex than in sea urchins. The amphibian blastula
contains a relatively large volume of yolk that limits the size of the fluid-filled cavity
(blastocoel, BC in Fig. 6a). This makes the geometry asymmetric (Fig. 6a), and gastrulation
involves invaginating epithelia that slide relative to each other as they pass through a slit-like
opening (blastopore, BP) (Gilbert, 2003). Beloussov (1998) speculates that this process is
initiated by tension in the roof (R) of the blastocoel due to fluid pressure. The roof then spreads
to relieve the tension, and additional spreading due to the HR response compresses cells near
the outer edge of the roof. In response, these cells near the edge contract to begin the
invagination that creates the blastopore.

A plane-strain model for the blastula was used to test this hypothesis (Fig. 6a). The cavity was
assumed to be filled with an incompressible fluid. At the beginning of the simulation (0 <t <
0.5), the fluid volume was gradually increased by 10% and held fixed thereafter. Throughout
the embryo for all time, circumferential growth was included, as governed by the left sides of
Egs. (10) with ay = by = 1. Consistent with Beloussov's speculation, the model predicts a
building region of circumferential contraction near the edge of the blastocoel (Fig. 6a, point
A). However, the blastocoel roof begins to bend and extend upward in an unrealistic fashion,
causing a region of extension where the blastopore would form (BP), rather than the contraction
presumably needed for invagination. A fully 3-D model may hinder this bending, but such a
model is outside the scope of the present study.

In addition to triggering invagination, Beloussov (1998) suggests that stretching the blastocoel
roof also induces convergent-extension of the cells in the roof, i.e., active vertical extension
and lateral contraction within the inner elliptical region (R) of the model shown in Fig. 6b. This
model represents a portion the surface of the embryo where the head and body begin to take
shape. Both regions have identical properties, with growth in the vertical (y) direction governed
by Egs. (5) and (6) with x replaced by y. To model intercalation, the zero-stress surface area is
assumed to remained fixed, and so we set Agx = 1/Agy and Ag; = 1. The process is begun by a
vertical (y-direction) stretching of the roof region R, given by specifying small vertical forces
along the boundary of R.

Via the HR response, the initial vertical tension in the roof region induces active elongation
within R, which, as Beloussov speculates, compresses the region immediately above it. This
causes the region above R to actively contact in the vertical direction and passively elongate
laterally, forming the laterally expanding head region (H, Fig. 6b). This behavior is consistent
with Beloussov's proposed mechanism.

In summary, the HR response to cavity pressure in a deforming blastula leads to unrealistic
bending of the roof of the blastocoel. In general, however, the predicted shape of the head and
body of the embryo are correct.

4 Discussion

Researchers have made great inroads into uncovering the genetic and molecular factors that
regulate morphogenesis (Alberts et al., 2002). Considerably less is known, however, about the
mechanical mechanisms that drive developmental processes, as well as those mechanisms that
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may play a regulatory role via mechanotransduction (Ingber, 2006). The objective of the
present study is to explore the physical viability of Beloussov's Hyper-restoration Hypothesis
as a governing law for morphomechanics.

The basic idea of the HR Hypothesis is that a particular morphogenetic process is initiated by
an externally or internally generated stress perturbation, which elicits an active cellular
response aimed at restoring the original stress value. This response overcompensates, however,
causing a stress overshoot that elicits another active response, and so on, until the process either
is complete or awaits another perturbation. Our models clearly show that, following a relatively
small perturbation, the HR Hypothesis can indeed lead to some of the large epithelial
deformations that characterize morphogenesis. Models based on the HR Hypothesis can
generate pattern (alternating long and short regions, Fig. 1b’,c’), spreading (Fig. 2¢’), bending
(Fig. 3a,e), invagination (Figs. 4 and 5), and the basic form of the early embryo (Fig. 6b).
Moreover, the behavior appears to be relatively robust, as the morphogenetic parameters
generally affect the speed and possibly the magnitude of the deformation, but not the overall
shape.

The accuracy of some of our models, however, is mixed when evaluated using experimental
data. For example, invagination of our cylindrical model for neurulation requires
(unexpectedly) that the initial perturbation be a regional expansion of cell apexes (Fig. 4), rather
than the apical contraction that is known to be a major player in this process (Burnside,
1973;Schoenwolf and Smith, 1990). It is possible that the HR response transforms the
expansion into a contraction, but this would need to be confirmed experimentally. On the other
hand, a mechanism based on apical swelling has been proposed for sea urchin gastrulation
(Davidson et al., 1995), but our model for an invaginating sphere shows that apical contraction
works just fine in this case (Fig. 5d-f).

