
Cancer is among the major causes of death in
modern society (Boyle and Ferlay 2005).
Carcinogenesis is initiated and/or promoted
by exposure to chemicals with carcinogenic
properties that occur in the human environ-
ment, for example, from ambient air, food, or
lifestyle-related factors such as cigarette
smoke (Czene et al. 2002; Higginson 1993;
Le Marchand 2005; Luch 2005). Thus, in the-
ory, a portion of cancer cases is preventable.
Molecular epidemiology tools are used to iden-
tify human cancer risks posed by exposure to
environmental carcinogens, thereby contribut-
ing to the scientific basis for environmental
health policy measures. To this end, biomark-
ers are investigated that enable human risk
assessment long before traceable, diagnostic
health effects appear.

In monitoring environmental cancer risk
among human populations, several markers of
early biological effects [e.g., DNA damage
markers such as micronuclei (MN) and DNA
strand breaks] have been developed and
applied over the last decades (Bonassi et al.
2005). However, these biomarkers tend to be

nonspecific, raise questions about their sensitiv-
ity, and do not generate insights in underlying
modes of action. Genomic technologies such as
microarrays and quantitative polymerase chain
reaction (PCR) provide the opportunity to
explore altered expression of large numbers of
genes simultaneously (Afshari et al. 1999;
Gerhold et al. 2001; Lobenhofer et al. 2001;
Lockhart and Winzeler 2000) and therefore
may provide the opportunity to identify
molecular biomarkers consisting of altered gene
expression profiles representing environmental
health risks. Studies on carcinogen-induced dif-
ferential gene expression have been conducted
in our laboratory previously. Besides experi-
mental in vitro studies that were directed
toward obtaining gene expression profiles from
model carcinogens in human blood mono-
nuclear cells (van Leeuwen et al. 2005), a con-
cise human population of smoking-discordant
monozygotic twin pairs has been investigated;
genes were identified of which the expression
significantly differed in smokers compared with
their nonsmoking, genetically identical siblings
(van Leeuwen et al. 2007). Furthermore, in a

study of children from the Czech Republic,
numerous gene expressions appeared relatively
increased among children inhabiting a severely
polluted area (van Leeuwen et al. 2006).

From these studies, eight genes have been
identified as promising biomarkers for envi-
ronmental carcinogenesis. They encompass
genes of which the expression differed signifi-
cantly between carcinogen-exposed and non-
exposed individuals, in addition to genes that
correlated significantly with an established
biomarker of early biological effect (i.e., MN
frequencies) (van Leeuwen et al. 2006, 2007).
The aim of the present study was to monitor
the expression of this set of genes in humans
inhabiting specific regions in Flanders and to
associate these with blood and urinary meas-
ures of established biomarkers of exposure and
early biological effect. We measured the
expression levels of these eight key genes—
cytochrome P450 1B1 (CYP1B1), activating
transcription factor 4 (ATF4), mitogen-
activated protein kinase 14 (MAPK14), super-
oxide dismutase 2 (Mn) (SOD2), chemokine
(C-X-C motif) ligand 1 (melanoma growth
stimulating activity, alpha) (CXCL1), diacyl-
glycerol O-acyltransferase homolog 2 (mouse)
(DGAT2), tigger transposable element
derived 3 (TIGD3), and PTEN-induced
putative kinase-1 (PINK1) (van Leeuwen
et al. 2006, 2007) (Table 1)—in peripheral
blood cells by means of quantitative PCR.
Furthermore, we explored associations with
blood and urinary measures of biomarkers of
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BACKGROUND: Human carcinogenesis is known to be initiated and/or promoted by exposure to
chemicals that occur in the environment. Molecular cancer epidemiology is used to identify human
environmental cancer risks by applying a range of effect biomarkers, which tend to be nonspecific
and do not generate insights into underlying modes of action. Toxicogenomic technologies may
improve on this by providing the opportunity to identify molecular biomarkers consisting of altered
gene expression profiles. 

OBJECTIVES: The aim of the present study was to monitor the expression of selected genes in a
random sample of adults in Flanders selected from specific regions with (presumably) different envi-
ronmental burdens. Furthermore, associations of gene expression with blood and urinary measures
of biomarkers of exposure, early phenotypic effects, and tumor markers were investigated. 

