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Abstract

It has been shown that testicular germ cell development is critically dependent upon somatic cell activity but, conversely, the extent to

which germ cells normally regulate somatic cell function is less clear. This study was designed, therefore, to examine the effect of germ

cell depletion on Sertoli cell and Leydig cell transcript levels. Mice were treated with busulphan to deplete the germ cell population and

levels of mRNA transcripts encoding 26 Sertoli cell-specific proteins and 6 Leydig cell proteins were measured by real-time PCR up to

50 days after treatment. Spermatogonia were lost from the testis between 5 and 10 days after treatment, while spermatocytes were

depleted after 10 days and spermatids after 20 days. By 30 days after treatment, most tubules were devoid of germ cells. Circulating FSH

and intratesticular testosterone were not significantly affected by treatment. Of the 26 Sertoli cell markers tested, 13 showed no change

in transcript levels after busulphan treatment, 2 showed decreased levels, 9 showed increased levels and 2 showed a biphasic response. In

60% of cases, changes in transcript levels occurred after the loss of the spermatids. Levels of mRNA transcripts encoding Leydig cell-

specific products related to steroidogenesis were unaffected by treatment. Results indicate (1) that germ cells play a major and

widespread role in the regulation of Sertoli cell activity, (2) most changes in transcript levels are associated with the loss of spermatids

and (3) Leydig cell steroidogenesis is largely unaffected by germ cell ablation.
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Introduction

Germ cell proliferation, meiosis and differentiation
during spermatogenesis are critically dependent on the
actions of follicle-stimulating hormone (FSH) and
androgens mediated through the Sertoli cells. Loss of
androgens and, to a lesser extent, FSH disrupts
spermatogenesis (Lyon & Hawkes 1970, Kumar et al.
1997, De Gendt et al. 2004), while depletion and loss of
function of the Sertoli cells lead to massive degeneration
of the haploid germ cells and eventually to almost
complete loss of germ cells (Russell et al. 2001). Overall,
the Sertoli cells act to maintain spermatogenesis through
provision of a structural support, generation of a unique
environment in which the germ cells develop, move-
ment of the germ cells as they progress through
spermatogenesis and through secretion of factors,
which aid germ cell development and differentiation
(Mruk & Cheng 2004). Spermatogenesis is highly
organised and orchestrated by the Sertoli cells and
appears, in most mammals, as a wave within the tubule.
While the role of the Sertoli cell in the process of
spermatogenesis is apparent, the extent to which germ
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cells regulate Sertoli cell activity is less clear. Previous
studies have shown that germ cell depletion can alter
expression of Sertoli cell genes (Maguire et al. 1993,
Jonsson et al. 1999) and secretion of specific Sertoli cell
proteins (McKinnell & Sharpe 1997, Guitton et al. 2000).
In addition, co-culture experiments have shown that
factors secreted by the germ cells can influence Sertoli
cell activity (Boitani et al. 1981, Le Magueresse & Jégou
1986, Syed et al. 1999, Vidal et al. 2001, Zabludoff et al.
2001, Delfino et al. 2003). Cryptorchidism has also been
shown to affect Sertoli cell activity (Johnston et al. 2004,
O’Shaughnessy et al. 2007a), although this may be a
direct effect of increased temperature on the Sertoli cells
(Bergh & Soder 2007). Overall, there has not been an
extensive survey of either the role of germ cells in
regulating Sertoli cell gene expression in vivo or the
extent to which overall Sertoli cell activity is affected. In
this study, therefore, we have treated outbred mice with
busulphan and measured changes in the level of 26
different mRNA species expressed specifically in the
Sertoli cells as germ cell depletion progresses.

