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Abstract

There is indirect evidence that the amino acid composition of proteins depends on their dimension. The
amino acid composition of a nonredundant set of about 550,000 proteins was determined and it was
observed that, in the range of 50–200 residues, the percentage of occurrence of most of the residue types
significantly depends on protein dimension. This result should prove useful in analyzing protein
sequences and genomics.
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Recently, we designed a computational technique for
predicting, on the basis of the amino acid composition,
if a protein is monomeric or if it forms permanent homo-
or hetero-oligomers, together with other polypeptide
chains (Carugo 2007). We observed that better predic-
tions were possible by considering the protein dimension,
measured by the number of residues (Carugo 2007). In
practice, a query of 50 residues was processed by using
learning sets of proteins containing less than 100 residues
and a query of 150 residues was handled with learning
sets of protein containing 100–200 residues, and so forth.

The dependence of the prediction reliability on the
protein dimension was not unexpected. At least for
relatively small proteins, containing only one globular
structural domain, the volume increases more than the
solvent-accessible surface if the radius of the globule
increases (Rose and Wetlaufer 1977). Enlarging the protein,
by adding a residue, implies that the protein core increases
more than the protein surface. Since the core is essentially
apolar, while the surface is essentially polar, it must be

expected that the amino acid composition is not indepen-
dent of the number of residues.

Despite that, amino acid composition was often used
to describe protein sequences and to design predictive
algorithms, like, for example, the tendency of proteins to
crystallize (Chen et al. 2007), for the protein struc-
tural class (Chen et al. 2006), for membrane proteins
(Shen and Chou 2005), or for protein contact numbers
(Yuan 2005).

However, despite early observations (Fisher 1964;
Cornish-Bowden 1983), the dependence of the amino
acid composition on the number of residues of proteins
was not examined in detail. This is done here, where
unexpected trends are described.

Results and Discussion

The percentage of occurrence pcaa,i of the amino acid aa
in the ith protein was computed for each of the 20 types of
amino acids in each protein as

pcaa;i ¼ 100
naa;i

nresi
;

where naa,i and nresi are the number of residues of type aa
observed in protein i and the total number of residues in
protein i, respectively. Then, the pcaa,i values were
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averaged for all protein that contains the same number of
residues R, by computing

pcaa;R ¼
+
n

i¼1

pcaa;idi

+
n

i¼1

di

;

where di ¼ 1 if nresi ¼ R, di ¼ 0 if nresi 6¼ R, and R is the
number of residues. The resulting quantity pcaa,R is thus
the percentage with which residue aa (aa ¼ A, C, D, . . .,
V, W, Y) is observed in proteins containing R residues.
All integer values of R from 50 to 200 were examined. On
average, there are 3640 protein sequences for each value
of R (standard deviation ¼ 28; minimum ¼ 2805 for R ¼
52; maximum ¼ 4271 for R ¼ 121). Larger values were
disregarded since R ¼ 200 is close to the natural domain
size upper limit (Krishnan et al. 2007). It is the optimal
value that allows one to discriminate single-domain
proteins from multidomain proteins (as can be verified
by considering the domain databases CATH [Orengo
et al. 1997] and SCOP [Murzin et al. 1995]; data not
shown). We did not want to consider multidomain pro-
teins, the amino acid composition of which reflects the
fact that they are constituted by a series of smaller
structural domains interconnected by linkers, the amino
acid composition of which are expected to be different
(Coeytaux and Poupon 2005). R-values smaller than 50
were also disregarded, since extremely small proteins are
rather infrequent. A total of 549,616 proteins were
analyzed.

Figure 1A shows, for example, how the percentage of
alanines (pcA,R) varies by increasing R from 50 to 200.
Clearly, it is not constant. It increases from ;7% to
nearly 9%. The analogous results for cysteine are shown

in Figure 1B. The values of pcC,R are larger for small
proteins and tend to decrease, nearly linearly, from
;2.3% to ;1.5% in going from 50-residue to 200-residue
proteins.

Clearly, the percentage of observation of alanines and
cysteines depends on the dimension of the protein, and,
also, the type of dependence is different for these two
types of residues.

The dependence of pcaa,R on R for all the 20 types of
residues is summarized in Figure 2. It clearly appears that
different types of amino acids show different trends.
Moreover, it is rather surprising that these trends are
not very serrated, with large oscillations from one R-value
to the next. On the contrary, they delineate quite well
continuous curves.