RESULTS: Individual gene expression of cytochrome p450 1B1, activating transcription factor 4,
mitogen-activated protein kinase 14, superoxide dismutase 2 (Mn), chemokine (C-X-C motif) lig-
and 1 (melanoma growth stimulating activity, alpha), diacylglycerol O-acyltransferase homolog 2
(mouse), tigger transposable element derived 3, and PTEN-induced putative kinase1 were meas-
ured by means of quantitative polymerase chain reaction in peripheral blood cells of 398 individu-
als. After correction for the confounding effect of tobacco smoking, inhabitants of the Olen region
showed the highest differences in gene expression levels compared with inhabitants from the Gent
and fruit cultivation regions. Importantly, we observed multiple significant correlations of particu-
lar gene expressions with blood and urinary measures of various environmental carcinogens. 

CONCLUSIONS: Considering the observed significant differences between gene expression levels in
inhabitants of various regions in Flanders and the associations of gene expression with blood or uri-
nary measures of environmental carcinogens, we conclude that gene expression profiling appears
promising as a tool for biological monitoring in relation to environmental exposures in humans.
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exposure to certain environmental carcinogens,
biomarkers of early biological effect (DNA
strand breaks and MN frequencies), and serum
levels of several tumor markers. The present
study was conducted as part of the Flanders
Environment and Health Study (FLEHS;
Flemish Centre of Expertise on Environment
and Health 2007). FLEHS is a multicenter
program with the goal of researching the
impact of the environment on human health
across the general Flanders population. 

Materials and Methods

Study population. The study population con-
sisted of 398 subjects from eight different
regions of residence in Flanders, Belgium
(Table 2). Participants were recruited within
several communities or sectors of communities
in each of the eight regions of interest, based
on random sampling. Inclusion criteria were
age 50–65 years, living in the region > 5 years,
and being able to complete questionnaires in
Dutch. Prior to blood collection, informed
consent was obtained from all individuals.
Study protocols were approved by the
Institutional Review Board/Ethical Committee
of Antwerp University. Participants completed
a questionnaire covering age, sex, and smoking
habits, among other items, and they donated a
blood and urine sample for measurement of
the biomarkers. The questionnaire was based
partly on a questionnaire used in the pilot
phase of the FLEHS project (Staessen et al.
2001) and supplemented with specific ques-
tions concerning the current study. 

Gene expression analysis. For gene expres-
sion analyses, blood samples of 2.5 mL were
collected from each subject into PAXgene
Blood RNA vacutainer tubes (PreAnalytix;

Qiagen, Hilden, Germany), a system that
accounts for immediate ex vivo preservation of
blood RNA. Total RNA was isolated and
purified using the PAXgene Blood RNA kit
(PreAnalytix) according to the manufacturer’s
instructions. cDNA was synthesized from
2 µg total RNA using the BioRad iScript
cDNA synthesis kit (Bio-Rad Laboratories,
Hercules, CA, USA) according to the manu-
facturer’s instructions. Aliquots were used for
quantitative PCR on the BioRad MyiQ
iCycler Single Color quantitative detection
system using iQ SYBR Green Supermix (both
from Bio-Rad) according to the manufac-
turer’s instructions. Reactions were initiated
for 3 min at 95°C, followed by 40 cycles of
15 sec at 95°C and 45 sec at 60°C. After each
run, we performed a melting curve analysis
starting at 60°C with stepwise temperature
elevations of 0.5°C every 10 sec to check for
nonspecific products. We included β-actin
(ACTB) and cyclophillin A (PPIA) as refer-
ence genes (internal controls). Primers were as

follows: ACTB, 5´-CCTGGCACCCAGCA-
CAAT-3´ (forward) and 5´-GCCGATCCA-
CACGGAGTACT-3´ (reverse); and PPIA,
5 ´ - T T C C T G C T T T C A C A G A A T T
ATTCC-3´ (forward) and 5´-GCCACCAG-
TGCCATTATGG-3´ (reverse). These genes
perform best in terms of most stable expres-
sion and best resemblance to microarray-
derived results in our previous analyses (data
not shown). All reactions were performed in
duplicate. In each run, negative controls (not
containing template) and positive controls (a
dilution series of a pooled sample, consisting
of cDNA reverse-transcribed from total RNA
of 20 randomly selected subjects) were
included to estimate PCR efficiency. Primer
sequences are shown in Table 1. 