Androgen secretion by the testis is dependent upon the
Leydig cells, which are regulated by luteinising hormone
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(LH). There is also good evidence, however, that the
Sertoli cells influence Leydig cell activity and that
ablation of the Sertoli cell population will lead to loss
of the Leydig cells (Russell et al. 2001). We have,
therefore, also measured Leydig cell activity and
function in germ cell-depleted mice to determine
whether the germ cells can directly or indirectly affect
the steroidogenic function of the testis.
Figure 1 Testicular histology and testis weight following busulphan treatmen
50 days later. Tissue sections show morphology in control (A) testes and (B) 5
after busulphan treatment. There was depletion of spermatogonia 10 days a
and by day 20 some tubules contained only elongated spermatids and sper
50 days early regeneration was apparent in some tubules. (H) Testis weight
groups marked with an asterisk (*) are significantly different (P!0.05) from
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Results

Testis morphology

Busulphan treatment had no apparent effect on testis
morphology up to day 5 (Fig. 1A and B). By day 10,
however, spermatogonia had been depleted and by day
15 the number of spermatocytes had been reduced
(Fig. 1C and D). Twenty days after busulphan treatment
t. Adult mice were given a single injection of busulphan and killed up to
days, (C) 10 days, (D) 15 days, (E) 20 days, (F) 30 days and (G) 50 days

fter busulphan treatment while spermatocytes were reduced by day 15
matozoa. By 30 days tubules were largely devoid of germ cells and by
over the course of the experiment. The bar represents 30 mm. In (H),
control values.
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Figure 3 Effect of busulphan treatment on levels of three mRNA
transcripts encoding markers of germ cell differentiation. Expression
was measured by real-time PCR, and results are expressed relative to
the external control luciferase. Data shows expression of the
spermatogonial marker Stra8, the spermatocyte marker Spo11 and the
spermatid marker Tnp1. The results are expressed as meanGS.E.M. for
four or five animals in each busulphan-treated group and 18 animals in
the control group. Groups marked with an asterisk (*) are significantly
(P!0.05) different from control values.

Figure 2 Levels of (A) serum FSH and (B) intratesticular testosterone
following busulphan treatment. Serum and tissue were collected at
different times after a single injection of busulphan and hormone levels
measured as described in Materials and Methods. The results are
expressed as meanGS.E.M. for four or five animals in each busulphan-
treated group and 18 animals in the control group. There was no
significant (P!0.05) effect of busulphan on levels of either hormone.
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some tubules contained only elongated spermatids
and spermatozoa, although other tubules still contained
round spermatids (Fig. 1E). By 30 days nearly all
tubulues were devoid of germ cells, although some
spermatozoa were still present in a few tubules (Fig. 1F).
Fifty days after treatment most tubules remained devoid
of germ cells, although early regeneration was apparent
in some tubules (Fig. 1G). Progressive loss of germ
cell populations was reflected in declining testis
weight (Fig. 1H).
Hormone profiles

Circulating levels of FSH did not change after busulphan
treatment (Fig. 2). There was large variation in intrates-
ticular levels of testosterone between animals but no
significant change in response to busulphan
treatment (Fig. 2).
Germ cell genes

Expression levels of three mRNA species encoding
markers of different germ cell populations were measured
following busulphan treatment to monitor loss of each
population. The three markers examined were Stra8,
Spo11 and Tnp1, which show predominant expression
in spermatogonia, spermatocytes and spermatids
www.reproduction-online.org
respectively (Yelick et al. 1989, Oulad-Abdelghani et al.
1996, Shannon et al. 1999). Levels of Stra8 mRNA were
significantly reduced on day 5 and were barely detectable
by day 10 (Fig. 3). The expression recovered slightly by
30 days but remained significantly less than control up to
day 50 (Fig. 3). Expression of Spo11was normal up to day
10 but was significantly and markedly reduced on day 15
with little recovery up to day 50 (Fig. 3). There was no
change in Tnp1 expression up to 20 days but between 20
and 30 days there was a marked decline in expression
which was maintained up to 50 days.
Leydig cell-specific genes

To determine whether Leydig cell function is affected by
germcell depletion levels offiveLeydigcell-specificmRNA
species (Lhr, Star, Hsd3b6, Cyp17a1 and Cyp11a1) were
Reproduction (2008) 135 839–850



