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Introduction. Statistical and computational
challenges in molecular phylogenetics

and evolution
1. INTRODUCTION
Since the widespread acceptance of Darwin’s theory of
evolution (Darwin 1859), scientists have been inter-
ested in reconstructing the evolutionary relationships
of living (and extinct) organisms. Evolution occurs too
slowly to be experimented upon in situ in any but the
most extreme cases, and scientists must look for
information in the contemporary world that can lead
to insights into the past. While perhaps the fossil record
used to be the most obvious and explicit source of this
information, starting from the early 1960s molecular
sequences have taken over as the primary source of
information on which to base reconstructions of the
evolutionary history of life. The patterns of similarity
and difference between the genomes of organisms
related by descent from common ancestors implicitly
hold vast amounts of information about species’
relationships, and there is also considerable interest in
describing and understanding the processes by which
genomic sequences change over evolutionary time. The
study of relationships of organisms and the study of
the change of their genomes are intimately linked, and
this has led to the forming of a coherent research
community in molecular phylogenetics and evolution.
2. TIMES OF PLENTY
On 28–29 April 2008, the Royal Society hosted a
Discussion Meeting entitled ‘Statistical and compu-
tational challenges in molecular phylogenetics and
evolution’. Sixteen scientists from around the world
presented their current research and visions for the
future of the field, and this issue of the Philosophical
Transactions of the Royal Society (Biological Sciences)
records their and their co-authors’ contributions. From
the outset, molecular phylogenetic and evolutionary
studies have relied on computers for the storing and
analysis of sequence data, proteins and more recently
DNA sequences and even entire genomes. Evolution-
ary analyses of molecular sequences pose many difficult
mathematical, statistical and computational challenges
(e.g. Felsenstein 1978; Yang et al. 1995), and the
development of the research field has been closely
linked to developments in computing technology. Most
famously, Moore’s Law (Wikipedia 2008a) predicts
that computing power will double approximately every
2 years and figure 1 illustrates that this trend shows no
sign of being broken after approximately 40 years. Less
well known is the corresponding increase in the amount
of data available to molecular phylogeneticists. The
One contribution of 17 to a Discussion Meeting Issue ‘Statistical and
computational challenges in molecular phylogenetics and evolution’.
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continuing trend for more and cheaper sequencing of
genetic samples has generated an even more explosive
increase: figure 1 shows that this too is exponential,
with a rate even greater than Moore’s Law. The size of
the EMBL Nucleotide Sequence Database has been
steadily doubling at approximately 16-month intervals
since the early 1970s. The huge private and public
effort to sequence the entire human genome forms a
barely discernible bump in the growth curve around the
year 2000 and the recently announced ‘1000 Genomes’
project, representing in a single project the sequencing
of approximately six trillion DNA bases at a cost of
$30–50 million (Spencer 2008), seems unlikely to look
much more spectacular when compared with the
projected underlying growth of this database.

While Moore’s Law is impressive and the growth of
sequence databases is more so, how has the field
of molecular phylogenetics responded? The ISI Web of
Knowledge (WoK: http://www.isiknowledge.com/)
databases include Current Contents Connect (pro-
viding access to thousands of journals’ bibliographic
information), the Science Citation Index, ISI Proceed-
ings (currently, records of nearly five million papers
from over 60 000 conferences), biological abstracts
from over 4000 life sciences journals, patent infor-
mation and other scholarly sources. Figure 1 shows the
growth of entries in WoK that are retrieved by searches
using the term ‘molecular AND phylogen�’. We
consider this a useful measure of ‘grass roots’ activity
in molecular phylogenetics and evolution. While
growth has been slower than exponential, it is still
considerable. A similar curve is shown in this issue by
Pagel & Meade (2008: figure 1), who concentrate on
publications in scholarly journals; as expected, it takes
some time for grass roots activity to be translated into
peer-reviewed publications.

These are times of plenty for computational
molecular phylogenetics and evolution—indeed, keep-
ing up with the data deluge can be seen as one of the
main challenges in the field. This is explicitly the raison
d’être for the contribution of Rodrigo et al. (2008) to
this issue. These authors give examples of challenging
problems from their own research. Considering
increased sequencing over time, they investigate the
dynamics of sequence diversity, where modern studies
can now look into the past of ‘sub-fossil’ remains (e.g.
mammoths and ancient penguins, bison and chick-
ens!). Increased sequencing over geographical location
inspires investigation of ‘environmental shotgun
sequencing’ whereby vast genomic samples from
unknown organisms are collected in the type of global
survey of life famously promoted by Craig Venter
This journal is q 2008 The Royal Society
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Figure 1. Growth curves relevant to research in molecular
phylogenetics and evolution. The graph shows the growth
over approximately 40 years of the total number of
nucleotides stored in the EMBL Nucleotide Sequence
Database (2008; circles), the number of transistors in current
Intel PC processors (Intel 2008; Wikipedia 2008b; diamonds)
and the cumulative citations found by searching for
‘molecular AND phylogen�’ in the ISI Web of Knowledge
(WoK: http://www.isiknowledge.com/; searched on 24 June
2008; squares). Note the logarithmic scale on the y-axis. The
sequence database and number of transistors per processor
continue to grow exponentially, with doubling times of 16.4
months and 23.6 months, respectively. The open circle
indicates the projection based on the additional sequencing
effort as an outcome of the recently announced 1000
Genomes project (Spencer 2008). The citations for ‘molecu-
lar AND phylogen�’ in WoK are growing at an increasing
rate, although slower than exponentially.
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(Rusch et al. 2007). Finally, increased sequencing over
species motivates a study of the ‘barcoding of life’,
discussed in greater detail below.