Exposure analysis. We measured whole
blood, serum, or urine levels of multiple envi-
ronmental carcinogens or their metabolites by
various methods: heavy metals (cadmium and
lead) in whole blood as described by
Schroijen et al. (2008); dioxins and furans in
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Table 1. Overview of genes monitored for expression in blood cells. 

Gene name (abbreviation)a GenBank accession no.a Biological summarya Primers

Cytochrome P450 1B1 (CYP1B1) NM_000104 Catalysis of many reactions involved in drug and xenobiotic 5´-AGTGCAGGCAGAATTGGATCA-3´ (forward)
metabolism (e.g., metabolism of procarcinogens) 5´-GCGCATGGCTTCATAAAGGA-3´ (reverse)

Activating transcription NM_001675 Encodes a transcription factor that belongs to a family 
factor 4 (ATF4) of DNA-binding proteins, including the AP-1 and CREB 5´-CTCCAGCGACAAGGCTAAGG-3´ (forward)

families 5´-GTTGTTGGAGGGACTGACCAA-3´ (reverse)
Superoxide dismutase 2 (SOD2) NM_000636 Associated with oxidative stress; converts superoxide to 5´-ATCAGGATCCACTGCAAGGAA-3´ (forward)

hydrogen peroxide and diatomic oxygen 5´-CGTGCTCCCACACATCAATC-3´ (reverse)
Mitogen-activated protein NM_001315 Activated by various environmental stressors and 5´-TGAAGACTGTGAGCTGAAGATTCTG-3´ (forward)
kinase 14 (MAPK14) proinflammatory cytokines; integration point for multiple 5´-CCACGTAGCCTGTCATTTCATC-3´ (reverse)

biochemical signals and involved in a wide variety of 
cellular processes such as proliferation, differentiation, 
transcription regulation, and development

Chemokine (C-X-C motif) ligand 1 NM_001511 Regulates cell trafficking of various types of leukocytes and 5´-CCACTGCGCCCAAACC-3´ (forward)
(melanoma growth stimulating has a role in development, homeostasis, and function of the 5´-GCAGGATTGAGGCAAGCTTT-3´ (reverse)
activity, alpha) (CXCL1) immune system
PTEN-induced putative NM_032409 Encodes a serine/threonine protein kinase that localizes to 5´-AGCAGTCACTTACAGAAAATCCAAGA-3´ (forward)
kinase-1 (PINK1) mitochondria; it is thought to protect cells from 5´-GGTGAAGGCGCGGAGAA-3´ (reverse)

stress-induced mitochondrial dysfunction
Diacylglycerol O-acyltransferase NM_032564 Responsible for triglyceride synthesis 5´-GCACAGAGGCCACAGAAGTG-3´ (forward)
homolog 2 (mouse) (DGAT2) 5´-CCCTCAACACAGGCATTCG-3´ (reverse)
Tigger transposable element NM_145719 Belongs to the tigger subfamily of the pogo superfamily 5´-GTGCTGGAACTCCTGGATGAG-3´ (forward)
derived 3 (TIGD3) of DNA-mediated transposons in humans; exact 5´-TTGCAGATGCGCGAGATCT-3´ (reverse)

function of gene is not known
aNational Center for Biotechnology Information (2008).

Table 2. Environmental characteristics of the study regions. 