Our models for amphibian development also provide mixed support for the HR Hypothesis.
In particular, the model for the initial phase of gastrulation (Fig. 6a) exhibits bending of the
blastocoel roof that does not conform to reality, while the head and body patterns form as
Beloussov (1998) suggests (Fig. 6b). Perhaps more realistic models would provide more
realistic results.

Taken together, our results show that the HR Hypothesis can explain many of the observed
changes in shape that occur during morphogenesis. However, it seems improbable that HR
can, by itself, produce a comprehensive series of morphogenetic events such as those postulated
by Beloussov et al. (1994) for amphibian gastrulation. Genes likely need to occasionally step
in to make mid-course corrections or initiate new deformations based on mechanical feedback.
In other words, the genes are responsible for providing the overall game plan, setting parameter
values, and issuing general instructions to intermittently initiate or correct specific
morphogenetic processes, but the nuts and bolts of creating biological form are left to the cells
to figure out.

Primary Ingredients of the Hyper-restoration Hypothesis

All models presented in this paper are based on Beloussov's Hyper-restoration Hypothesis
(Beloussov, 1998; Beloussov et al., 1994; Beloussov and Grabovsky, 2006). The models are
relatively simple and phenomenological in nature, but they are based rigorously on the
fundamental principles of nonlinear solid mechanics. Hence, they reveal both the physical
plausibility, as well as the limitations, of the HR response in controlling morphogenesis.
Ultimately, however, gaining a complete understanding of mechanical morphoregulatory
mechanisms will require conducting quantitative experiments and analyses spanning multiple
scales from the molecular to the organ level.
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The HR Hypothesis, as stated in the Introduction, contains several key assumptions. First, it
implies the existence of biophysical laws that govern the behavior of developing tissues. Here,
we have proposed relatively simple HR-type morphomechanical laws, expressed in
quantitative form. Clearly, biological systems must obey the quantitative laws of physics, but
is it not clear whether they also obey quantitative laws of biology. In fact, some authors have
dismissed this idea as not plausible. For example, Forgacs and Newman (2005) note that, in
contrast to inanimate systems, living systems reproduce and strive for advantages under the
auspices of natural selection. Moreover, different tissues serve different functions and likely
are optimized to carry out these functions. On the other hand, some data suggest that
quantitative rules may exist for some systems, at least within the constraints of natural
biological variability. Consider, for instance, the relatively narrow range of fluid shear stress
exerted on the walls of arteries of widely varying size (Kamiya et al., 1984). There also is
evidence of a quantitative theory for bone development (Carter, 1987). Thus, at least within
certain limits, there may indeed be mathematical laws or “construction rules” for
morphogenesis.

Second, the HR Hypothesis is based on the idea that mechanical forces play a major role not
only in driving, but also in regulating, morphogenesis. Obviously, forces are required to
generate the large deformations that occur in the embryo, but the actions of these forces may
be dictated entirely by hard-wired genetic and molecular signals. On the other hand, feedback
loops would foster communication between genes and cells, allowing each to adjust as
circumstances may warrant. Supporting this latter view, recent work has shown that mechanical
strain can induce changes in gene expression, and researchers have shown that the nucleus
deforms with the cell through CSK attachments between the nucleus and cell membrane (Hu
et al., 2005; Maniotis et al., 1997). This mechanism could provide a direct link between
mechanical and genetic activity.

The HR Hypothesis takes this idea a step further. Rather than genes being involved in each
step of development, tissues are assumed to be capable of a certain amount of self assembly,
i.e., they respond actively to perturbations in the mechanical environment without direct
intervention by genes.

Third, the HR Hypothesis suggests that stress is the primary mechanical factor that controls
cell behavior. Not all investigators accept this view, and some have postulated that growth and
remodeling depend on strain, strain rate, or strain-energy density (Cowin, 1996; Omens,
1998; Carter et al., 1987). Some argue that cells contain no mechanism to directly sense the
level of stress, just as there is no way for humans to experimentally measure stress inside a
material. On the other hand, other researchers argue that Cauchy stress and strain rate are more
likely candidates because, unlike strain, these quantities do not depend on a reference geometry,
which may be somewhat arbitrary (Taber, 1995). To more clearly define a reference state for
strain, Cowin (2004) recently proposed using the zero-stress configuration, but cells may never
actually experience this configuration. Addressing this issue in some detail, Humphrey
(2001) suggests that the concepts of stress and strain have no real meaning on a molecular
level, where the actual transduction mechanisms occur. Rather, he recommends using the
terminology that cell behavior correlates with these mechanical measures.