Figure 4 Effect of busulphan treatment on levels of mRNA transcripts
encoding Leydig cell-specific products. Expression was measured by
real-time PCR, and results are expressed relative to the external control
luciferase. The results are expressed as meanGS.E.M. for four or five
animals in each busulphan-treated group and 18 animals in the control
group. Groups marked with an asterisk (*) are significantly (P!0.05)
different from control values.
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measured following busulphan treatment. No significant
changes in transcript levels encoding the LHreceptor, STAR
protein or steroidogenic enzymes were seen following
busulphan treatment (Fig. 4). There was, however, a
significant decrease in mRNA encoding platelet-derived
growth factor (PDGF)-A 20 days after treatment.
Sertoli cell-specific genes

To examine the effects of germ cell ablation on Sertoli
cell activity, the levels of 26 Sertoli cell-specific mRNA
species were measured (Fig. 5). There were no changes
in the expression levels of 13 mRNAs (Rhox5, Espn, Fshr,
Tjp1, Aqp8, Fyn, Dhh, Ccnd2, Wt1, Gata1, Sox9, Msi1
and Inhba). The remaining 13 mRNA species showed
significantly altered levels after treatment. Of these, nine
showed increased expression in response to busulphan
(Cst9, Shbg, Wnt5a, Clu, Il1a, Cldn11, Cys12,
4930486L24Rik (Testin) and Amh), while two showed
decreased expression (Spata2 and Sympk) and two
showed a mixed response (Trf and Inhbb). Most mRNA
species showed a late response to germ cell ablation
(after 15 days), although five responded within 5 days
(Cst9, Shbg, Inhbb, Wnt5a and Clu) and one within
15 days (Spata2) (Fig. 5).
Reproduction (2008) 135 839–850
Other testicular genes

Levels of mRNA encoding three products with unknown
(b-defensin 36, DEFB36) or mixed somatic expression
(GATA4 and NR0B1) were also measured after busul-
phan treatment. Levels of transcripts encoding the
b-defensin DEFB36 and the transcription factor GATA4
increased significantly 30 days after treatment with
busulphan and remained high up to day 50 (Fig. 6). By
contrast, Nr0b1 (Dax1) transcript levels were signi-
ficantly reduced 50 days after treatment (Fig. 6).
Discussion

Busulphan induces apoptosis in spermatogonia within
1 week of treatment followed by a second wave of
apoptosis in meiotic spermatocytes after 2 weeks (Choi
et al. 2004). The expression pattern of germ cell
markers was consistent with early loss of spermatogo-
nia through apoptosis followed by loss of spermato-
cytes after 2 weeks and subsequent loss of spermatids
between 20 and 30 days as existing spermatids mature
and fail to be replaced. Histological changes in the
testis after busulphan were also consistent with the
changes in marker transcript levels although there
tended to be a delay between loss of marker
expression and loss of a particular cell population.
Overall, the histological and marker data indicate that
spermatogonia entered apoptosis within 5 days of
treatment followed by loss of spermatocytes after day
10 and spermatids after day 15. By day 30 most
tubules contained only the Sertoli cells and by day 50
germ cell repopulation was apparent in some tubules.
It should be noted that since busulphan is a cytotoxic
drug there is a possibility that it will also have direct
effects on the somatic cells of the testis. It might be
expected that any such effects would be rapid and,
within any one cell type, have a relatively non-specific
effect on transcript levels. Within the confines of the
experimental design, however, no effects of this nature
were seen apart from some early increases in specific
Sertoli cell transcript levels (discussed below).

Treatment with busulphan had no effect on intrates-
ticular levels of testosterone confirming previous studies
which have shown no effect of germ cell ablation on
testosterone levels (Gomes et al. 1973, Morris et al.
1987, De Franca et al. 1994). Consistent with the failure
to alter testicular androgen levels, busulphan treatment
had no effect on levels of mRNA transcripts encoding
proteins involved in steroidogenesis. Use of an external
standard control for the real-time PCR studies meant that
transcript levels were normalised to the whole testis and
were, therefore, unaffected by changes in testis volume
or cellular composition induced by busulphan. In
addition, total Leydig cell number is unaffected by
busulphan treatment in the adult mouse (O’Shaughnessy
et al. 2003) and no corrections to the measured transcript
www.reproduction-online.org
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levels per testis were required (O’Shaughnessy et al.
2007a, 2007b). The constant transcript levels per testis
after busulphan treatment indicates, therefore, that there
is no change in level per Leydig cell. This failure of germ
cell ablation to affect the steroidogenic function of the
Leydig cells in the adult animal contrasts with the
reported effect of germ cell ablation in the fetal or
prepubertal rat (Boujrad et al. 1995a, 1995b). Under
these circumstances, Leydig cell number is reduced in
the adult animal but testosterone production per cell is
increased (Boujrad et al. 1995a, 1995b). This would
suggest that germ cells are required at the pre-pubertal
stage for normal development of Leydig cell number and
function but that the Leydig cells become independent of
germ cell regulation once the adult cohort is formed.
Alternatively, it has been shown that cryptorchidism
appears to have different effects on Leydig cell function
in rats and mice (de Kretser et al. 1979, Jegou et al. 1983,
Mendis-Handagama et al. 1990a, 1990b, Murphy &
O’Shaughnessy 1991) and it is possible that there is a
species difference in the Leydig cell response to germ
cell depletion.