Region Population (no.) Description

Antwerp 404,241 City and suburbs with exclusion of harbor area
Harbor 130,064 Harbor areas of Antwerp and Gent combined (petrochemical and

steel industries)
Fruit 95,829 Eight municipalities with > 10 ha/km2 apple and pear cultivation
Olen 68,068 Influenced by the presence of a nonferro industrial company 
Gent 213,025 City and suburbs with exclusion of harbor area
Incinerators 56,405 Surroundings of 11 incinerators; municipalities with their center < 6 km

from an incinerator (or < 12 km northeast of incinerator) 
Rural 153,770 Twenty-four municipalities with population density 

< 250 persons/km2; no registered emission source; > 5% industry and 
no highway in the territory

Canal 64,763 Presence of six chemical companies (BP-Chembel, Exxon Mobil, 
Dow Chemical, Borealis, T.C. Ham, Tessenderlo Chemie-LVM) 

Fruit, fruit cultivation region. 



serum as described by Van Wouwe et al.
(2004); p,p´-dichlorodiphenyldichloro-
ethylene (p,p´-DDE) and non–dioxin-like
polychlorinated biphenyls (PCBs) in serum as
described by Covaci et al. (2002) and Gomara
et al. (2002); 1-OH-pyrene (a metabolite of
polycyclic aromatic hydrocarbons) and
t,t-muconic acid (t,t-MA; a metabolite of ben-
zene) in urine as described by Angerer and
Schaller (1997, 1998). Smoking status was
derived from questionnaires instead of
cotinine measurements. 

Measurement of early biological effect and
tumor markers. We evaluated the induction of
DNA strand breaks as a measure for DNA
damage using the alkaline COMET assay as
described by Singh et al. (1988). We analyzed
the slides (200 cells per individual) using an
image analysis system from Metasystems
(Altslussheim, Germany). Median percentages
of DNA migration in the tail areas were deter-
mined and used as a measure of DNA damage.
As a positive control, one slide with nuclei
from deep-frozen whole blood was added to
each electrophoresis chamber. DNA migration
in positive controls had to be > 30%. To inves-
tigate the MN frequencies, we performed the
cytokinesis-block micronucleus assay on whole
blood cultures using standard procedures
according to Fenech (2000). For each

individual, we evaluated 1,000–2,200 cells for
the presence of micronuclei using the Metafer
automatic program (Metasystems). We meas-
ured 8-hydroxydeoxyguanosine (8-OH-dG) in
urine by means of ELISA using the competi-
tive immunosorbent assay (Gentaur, Brussels,
Belgium) according to the manufacturer’s
instructions. Serum protein levels of the tumor
marker p53 were analyzed using the enzyme
immunometric assay and Titerzyme EIA p53
(Assay Designs, Ann Arbor, MI, USA).
Carcino-embryonic antigen (CEA) and
prostate-specific antigen (PSA) levels were
measured using a solid-phase chemilumines-
cent immunometric assay and Immulite 2000
(DPC, Los Angeles, CA, USA). Samples were
analyzed for PSA within 24 hr after collection. 

Data analysis. Ct values [concentration of
DNA molecules (in moles) multiplied by
time] per subject and per gene were normal-
ized by subtraction of the mean Ct value of
ACTB and PPIA. Subsequently, we calculated
ΔΔCt values per subject and per gene relative
to the normalized pooled reference sample
within each quantitative PCR run using the
following formula: 

ΔΔCt = 
pooled reference [Ctgene – Ct(mean ACTB+PPIA)] 
– individual [Ctgene – Ct(mean ACTB+PPIA)].

This generated one expression value per gene
per individual study participant. All gene
expression data are reported as ΔΔCt values on
log (base = 2) scale (Livak and Schmittgen
2001) and presented as average group values.
Next to gene expression for the eight individual
genes, an integrative expression value was calcu-
lated as the mean of the eight individual genes. 

We performed statistical testing using SPSS
14.0 (SPPS Inc., Chicago, IL, USA). We used
one-way analysis of variance (ANOVA) with
post hoc Bonferroni correction to test for signif-
icance of differences in gene expression between
groups of individuals inhabiting different
regions and between groups of individuals with
different smoking status (current vs. former,
current vs. never-smoker, and former vs. never-
smoker) and other variables, as well as blood
and urinary measures of exposure and effect
biomarkers. For examination of intervariable
correlations at the level of all individuals (no
division based on region of inhabitance), we
applied Pearson correlation analysis. p-Values
< 0.05 are considered statistically significant. 