Within this context, Beloussov (1998) is quite clear in stating his view that embryonic cells
respond to changes in stress, and not strain. Mechanical considerations show that stress-based
morphogenesis can differ considerably from strain-based morphogenesis. In the highly
inhomogeneous tissues of the embryo, for example, stress fields often are more complex than
the accompanying strain fields, which must satisfy constraints imposed by geometric
compatibility. A simple example is stretching of an epithelium with two layers of different
stiffness. Although the strain is the same in both layers, the stiffer layer carries more stress.
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Similarly, the layers of a blastula (or an artery) may stretch similar amounts due to internal
fluid pressure, but their stresses may be considerably different. Thus, a stress-based response
can produce richer morphogenetic behavior. More evidence favoring stress can be found in
mature tissues. For example, skeletal muscles grow thicker when they undergo isometric
contraction, which generates stress but not strain (Taber, 1995), although there is strain relative
to the zero-stress state.

If stress is in fact the main morphomechanical regulatory quantity, then what is the sensory
mechanism? We suggest the following possibility. Suppose that, as postulated by Ingber
(1997), the CSK is the primary determinant of the mechanical properties of the cell and
connects focal adhesions to the nuclear membrane. Then, consistent with experimental
observations (Maniotis et al., 1997; Hu et al., 2005), stretching the cell (and CSK) would
transmit forces that deform the nucleus. And since deforming the nucleus requires a certain
level of force, gene expression may depend on the force, or average stress, transmitted by the
CSK, as opposed to the strain in the CSK. To transmit the same force, a relatively stiff CSK
would require less stretch than a more compliant CSK. Experiments by Chen et al. (2001)
tentatively support this idea. These investigators found that expression of endothelin-1
increases when integrin receptors in endothelial cells are twisted by attached microbeads, but
this response is abolished when drugs are used to block cytoskeletal contraction. Presumably,
the more compliant passive CSK transmitted less force to the nucleus. In this context, it would
be interesting to see whether applying larger CSK deformations could overcome the loss of
CSK stiffness. In other words, does endothelin-1 expression require that a certain level of force
be transmitted to the nucleus?

Even in this scenario, however, gene expression ultimately depends on nuclear deformation.
Hence, the critical morphomechanical factor may depend on scale. While stress may be the
important factor at the cell or tissue level, strain may be the fundamental factor at the molecular
level. This idea is consistent with arguments of Humphrey (2001).

Finally, a key feature of the HR Hypothesis is the stress overshoot. As our models have shown,
without an overshoot, self-perpetuating morphogenesis is quite limited with deformation soon
grinding to a halt as a new equilibrium state is readily established (e.g., see Fig. 3a,e). With an
overshoot, however, more substantial deformations are possible, and instabilities can lead
(theoretically) to unbounded changes in form. Of course, in real embryos, such unbounded
deformation would be limited by internal or external constraints, or exhaustion of the supply
of new material. Nevertheless, as shown by Murray (2002) in studies of biological pattern
formation, instability may be a cornerstone of morphogenesis. Mechanical instabilities can
induce substantial morphogenetic changes in form without continual micromanagement by
genes.

Previous Models for Epithelial Morphogenesis

During the past 25 years, several mathematical models for epithelial morphogenesis have been
published. Some of these models include feedback, while others do not. Historically, pattern
formation has been a popular subject for modelers (Oster et al., 1983; Murray and Oster,
1984; Manoussaki et al., 1996; Namy et al., 2004; Taber, 2000). In fact, Belintsev et al.
(1987) proposed an HR-type model for pattern formation. Although this is not the focus of the
present study, the model in Fig. 1 can be considered as a simple 1-D model for epithelial pattern
formation.

In a pioneering paper, Odell et al. (1981) considered invagination in a blastula modeled as a
circular ring of viscoelastic truss-like cells, with deformation driven by contracting
microfilaments located at the apex of each cell. This model includes mechanical feedback, as
contraction is triggered when the microfilaments are stretched beyond a given threshold. At
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the beginning of the simulation, contraction is specified in a single cell, which then stretches
neighboring cells until they also contract, and so on, generating a contractile wave that travels
around the circumference of the ring. This response causes the formation of a local region of
invagination, and the authors found parameter values that yield deformed shapes similar to
those of a blastula undergoing gastrulation, ventral furrow formation, and neurulation.