In order to get a quantitative estimation of the sta-
tistical significance of the data shown in Figure 2, we
compared each pcaa,N value for 50 # N # 199 with the
pcaa,R value for R ¼ 200, through a t-test like

tN ¼
pcaa;N � pcaa;200

�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

aa;N þ s2
aa;200

q ;

where 50 # N # 199 is the number of residues, saa,N is
the standard deviation of the mean value of pcaa,N, and
saa,200 is the standard deviation of the mean value of
pcaa,200. For example, pcaa,200 for alanine is equal to 8.74
(standard deviation ¼ 0.08) and pcaa,50 is equal to 7.06
(standard deviation ¼ 0.10); therefore, t50 is equal to
13.12, indicating that the values of pcaa,50 and of pcaa,200

are significantly different. The tN values of all the 20
types of amino acids are shown in Figure 3. It appears that
in the large majority of the cases, they are very large and
prove that the amino acid composition really depends on
the protein dimension. Exceptions are tryptophan, gluta-
mine, and threonine, where the t-values are very close to
zero for the entire range of protein dimensions. For all the
other residues, there is at least one region, along the x-
axis, where the t-values are extremely large. For example,
they are much larger than zero for protein shorter than
120 residues in the case of alanine, or they are much
higher than zero in the case of tyrosine for protein con-
taining 75–150 residues.

Obviously, if the percentage of some residues de-
creases, the percentage of other residues must increase.
However, different trends are observed for different resi-
dues. For some amino acids (A, D, E, G, P, and V) the
percentage of occurrence tends to increase with the
protein dimension until a plateau is reached, where
the percentage does not increase any more. For other
residues (C, F, H, I, K, M, N, and S), on the contrary, the
percentage tends to decrease if the protein dimension

Figure 1. Dependence of pcaa,R on R for alanines (A) and cysteines (B).

Standard deviations of the mean values are shown by the vertical bars.
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increases. Two residues (L and Y) show higher percen-
tages for small and large proteins, with a minimum for
middle-sized proteins. One residue, R, on the contrary, is
observed more frequently in middle-sized proteins.

Some of the trends shown in Figure 2 can be under-
stood on the basis of simple considerations. For example,
the fact that cysteines are more commonly observed
in small protein might depend on the fact that these

Figure 2. Dependence of pcaa,R on R for all the 20 types of amino acids. Standard deviations of the mean are not shown for clarity.

Percentages are on the y-axis, and the number of residues are on the x-axis.

Figure 3. T-values computed by comparing the percentage of observation of a residue in proteins of different dimensions with that

observed in proteins containing 200 residues. T-values are on the y-axis, and the number of residues are on the x-axis.
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molecules are too small to form a hydrophobic core and
often require disulfide bonds to stabilize their native fold
(Carugo et al. 2001). Moreover, the fact that large aro-
matic amino acids (like phenylalanine) are frequently
observed in small protein, more than small aliphatic resi-
dues (like alanine), might depend on the fact that the small
hydrophobic core of small proteins is better stabilized by
aromatic–aromatic interactions, like the parallel stacking,
which are stronger than van der Waals interactions between
aliphatic groups (Marsili et al. 2008).

Other trends of Figure 2 are, on the contrary, absolutely
unexpected. For example, lysine and arginine—both
positively charged residues—show different behaviors.
While the first is more frequent in very small proteins,
less frequent around R ¼ 80, and more frequent if R
increases, the frequency of arginine has a maximum
around R ¼ 80.

In order to verify that these results are not biased by
some unexpected feature of the data present in the
uniref50 fasta file, from which the protein sequences
were taken, we randomly divided it into 10 subsets of
55,000 entries each and repeated all the computations 10
times, by using separately each subset. In this way, we
expect to observe different dependencies of pcaa,R on R
for different subsets of proteins if the uniref50 data set is
biased. As an example, Figure 4 shows the dependence of
pcaa,R on the number of residues for methionine. The 10
curves, each obtained by examining one of the 10 subsets,
are clearly very similar and superposed to each other.

In order to monitor quantitatively the differences
among different trends, we computed the Pearson corre-
lation coefficients between all pairs of curves pcaa,R

versus R, obtained on the 10 different subsets of data.
This implies that for each of the 20 types of amino acids,
45 values of the correlation coefficient were computed.

They are actually very similar, ranging, on average, from
0.6 to 0.9, and smaller values are observed only for the
residue types, the percentage of which is substantially
independent of the protein dimension, demonstrating that
the dependence of pcaa,R on R is actually unbiased and
genuine.

The percentage of occurrence of the amino acids in
proteins depends, at least for some of the residues, on the
protein dimension. This is not really unexpected, though
it cannot be easily understood. Further studies seem to be
necessary. It might be interesting to examine if the
dependence of the amino acid composition on the protein
dimension is different for different living species/phyla or
for different types of proteins (enzymes, cytoskeleton
components, metal storage systems, etc.). It must, even-
tually, be mentioned that these results might be extremely
helpful in improving gene-finding algorithms, by re-
straining the gene triplet composition variance.

Methods

Protein sequences were taken from the UniProt database (The
UniProt Consortium 2007), by downloading the uniref50 fasta
file, which does not contain pairs of proteins with sequence
identity >50%. Sequences containing residues unresolved or
different from the 20 types of natural amino acids were ignored.
About 550,000 sequences were retained, and their amino acid
composition was computed with locally written computer programs.
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