Given that molecular phylogenetics is so dependent
on computer technology, it has interested us for some
years that specific research aims are sometimes
achieved via increasingly complex analyses (using the
growth of computer power), and sometimes by
improved analytical, computational or approximate
methods (to get more benefit within the constraints of
existing computing power, or to cope with the growth
of available data). In this issue, we see evidence of
both approaches driving forward research into genome
sequence evolution, as well as studies that attempt to
quantify the effects of using simpler data analysis
methodology where perhaps more complexity would
be preferred.
3. INCREASED STATISTICAL AND
COMPUTATIONAL COMPLEXITY
Increased complexity in the mathematical modelling
of underlying biology is represented in a variety of
subject areas. Cohen et al. (2008) devise probabilistic
models of gene gain and loss in order to analyse
genome-wide patterns of gene family presence and
absence. They find that for individual gene families,
rates of gain and loss are different, and that these rates
also vary between gene families. Cohen et al. (2008)
argue that the use of gene families increases the
reliability of their data, filtering out confounding
factors such as gene duplication, deletion of paralogs
and horizontal gene transfer.
Phil. Trans. R. Soc. B (2008)
On a finer scale, Löytynoja & Goldman (2008)
consider the ‘block-like’ structure of genomes: the fact
that different regions (introns, exons, regulatory
regions, etc.) exhibit different dynamics of evolutionary
change. They exploit these differences to devise a
multiple sequence aligner that can make allowance for
the regional heterogeneity of evolutionary process to
permit improved alignments, and can simultaneously
estimate the regional structure of a genomic region in
typical cases where this is unknown. Wang & Rannala
(2008) also use fine-scale consideration of genome
evolution to estimate recombination rates from popu-
lation-level data. Whereas in the past it was only
computationally possible to use methods based on
approximations of the likelihood function, they now
achieve considerable improvements to Bayesian Mar-
kov chain Monte Carlo algorithms when the exact
likelihood is used.

Four further papers in this issue are concerned with
adding biological reality to existing mathematical
models of evolution in protein sequences or protein-
coding DNA sequences. Improving these models has
been a focus of molecular phylogenetics for many years,
reflecting both that a successful model gives improved
understanding of the processes of genome evolution
and that a better description of evolutionary change is
in turn expected to lead to more robust inferences of
evolutionary relationships. Each of the four papers
selects a different aspect of evolutionary biology for its
inspiration. Choi et al. (2008) are concerned that
existing models fail to match biological expectations.
They construct evolutionary models that incorporate
mutational bias and natural selection with predicted
stationary distributions explicitly matching the distri-
butions of sequences in databases. Huelsenbeck et al.
(2008) examine different approaches to adapting
standard models of amino acid replacement in
phylogenetic analysis of protein sequences. These
include Bayesian fitting of the general time-reversible
model with approximately 200 parameters, as well as a
mixture of commonly used empirical models.

Where Huelsenbeck et al. (2008) concentrate on
developing models to accommodate the different
evolutionary dynamics of different proteins, Pagel &
Meade (2008) and Le et al. (2008) investigate how
evolutionary models for DNA and proteins can deal
with heterogeneity in the evolutionary process of
specific sequences. Both consider mixture models.
Pagel & Meade (2008) implement Bayesian mixture
models to allow for the evolutionary rate to vary
over time, while Le et al. (2008) develop mixture
models in the likelihood framework to allow for
heterogeneity in the dynamics of evolution among
sites in the sequences.
4. IMPROVED ANALYTICAL, COMPUTATIONAL
AND APPROXIMATE METHODS
Three papers in this issue aim to enable us to tackle
larger problems in evolutionary sequence analysis by
improving computational efficiency. Stamatakis & Ott
(2008) present results on the efficient computation of
the likelihood function on phylogenetic trees when we
are analysing multiple genes, each of which is only
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known for some subset of all the species studied. This is
the computationally expensive component in the most
powerful tree estimation methods such as maximum-
likelihood and Bayesian inference. The techniques they
develop, implemented in their program RAxML, will
be of particular value in phylogenomics, the phyloge-
netic analysis of datasets from many species and many
genome regions.