In contrast to the steroidogenic apparatus, levels of
mRNA encoding PDGF-A were significantly reduced
coinciding with ablation of the spermatid population.
This growth factor is required for normal Leydig cell
development around puberty and is predominantly
expressed in the Sertoli cells in the immature testis but
in the adult animal it is localised in the Leydig cells
(Gnessi et al. 2000, Fecteau et al. 2006). Altered
expression of Pdgfa after busulphan suggests, therefore,
that germ cell ablation can affect specific Leydig cell
functions and this is likely to occur through changes in
Sertoli cell activity.

The failure of germ cell ablation to affect circulating
FSH levels was somewhat surprising since busulphan
caused transient but significant changes in inhibin
bB-subunit mRNA levels and previous studies have
shown that busulphan will increase circulating FSH
levels in the rat between 6 and 10 weeks after injection
(Gomes et al. 1973, Morris et al. 1987). The lack of a
similar phenomenon in the mouse may be indicative of a
species difference but a contributing factor in this study
may also be that an outbred strain of mouse was used.
This has the advantage that inbred strain-specific effects
are avoided but at the expense of an overall increase in
animal to animal variability which may have masked
subtle changes in hormone levels.

Despite failure to affect androgen or FSH levels, germ
cell ablation had a marked and widespread effect on the
Sertoli cells. This study examined 26 mRNA species that
have been shown, within the testis, to be predominantly
or exclusively expressed in the Sertoli cells (Table 1). Of
the genes studied over 50% showed altered expression
following germ cell ablation and since hormone levels
were unaffected this is likely to be a direct response to
the loss of germ cells. In addition, since busulphan
www.reproduction-online.org
treatment does not affect Sertoli cell number
(O’Shaughnessy et al. 2003) changes in transcript levels
per testis will be a reflection of changes per Sertoli cell.
While extrapolation from this set of genes should be
done with caution, the results indicate that a large
number of Sertoli cell genes may be directly regulated
by the germ cell component. Most of the genes affected
by busulphan showed a late response (after 15 days)
which indicates that Sertoli cell activity is particularly
sensitive to regulation by the spermatid population. This
is consistent with earlier in vivo studies which showed
that spermatids are primarily responsible for changes in
Sertoli cell function (Jegou et al. 1993, Maguire et al.
1993, McKinnell & Sharpe 1997). In addition, more
recent in vitro studies using co-culture methods have
shown specific effects of post-meiotic germ cells on
Sertoli cell function (Vidal et al. 2001, Delfino et al.
2003). Sertoli cell activity also appears to be regulated
by other germ cell populations and, in particular, the
meiotic germ cells (Rey et al. 1994, Al Attar et al. 1997,
Grandjean et al. 1997, Syed et al. 1999), although
spermatogonia may also be involved (Fujino et al.
2006). This would be consistent with the earlier changes
seen in mRNA species such as Shbg and Cst9 and the
loss of Spata2 around day 15. As discussed above, it is
also possible that early effects of busulphan could be
due to direct effects of the drug on Sertoli cell activity
but this appears unlikely since only a small number of
genes are affected and in each case activity is increased
after treatment.