It is important to note that stretch-activated contraction runs contrary to the HR Hypothesis,
where stretch induces active elongation. Beloussov (1998) realized this contradiction and
proposed that stretch activation occurs for relatively small amounts of stretch, while the HR
response Kicks in for larger deformations.

In a number of other models, morphogenetic forces were specified a priori. These include the
models for invagination of Davidson et al. (1995) and Munoz et al. (2007), as well as the finite
element model for cardiac looping of Ramasubramanian et al. (2006). In addition, Hardin and
Cheng (1986) used a model to study secondary invagination during gastrulation in the sea
urchin. After the initial dimpling of the sea urchin blastula (primary invagination), filopodia
extend from the tip of the dimple, which elongates until it reaches the opposite wall of the
blastula (secondary invagination) to form the archenteron. It is likely that the mechanism that
forms the dimple is not strong enough to overcome the relatively high stiffness of the spherical
shell, necessitating the need for the secondary process to complete gastrulation. This is clearly
shown by our models.

Recently, we studied models for epithelial bending similar to those presented here
(Ramasubramanian and Taber, 2007). In those models, however, the value of the target stress
was specified a priori, rather than being governed by evolution equations like those of Egs.
(10). The main hypothesis of that paper is that genes directly set and adjust the values of the
target stresses on a regional basis, thereby controlling the morphogenetic response. In the
present study, we assume that the genes initiate morphogenesis through a mechanical
perturbation, which then triggers changes in target stress through mathematical laws. In this
respect, morphogenesis is, in part, a problem in self-assembly, rather than being a slave to
genetic instructions. The model of Odell et al. (1981) is based on a similar idea.

Limitations and Concluding Remarks

Physical intuition sometimes is misleading in nonlinear mechanics problems. Indeed, some of
the results given by our models were unexpected, e.g., the reversal of bending direction in a
plate (Fig. 3e). Hence, it is crucial to test whether a hypothesis for morphogenesis is consistent
with physical principles.

It is important to note that the models presented here are only for illustration. More realistic
models for specific embryos would affect the results quantitatively, if not qualitatively.

In conclusion, this study represents a first attempt to formulate in quantitative terms a general
law for morphomechanics. The results are mixed. Our models show that the HR Hypothesis
can describe much of the behavior observed in embryos, but some aspects appear to conflict
with experimental data. One possibility is that the hypothesis is incorrect, incomplete, or valid
only for certain processes. Another is that our proposed functional form of the
morphomechanical law is incorrect or incomplete. Clearly, further study is warranted, both in
the lab and on the computer.
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Appendix A: Implementation in COMSOL

In the following, we describe how finite volumetric growth can be implemented in COMSOL
Multiphysics (v 3.3).4 Only aspects of the theory directly relevant to this task are presented
here. The following analysis applies to 2-D and 3-D problems.

As discussed above, the basic idea is to decompose the total deformation gradient tensor F into
growth (Fg) and elastic (F¢) components according to the relation

F=F, - F,. (A1)
For a nonlinear hyperelastic material, the stress depends on F, and a SED function We(F¢) of

any form can be entered directly. COMSOL then computes derivatives with respect to
displacement gradients to obtain the components of a pseudo first Piola-Kirchhoff stress tensor

— 0w,
P:

OF (A.2)

The FE formulation, however, requires the stress P per unit reference area. In terms of the
Cauchy stress tensor g, this is given by

Pl=JF!. o (A.3)

where J = det F. Note that P is the transpose of the usual first Piola-Kirchhoff stress tensor.
The software is set up to handle both compressible and nearly incompressible materials. For
both cases, the Cauchy stress is given by

ow,

OF! (A.4)

o=J;'F, -

where Eq. (A.1) gives F.=F - Fgl and Je = det . Substituting Eq. (A.4) into (A.3), taking the
transpose, and noting Eq. (A.1) yields

w. .
P=JJ,! We g,
oF, ° (A.5)
This relation can be simplified by noting that the chain rule gives

oW, OF W,
OF, OF,” OF (A.6)

Expressing all tensors on the right-hand side in dyadic form and working in Cartesian
coordinates, we can show that this equation can be written in the form

oW, 0w, BT
OF, OF &~ (A.7)

Finally, inserting this expression into Eq. (A.5) yields

1 6Wg
OF

P=JJ; =JJ;'P.