Results

Tables 3–5 describe the characteristics of the
study population according to the region of
inhabitance and of the population as a whole.
For seven individuals (1.8%), the smoking
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Table 3. Characteristics of the study population by region of residence. 

Characteristic Antwerp Harbor Fruit Olen Gent Incinerator Rural Canal Total

Subjects (no.) 50 41 35 39 72 50 76 35 398
Age (years) 58.6 ± 0.6 57.1 ± 0.7 57.0 ± 0.7 58.9 ± 0.7 58.9 ± 0.6 59.0 ± 0.6 59.3 ± 0.5 60.1 ± 0.6 59.2 ± 0.2
Sex [no. (%)]

Males 30 (60) 20 (48.8) 19 (54) 17 (44) 38 (53) 25 (50) 42 (55.3) 16 (46) 207 (52)
Females 20 (40) 21 (51.2) 16 (46) 22 (56) 34 (47) 25 (50) 34 (44.7) 19 (54) 191 (48)

Smokers [no. (%)]
Nonsmokers 19 (38) 19 (46.3) 19 (54.3) 17 (43.6) 38 (52.8) 24 (48) 43 (56.5) 17 (48.6) 196 (49.2)
Former 16 (32) 11 (26.8) 12 (34.3) 14 (35.9) 23 (31.9) 15 (30) 20 (26.3) 12 (34.3) 123 (30.9)
Current 15 (30) 6 (14.6) 4 (11.4) 7 (17.9) 11 (15.3) 11 (22) 12 (15.8) 6 (17.1) 72 (18.1)
Unknown 0 (0) 5 (12.2) 0 (0) 1 (2.6) 0 (0) 0 (0) 1 (1.3) 0 (0) 7 (1.8)

Fruit, fruit cultivation region. Values shown for age are mean ± SE.

Table 4. Blood or urine concentrations [mean (range)] of environmental pollutants by region of residence. 

Antwerp Harbor Fruit Olen Gent Incinerators Rural Canal Total

Cd (urine)a 0.73 0.83 0.72 0.86 0.61 0.82 0.61 0.78 0.72
(0.2–2.2) (0.3–2.4) (0.3–1.9) (0.3–2.1) (0.2–2.2) (0.2–6.5) (0.1–1.7) (0.3–1.7) (0.1–6.5)

Cd (blood)b 0.61 0.68 0.50 0.72 0.59 0.80 0.61 0.77 0.65
(0.1–1.7) (0.2–1.6) (0.1–1.8) (0.2–3.0) (0.1–3.4) (0.2–1.8) (0.1–2.4) (0.3–2.0) (0.1–3.4)

Pb (blood)b 44.60 38.41 39.04 43.58 45.24 46.07 51.19 37.78 44.41
(10.7–181.5) (12.7–74.1) (2.5–129.6) (21.0–96.8) (15.7–106.9) (9.3–99.6) (18.1–133.2) (12.0–106.6) (2.5–181.5)

1-OH-pyrenea 0.34 0.27 0.37 0.32 0.20 0.26 0.24 0.22 0.27
(0.02–2.3) (0.01–2.2) (0.02–2.0) (0.02–1.8) (0.01–1.2) (0.01–1.8) (0.01–1.3) (0.01–1.0) (0.01–2.3)

HCBc 71.19 63.00 62.18 82.74 63.52 74.40 73.95 74.71 70.62
(22.9–189.0) (13.7–157.3) (12.6–125.8) (30.1–177.2) (20.7–216.7) (14.6–242.7) (20.3–242.6) (27.5–188.7) (12.6–242.7)

t,t-MAa 0.16 0.12 0.16 0.14 0.14 0.12 0.13 0.09 0.13
(0.01–0.59) (0.01–0.50) (0.01–0.65) (0.01–0.63) (0.01–0.58) (0.01–0.61) (0.01–1.34) (0.01–0.36) (0.01–1.34)