Two recent studies have shown that there is high
expression of b-defensins in the testis and male
reproductive tract (Patil et al. 2005, Yenugu et al.
2006). In both studies, b-defensin 36 was shown to be
abundantly expressed in the testis and we have included
it as a representative b-defensin in this study. While
b-defensins are generally expressed in epithelia the
specific localisation of Defb36 expression in the testis is
uncertain and Defb36 has not been considered with the
other two groups. Results from this study show clearly
that germ cell ablation will significantly increase Defb36
mRNA levels. The b-defensins act as broad spectrum
antimicrobials which help protect the male reproductive
tract against infection (Selsted & Ouellette 2005). It
might, therefore, be expected that ablation of the germ
cell population would act to increase levels of
b-defensins as a protective response. During develop-
ment, the transcription factor GATA4 and the nuclear
receptor NR0B1 (DAX1) are involved in sex determina-
tion and differentiation of the fetal Leydig cells (LaVoie
2003, Park et al. 2005, Bielinska et al. 2007). In adult
animals, their function is less clear although both may be
involved in maintenance and regulation of steroidogen-
esis (LaVoie 2003, Niakan & McCabe 2005). The two
factors are expressed in the both Sertoli cells and Leydig
cells in the adult animal (Tamai et al. 1996, Ketola et al.
1999) and the late changes in transcript levels after
Reproduction (2008) 135 839–850
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busulphan treatment indicates that normal expression of
these factors is regulated by the germ cells. It is not clear
whether this regulation occurs in both cell types or is
restricted to only one.
Figure 5 (legend

Reproduction (2008) 135 839–850
Previous studies have examined the role of germ cells in
the regulation of a small number of the mRNA species
studied in this report at the mRNA level or as secreted
proteins. During normal development, there is a marked,
continued)
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Figure 5 (A) Effect of busulphan treatment on levels of mRNA transcripts encoding markers of Sertoli cell-specific products. Expression was measured by
real-time PCR, and results are expressed relative to the external control luciferase. The results are expressed as meanGS.E.M. for fouror five animals in each
busulphan-treated groupand18animals in thecontrol group.Transcripts showingnochange in levels afterbusulphan treatmenthavebeengrouped in (A).
(B) Effect of busulphan treatment on levels of mRNA transcripts encoding markers of Sertoli cell-specific products. Expression was measured by real-time
PCR, and results are expressed relative to the external control luciferase. The results are expressed as meanGS.E.M. for four or five animals in each
busulphan-treated group and 18 animals in the control group. Transcripts showing a significant difference to control values (P!0.05, marked *)have been
grouped (B) and are ordered according to the time at which an effect of busulphan is first seen.

Germ cell depletion and Sertoli cell function 845
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Figure 6 Effect of busulphan treatment on levels of mRNA transcripts
encoding DEFB36, GATA4 and NR0B1 (DAX1). Expression was
measured by real-time PCR, and results are expressed relative to the
external control luciferase. The results are expressed as meanGS.E.M.
for four or five animals in each busulphan-treated group and 18 animals
in the control group. Groups marked with an asterisk (*) are
significantly (P!0.05) different from control values.
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prepubertal decline in anti-Müllerian hormone (AMH)
secretion by the Sertoli cells which is likely to be caused
by increased androgen action on the Sertoli cells and
by germ cell entry into meiosis (Al Attar et al. 1997, Rey
et al. 2003). Since there was no significant change in
intratesticular androgen levels in this study, the rise inAmh
after busulphan treatment is consistent with regulation by
the germ cells, although the effect of busulphan was only
seen after loss of the spermatid population. Similarly, it
has been reported that levels of the Sertoli cell secretory
product testin are inversely proportional to germ cell
numbers (Cheng et al. 1989, Guitton et al. 2000) which
is consistent with results reported here. A number of earlier
studies have shown that inhibin B levels are regulated
by germ cells and data from the rat suggests that loss
of post-meiotic germ cells is associated with a decline
Reproduction (2008) 135 839–850
in inhibin B (Allenby et al. 1991, Guitton et al. 2000).
By contrast, Clifton et al. (2002) have reported that meiotic
germ cells act to inhibit Sertoli cell Inhbb mRNA levels
in culture. Interestingly, it has been shown that inhibin
B production appears to be germ cell stage dependent
with a possible inhibitory effect of interleukin (IL)1a at
the nadir of production (Okuma et al. 2006). The changes
in Inhbb mRNA levels seen after busulphan in this study
may, therefore, be related to disruption of the normal stage-
dependent regulation of Sertoli cell activity, although the
alteration in Il1a transcript levels after germ cell depletion
may also play a role. Sertoli cell activin A production has
also been shown to be germ cell stage dependent (Okuma
et al. 2006) but Inhba transcript levels per testis did not
change significantly after busulphan. This would suggest
that there can be a complex effect of overall germ cell
depletion on Sertoli cell transcripts which normally are
under stage-dependent regulation. This may be because
the overall effect of germ cell ablation will be a balance
between the stimulatory and inhibitory effects of stage
regulation aggregated across the whole testis.