(A.8)

4Recently, we showed how growth can be simulated in the finite element code ABAQUS (Ramasubramanian and Taber, 2007).
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Appendix B: Computation of Plate Curvature

The amount of bending for simulations involving cantilever plates is quantified by the
curvature. Let (X, Y) and (x, y) be the Cartesian coordinates of a point near the center of the
plate before and after deformation, respectively. The nondimensional curvature is given by
(Yang and Feng, 1970)

(wu’ — uw’)

12

=H——————
> (u* — w?) (B.1)

where

u =(x"? +y'2)1 f2
w =x’. (B.2)

In these expressions, prime denotes differentiation with respect to X, and H is the undeformed
plate thickness. To avoid end effects, the curvature was computed near the center of the plate.
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Figure 1.

Stretching of bars in series. Bars grow/contract according to the HR Hypothesis after being
stretched and held at a fixed total length. Temporal plots of axial stress (oy), target stress (o),
growth stretch ratio (Agy), and total stretch ratio (i) are shown for three cases. (a,a’) Both bars
have same properties. Bars grow to new equilibrium as initial tension is converted to
compression, illustrating hyper-restoration (HR) of stress. (b,b”) HR response is faster in bar
2 (by =1, by = 2). Bar 1 shortens and bar 2 lengthens without bound. (c,c’) Bar 2 is stiffer than
bar 1 (Cy =1, C, = 2). Bar 1 lengthens and bar 2 shortens without bound.
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Figure 2.

Stretching of bars in parallel. Bars grow/contract according to the HR Hypothesis after initial
5% contraction of bar 2. Temporal plots of axial stress (oy), target stress (ag), growth stretch
ratio (Agx), and total stretch ratio (1) are shown for three cases. (a,a’) Both bars have same
properties. Bar 1 contracts and bar 2 grows until new equilibrium length is established. (b,b")
HR response is faster in bar 1 (by = 2, by, = 1). Both bars contract without bound. (c,c’) HR
response is faster in bar 2 (b = 1, by, = 2). Both bars lengthen without bound.
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Cylindrical bending of biayered cantilever plate. Layers grow/contract according to the HR
Hypothesis after plate is perturbed by temporary bending moment (a—d) or contraction of lower
layer (e-h). (a,e) Plate curvature versus time (positive curvature = downward bending). (b,f)
Bending stress distributions across beam thickness at center of beam. (c,g) Stress at bottom of
plate (Y = 0) and top of plate (Y = 0.2) as function of time. (d,h) Growth stretch ratio at bottom
of plate (Y = 0) and top of plate (Y = 0.2) as function of time. Overshoot of target stress can
lead to unbounded bending (see text for discussion). The figures show beams at relatively late
times, with thin black lines indicating undeformed geometry.
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Figure 4.

Invagination of cylindrical shell with three regions defined in (c). Colors represent
circumferential growth stretch ratio (Ags). (a) 10% constant circumferential expansion in region
1 provides initial stimulus in both cases (configuration at t = 0.1 is shown). (b) Region 2 grows
while region 3 remains passive. Unbounded invagination occurs (t = 3.4 shown). (c) Regions
2 and 3 grow. More localized unbounded invagination occurs (t = 6 shown). (d) Displacement
of shell apex versus time for both cases. Thin black lines indicate undeformed geometry.
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Figure 5.

Axisymmetric invagination of spherical shell with three regions defined in (h). Colors represent
circumferential growth stretch ratio (Agy) or meridional growth stretch ratio (Aq,,). (a—C) After
10% constant circumferential and meridional expansion in region 1 (a), HR response in region
2 induces evagination. (d—f) After 10% constant circumferential and meridional contraction of
region 1 (d) HR response in region 2 induces invagination. (g) Pressure in internal fluid added
to model of d—f changes shape of dimple and allows more invagination. (h) More invagination
occurs in fluid-filled shell when region 3 also responds to stress. (i) Displacement of shell apex
versus time for all cases. Thin black lines indicate undeformed geometry.
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Figure 6.

Models for early amphibian development. (a) First phase of gastrulation (t = 4), initiated by
added fluid volume in blastocoel (BC). Shape of blastocoel roof (R) is not realistic. Only
circumferential growth/contraction (Agp) in included. (BP = blastopore) (b) Formation of basic
shape of head and body on surface of embryo (t = 1.74). Active growth/contraction is included
only in vertical direction Vertical forces along boundaries of blastocoel roof (R) induce
convergent extension that compresses head region (H), which then contracts vertically and
expands laterally to produce head shape. Thin black lines indicate undeformed geometry.
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