PCBsd 382.4 363.2 368.9 445.8 388.9 378.7 391.6 407.1 390.4 
(183.1–875.4) (62.1–600.0) (67.4–1061.6) (126.5–919.3) (152.4–949.5) (42.3–710.7) (75.5–765.4) (211.5–1317.6) (42.3–1317.6)

p,p´-DDEc 692.7 527.2 1189.2 1444.3 600.3 813.1 905.1 1446.7 900.8 
(11.4–3014.2) (1.8–1926.2) (1.8–16967.0) (126.7–7575.8) (61.8–4458.6) (1.1–5208.4) (30.8–3846.2) (89.0–8614.9) (1.1–16967.0)

Dioxinse 28.85 17.68 41.67 16.84 20.08 20.65 25.80 19.58 23.26 
(4.2–64.9) (3.5–51.9) (7.3–69.2) (4.2–70.9) (4.2–103.4) (4.4–44.3) (3.6–114.8) (3.5–52.2) (3.5–114.8)

Abbreviations: Fruit, fruit cultivation region; HCB, hexachlorobenzene. Individuals for whom smoking status was not known or reported are not included.
amg/g creatinine. bμg/L. cng/g fat. dSum of PCBs 138, 153, and 180; expressed as ng/g fat in serum. epg TEQ/gr fat in serum. 



status was unknown; therefore, these were
excluded from the analyses. Across regions,
participant groups did not differ significantly
with respect to age, sex, and smoking status.
Statistical analysis of differences in gene expres-
sion between current, former, and never-
smokers revealed CYP1B1 expression levels to
be significantly different between current and
former smokers (p = 0.029) and between cur-
rent and never-smokers (p < 0.001). Because of
the apparent confounding effect of smoking,
we further investigated gene expression in non-
smokers (i.e., never and former smokers only),
changing the size of the total population to
319 individuals. Per region, at least 29 individ-
uals remained in the analyses; therefore, we
consider the populations still of adequate size
in terms of power. A map of Flanders with bar
charts of the average gene expressions among
habitants per region is shown in Figure 1.
Compared with the total population average,
subjects with the most distinct gene expression
profiles live in Olen (expressions well above the
population average) as well as in the fruit culti-
vation region and in Gent (both with expres-
sions well below the population average). In a
one-way ANOVA analysis with a post hoc
Bonferroni test, all genes appeared to signifi-
cantly differ in expression between inhabitants
from two or more regions (p < 0.003), except
for DGAT2 (p = 0.06). Based on the individual
gene expression as well as the mean/sum of all
gene expressions, inhabitants from Olen show
the most significant differences compared with
subjects living in the fruit cultivation region
(Fruit) and Gent (p < 0.001). We performed
Pearson correlation analyses to investigate asso-
ciations between individual gene expression
(i.e., gene expression values per study partici-
pant regardless of region of inhabitance) and
blood and urinary measures of biomarkers of
exposure, early biological effect, and tumor
markers. These analyses were carried out for
the total nonsmoking population (composed

of never and former smokers) or separately for
female and male participants. Significant
correlations between gene expression and
blood and urinary measures of biomarkers of
exposure are presented in Table 6 (all cur-
rently nonsmoking individuals, females only,
and males only). 

Discussion

The FLEHS project was initiated by the
Flemish government in 2001, with the plan
to use the forthcoming study results in envi-
ronmental risk assessment and environmental
health policy making. Flanders typically com-
prises a range of environmental burdens such
as urban areas, regions with dense traffic,
intensive agriculture, and industry. In the pre-
sent cross-sectional study, we investigated the
expression of eight key genes in peripheral
blood sampled from the adult Flanders popu-
lation by means of quantitative PCR. 

Except for DGAT2, all gene expression
levels differed significantly between current
nonsmoking (i.e., never-smoking and for-
merly smoking) inhabitants from two or more
regions. Based on individual gene expression
as well as the mean of all gene expressions, the
most deviating region is Olen, because its
inhabitants returned the most significant dif-
ferences compared with inhabitants of the
other regions, in particular Harbor, Fruit,
Gent, and Rural (Figure 1). 