Results from this study indicate, overall, that germ cells
play a major (mostly inhibitory) role in regulating Sertoli
cell activity and that this regulation is primarily through
the post-meiotic cells. The effects of germ cell ablation
were widespread, affecting 50% of the mRNA species
tested suggesting that the germ cells may have a greater
overall effect on Sertoli cell activity than endocrine
factors which tend to be more specific (Johnston et al.
2004, Denolet et al. 2006). It is likely that the overall effect
of germ cell action is to fine-tune Sertoli cell activity
during the different stages of spermatogenesis in order to
maximise spermatogenic output.
Materials and Methods

Animals

Adult (15 weeks) outbred MF1 mice were purchased from
Harlan UK (Bicester, UK). Mice were given a single injection
(i.p.) of busulphan (30 mg/kg) in DMSO/H2O (50/50 v/v) and
were killed 5, 10, 15, 20, 30 or 50 days later. At each time
point, three or four control animals and five treated animals
were killed to allow for any effects of ageing of the mice. No
significant differences between the control animals were seen
and data from the control animals were pooled for analysis.

One testis from each animal was frozen in liquid N2 while the
other testiswasweighed and cut into half. One half was frozen for
subsequent measurement of intratesticular testosterone, while
the other half was fixed in Bouin’s. Trunk blood was collected
from animals and serum used to measure circulating FSH.
Measurement of mRNA levels

Real-time PCR was used to quantify the content of specific mRNA
species in the testes at different times following busulphan
treatment. To allow specific mRNA levels to be expressed per
www.reproduction-online.org



Table 1 Primer sequences used for real-time PCR.

Gene Abbrev. GenBank Forward primer Reverse primer Reference to mRNA localisationa

Sertoli cell
Anti-Mullerian hormone Amh nm_007445 TCCTACATCTGGCTGAAGTGATATGGG AGGTTCTGTGTGCCCCGCAG Munsterberg &

Lovell-Badge (1991)
Aquaporin 8 Aqp8 nm_007474 GCTGGCAGTCACAGTGATCGGA CCTGGACGATGGCAAAGGCTG Badran & Hermo (2002)
Claudin 11 Cldn11 nm_008770 GCTCCAAGGGCCTGTGGGC TGTCAACAGCAGCAAGATGGCG Morita et al. (1999)
Clusterin Clu nm_013492 CCACGCCATGAAGATTCTCCTGC CTCCCTGGACGGCGTTCTGA Morales et al. (1987)
Cyclin D2 Ccnd2 nm_009829 GGAACCTGGCCGCAGTCACC AATCATCGACGGCGGGTACATG Tan et al. (2005b)
Cystatin 12 Cst12 af440737 GGATGACGATTTTGCCTACAAGTTCCT TTCTCTCTCCTGGACCTTCCTGCA Li et al. (2002)
Cystatin 9 (Testatin) Cst9 nm_009979 GATATTTGCCCCTTTCAGGAGAGCC AGAGAAGTACGTGACCAGTCCATGGG Kanno et al. (1999)
Desert hedgehog Dhh nm_007857 GGCGCAGACCGCCTGATG AAGGCACGGCCTTCGTAGTGG Bitgood et al. (1996)
Espin Espn nm_019585 GCTTCTGGTCGGGCATTACCCT GTGTCATGCCGTCTTGGGCG Bartles et al. (1996)
Follicle stimulating hormone

receptor
Fshr nm_013523 GGCCAGGTCAACATACCGCTTG TGCCTTGAAATAGACTTGTTGCAAATTG Kliesch et al. (1992)