Given an evolutionary tree, it is often interesting to
map a specific trait onto the tree and thus to infer its
evolutionary history. For example, methods for detect-
ing the footprint of natural selection often consider the
occurrences over evolutionary time of synonymous and
non-synonymous point mutations in protein-coding
genes, inferred from observed differences between
contemporary sequences (e.g. Nielsen & Yang
1998)—we can place known sequences at the tips of a
tree, and want to map synonymous and non-synon-
ymous changes back in time. Minin & Suchard (2008)
derive new analytical results for the mean number of
state changes in a trait and the mean dwelling time in a
given state. They give efficient algorithms to compute
these properties, where previously time-consuming
computer simulations were needed.

DNA barcoding is the assigning of DNA sequences
of unknown origin to known species or taxonomic
groups, and has applications in metagenomics, foren-
sics, conservation genetics and molecular ecology. Full
statistical approaches are too slow for current large-
scale datasets (potentially hundreds of thousands of
sequences). Munch et al. (2008) propose a novel
heuristic approach based on the neighbour-joining
method of tree reconstruction (Saitou & Nei 1987)
and the non-parametric bootstrap (Felsenstein 1985).
Such methods are particularly important as we enter
the age of environmental shotgun sequencing discussed
by Rodrigo et al. (2008).
5. ASSESSING THE EFFECTS OF
OVERSIMPLICITY
What are the consequences when we are forced,
perhaps by lack of computing resources, to use data
analyses that are less complex than we might prefer?
Holder et al. (2008) and Whelan (2008) address this
question in the context of estimating evolutionary
relationships when the oversimplicity is in the math-
ematical model of sequence evolution. Both papers
tackle this question using simulations of complex
patterns of protein-coding DNA evolution, analysing
the computer-generated data using a variety of current
state-of-the-art methodologies that nevertheless are
overly simple compared with the known ‘truth’ of their
simulations. Such situations frequently occur, as we
know existing inferential models of sequence evolution
need improving (see §3 above) and computational
power constraints also apply. Whelan (2008) concen-
trates on the effects of the genetic code, whereas Holder
et al. (2008) focus on the effects of variations in the
dynamics of sequence evolution from one site to the
next. Both papers show that it is possible to make
robust inferences under the conditions studied, typi-
cally by using relatively complex models closest to the
simulation conditions. Without knowledge of the truth,
Phil. Trans. R. Soc. B (2008)
however, there is no universal solution to the question
of the best way to achieve optimal results in real data
analysis, and the door is left open for further work.

Galtier & Daubin (2008) focus instead on the
assumption that evolution of organisms follows a
divergent tree-like structure. Different genes can lead
to different inferences of evolutionary relationship; this
may be due to analysis artefacts or may be biologically
meaningful if, for example, the genes studied have been
transferred other than by direct descent—a process
known as horizontal gene transfer (HGT). Are species
‘trees’ still meaningful if there is significant HGT?
Galtier & Daubin (2008) argue that they are, even for
taxonomic groups such as the bacteria where HGT can
be widespread and extensive.
6. AND FINALLY.
.we are delighted that this issue of the Philosophical
Transactions of the Royal Society (Biological Sciences)
contains two papers that develop the fundamental
mathematics and statistics behind the computational
analysis of molecular phylogenetics and evolution. Yang
(2008) analyses a seeming paradox in Bayesian analysis
of evolutionary trees, whereby with large amounts of
data a full probabilistic inference of evolutionary
relationships can become increasingly certain of an
incorrect result. The problem arises when we try to
choose between models (trees) that are nearly equally
correct—or incorrect—and have very large amounts of
data available, which is increasingly the case in molecular
phylogenetics. It seems the problem is that with the
increase of the data, the method’s confidence increases
faster than its accuracy, and Yang (2008) reports
improved results when using newly developed prior
distributions on the branch lengths of trees.

Concluding this issue, Klaere et al. (2008) introduce
a new view of sequence evolution. The ‘one-step
mutation’ (OSM) matrix describes how a single
mutation in any branch of an evolutionary tree changes
the character states observed at the tips of the tree.
Sequence evolution, biologically comprising a succes-
sion of such mutations, is then modelled by multi-
plication of OSM matrices. This representation
permits a linear algebra approach to the analysis of
sequence evolution that is shown to unify maximum-
parsimony, maximum-likelihood and distance matrix
methods for phylogenetic inference, and leads to
substitution mapping results closely related to those
described by Minin & Suchard (2008).

The papers included in this issue provide a snapshot
of theoretical developments in molecular phylogenetics
and evolution. As the scientific world prepares to
celebrate the 200th anniversary of Charles Darwin’s
birth and 150 years of his theory of evolution, they
remind us that molecular phylogenetics and evolution
remain a source of novel and challenging statistical and
computational problems (Neyman 1971).

The authors would like to thank the Royal Society for its help
with the Discussion Meeting and for producing this issue.
Thanks also to Mark Pagel for discussions on measuring the
growth of the field of molecular phylogenetics and to Greg
Jordan for drawing figure 1. Z.Y. was supported by a grant
from the NERC.
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