Fyn proto-oncogene Fyn nm_008054 GAAGCGGCCCTGTATGGAAGGTT TGTGGGCAGGGCATCCTATAGC Maekawa et al. (2002)
GATA binding protein 1 Gata1 nm_008089 ATGGTCAGAACCGGCCTCTCATC GAGCTTGAAATAGAGGCCGCAGG Tan et al. (2005a)
Inhibin b-A Inhba bc053527 CATGGAGCAGACCTCGGAGATCA TGGTCCTGGTTCTGTTAGCCTTGG Kaipia et al. (1992)
Inhibin b-B Inhbb nm_008381 GAGCGCGTCTCCGAGATCATCA CGTACCTTCCTCCTGCTGCCCTT Kaipia et al. (1992)
Interleukin 1a Il1a nm_010554 TTGGCGCTTGAGTCGGCAAA TCATGAAGTGAGCCATAGCTTGCATC Jonsson et al. (1999)
Musashi homolog 1 Msi1 nm_008629 TCACTTTCATGGACCAGGCGG GTTCACAGACAGCCCCCCCA Saunders et al. (2002)
Reproductive homeobox 5 Rhox5 nm_008818 AGGTTCGCCCAGCATCGACTG GCCGCAGCCCTCCTGATCTT Lindsey & Wilkinson (1996)
RIKEN 4930486L24 (Testin) 4930486L24-

Rik
ay146988 AAAGACAATGGCGGCCTCGC GGCCCCACTTTAGCCACTGCC Cheng et al. (1989)

Sex hormone binding globulin Shbg nm_011367 GACATTCCCCAGCCTCATGCA TGCCTCGGAAGACAGAACCACG Wang et al. (1989)
Spermatogenesis associated 2 Spata2 nm_170756 GCCGTGTGGGCCTGTGCTT TTCCCCAAATCAAACCCAAGGG Graziotto et al. (1999)
SRY-box containing gene 9 Sox9 nm_011448 CGCGGAGCTCAGCAAGACTCTG TGTCCGTTCTTCACCGACTTCCTC Frojdman et al. (2000)
Symplekin sympk xm_485873 CAAGAAGAAGGGCCAAGCATCGA AGGAAGTTGTCAAGCAGGGTGGG Keon et al. (1996)
Tight junction protein 1 Tjp1 nm_009386 GCGGAGAGAGACAAGATGTCCGC CTCTGAAAATGAGGATTATCTCTTCCACCA Byers et al. (1991)
Transferin Trf nm_133977 CAAATGCATCAGCTTCCGTGACC CGGCATCGTACACCCAACCC Skinner & Griswold (1980)
Wilms tumour homolog Wt1 nm_144783 GCTCCAGCTCAGTGAAATGGACAGAA GGCCACTCCAGATACACGCCG Mundlos et al. (1993)
Wingless-related MMTV integration
site 5A

Wnt5a nm_009524 CTGCTTCTACCATGCGTTTGCTGG GCCATGGGACAGTGCGGC O’Shaughnessy et al. (2007a,
2007b)

Leydig cell
Cytochrome P450 side chain clea-

vage
Cyp11a1 nm_019779 CACAGACGCATCAAGCAGCAAAA GCATTGATGAACCGCTGGGC O’Shaughnessy et al. (2002)

3B-hydroxysteroid dehydrogenase
type 6

Hsd3b6 nm_013821 GCTCCAGACTGGGACTGCTGACAC AATCCTCTGGCCCAAAAACCCTC O’Shaughnessy et al. (2002)

StAR protein Star nm_011485 CGTCGGAGCTCTCTGCTTGGTTC TCGTCCCCGTTCTCCTGCTG O’Shaughnessy et al. (2002)
Cytochrome P450 17a-hydroxylase Cyp17a1 nm_007809 TGGTCCCATCTATTCTCTTCGCCTG AGGCGACGCCTTTTCCTTGG O’Shaughnessy et al. (2002)
Luteinising hormone receptor Lhr nm_013582 TCAGGAATTTGCCGAAGAAAGAACAG GAAGTCATAATCGTAATCCCAGCCACTG O’Shaughnessy et al. (2002)
Platelet -derived growth factor A Pdgfa nm_008808 GAGCGGCTGGCTCGAAGTCAG CTGCGAATGGGCACAGGCC Gnessi et al. (1995)

Germ cell
Transition protein 1 Tnp1 nm_009407 GGCGATGATGCAAGTCGCAA CCACTCTGATAGGATCTTTGGCTTTTGG Yelick et al. (1989)
Sporulation protein meiosis-specific Spo11 nm_012046 CGCGTGGCCTCTAGTTCTGAGG GGTATCATCCGAAGGCCGACAGAAT Shannon et al. (1999)
Stimulated by retinoic acid gene 8 Stra8 nm_009292 GAAGGTGCATGGTTCACCGTGG GCTCGATGGCGGGCCTGTG Oulad-Abdelghani et al. (1996)

Others
b-defensin 36 Defb36 n-

m_0010372-
47

TCCCCAGTACGCCACGAACG TTGCCGTGGAGATTCCAGCATT see text

Gata binding protein 4 Gata4 nm_008092 CCCTTCGACAGCCCAGTCCTG AGGTAGTGTCCCGTCCCATCTCG Ketola et al. (1999)
Nuclear receptor subfamily 0b1
(Dax1)

Nr0b1 nm_007430 CGGAGGCTGGGCACTTGCT CAATGTATTTCACGCACTGCAGGC Tamai et al. (1996)

aReference describing localisation of mRNA transcripts in the testis.
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testis and to control for the efficiency of RNA extraction, RNA
degradation and the RT step, an external standard (luciferase;
Promega UK) was used (Baker & O’Shaughnessy 2001,
O’Shaughnessy et al. 2002, Johnston et al. 2004). Testis RNA
was extracted using Trizol (Life Technologies) and luciferase
mRNA (5 ng) was added to each testis at the start of the RNA
extraction procedure. Residual genomic DNAwas removed from
extracted RNA by DNAse treatment (DNA-free; Ambion Inc.,
supplied by AMS Biotechnology, Abingdon, UK). The RNA was
reverse transcribed using random hexamers and Moloney murine
leukaemia virus reverse transcriptase (Superscript II, Life
Technologies) asdescribedpreviously (O’Shaughnessy& Murphy
1993, O’Shaughnessy et al. 1994).

Measurement by real-time PCR used the SYBR method in a
96-well plate format. Reactions contained 5 ml 2! SYBR
mastermix (Stratagene, Amsterdam, The Netherlands), primer
(100 nM) and template in a total volume of 10 ml. The thermal
profile used for amplification was 95 8C for 8 min followed by
40 cycles of 95 8C for 20 s, 63 8C for 20 s and 72 8C for 30 s.
At the end of the amplification phase, a melting curve analysis
was carried out on the products formed and gel electrophoresis
was carried out on representative samples to confirm product
size. The quantity of each measured cDNA was expressed
relative to the internal standard in the same sample, which
allows direct comparison of expression levels per testis
between different samples (Johnston et al. 2004).

Primers were designed using PrimerExpress software
(Applied Biosystems, Warrington, UK) using parameters
described previously (O’Shaughnessy et al. 2007a, 2007b).
The primers used are shown in Table 1.
Measurement of hormone levels

Levels of FSH in the serum were measured using a commercial
RIA with rat standards (Amersham Biosciences). A dilution
curve of mouse serum was parallel with the standard curve
generated by the RIA. To measure intratesticular testosterone
levels, steroids were extracted from frozen hemi-testes in
ethanol and measured by RIA as previously described
(O’Shaughnessy & Sheffield 1990).
Histology

Testes were fixed overnight in Bouin’s and stored in 70%
ethanol. Testes were embedded in Technovit 7100 resin, cut
into sections and stained with Harris’ hematoxylin and eosin.
Statistical analysis

Effects of drug treatment were analysed initially by single-factor
ANOVA followed by post hoc analysis using Fisher’s test.
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