Many significant correlations of gene
expression with endogenous levels of relevant
environmental carcinogens were observed
among all currently nonsmoking individuals;
Cd in blood or urine, PCBs, dioxins and
furans, hexachlorobenzene (HCB), p,p´-DDE,
t,t-MA, and 1-OH-pyrene (Table 6). The
majority of these associations have not yet
been described in literature, whereas reported
biological functions of these gene expressions
have been linked to carcinogenesis. All but
one of these correlations were positive. The

only negative correlation was found between
CYP1B1 expression levels and urinary levels of
t,t-MA. Up to now, CYP1B1 gene expression
in vivo has not been reported to be influenced
by benzene or its metabolites such as t,t-MA.
CYP1B1 gene expression is known to be
inducible by dioxin and PAH. This was not
demonstrated in this population, possibly
because of heterogeneity of the general popu-
lation for blood levels of this environmental
carcinogen. SOD2 expression correlated signif-
icantly with blood or urine measures of three
exposure markers: PCBs, p,p´-DDE, and Cd
in urine. Acknowledging SOD2 for its func-
tion in oxidant scavenging, these correlations
indicate elevated oxidative stress as a result
from these exposures. Although this associa-
tion has been reported extensively for Cd
exposure (Bertin and Averbeck 2006), it has
not for exposure to PCBs and DDT or DDE,
although these compounds are metabolized
through oxidative processes. ATF4 expression
levels showed a significant correlation with uri-
nary levels of 1-OH-pyrene, a metabolite well
known for representing PAH exposure.
Although not previously reported, this might
indicate that PAH exposure influences tran-
scription. Furthermore, ATF4 expression cor-
related with DNA strand breaks, expressed as
COMET P90. ATF4 is also known as CREB2,
a member of CREB family, which is known as
a key regulator in the control of cellular gene
expression, regulating cell cycle and growth
factor genes of which aberrant expression is
observed in certain cancers (Cheng et al.
2007). MAPK14 gene expression returned cor-
relations with most of the environmental car-
cinogens; PCBs, HCB, p,p´-DDE, and Cd in
blood as well as in urine. Upon environmental
carcinogenic exposure, reported for PCB-47,
MAPK14 functions as a mediator of COX2
gene expression (Bezdecny et al. 2007). In turn,
COX2 expression is known to be deregulated in
certain tumors. Considering the substrates of
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Table 5. Measurements [mean (range)] of early biological effect markers and tumor markers by region of residence. 

Antwerp Harbor Fruit Olen Gent Incinerator Rural Canal Total

Cells with MN (no.) 8.48 5.54 7.72 6.70 7.02 9.41 8.71 7.62 7.76
(1.8–20.0) (0.8–15.2) (0.3–14.5) (1.5–16.4) (0.9–18.3) (0.0–35.9) (1.0–22.7) (1.8–28.8) (0.0–35.9)

MN ‰a 9.41 5.99 8.45 7.23 7.75 10.57 9.14 8.84 8.63 
(1.9–21.9) (0.8–15.9) (3.0–15.4) (1.5–18.6) (0.9–20.4) (0.0–38.9) (1.0–28.2) (2.3–45.9) (0.0–45.9)

8-OH-dGb 15.37 14.93 17.21 15.15 15.76 18.87 15.02 15.79 15.95
(5.1–32.8) (5.9–23.0) (7.3–32.4) (5.7–40.3) (7.2–29.6) (3.7–57.2) (3.7–42.2) (7.9–24.5) (3.7–57.2)

COMET (P90)c 8.90 12.97 10.06 8.82 8.43 8.06 8.63 8.58 8.82
(5.4–15.5) (6.7–21.7) (6.6–13.6) (5.0–13.5) (5.4–11.5) (3.7–13.7) (5.4–12.0) (5.9–12.1) (3.7–21.7)

COMET (median)c 1.75 3.85 2.83 1.65 2.33 1.79 2.29 1.95 2.14
(0.1–5.5) (0.4–7.5) (1.2–4.3) (0.0–4.3) (0.5–7.6) (0.0–3.5) (0.4–4.5) (0.1–4.4) (0.0–7.6)

PSAd 1.48 1.47 1.12 1.27 2.06 0.95 1.20 1.32 1.40
(0.3–4.9) (0.3–3.9) (0.3–4.8) (0.2–4.1) (0.3–27.1) (0.2–4.4) (0.0–3.8) (0.4–4.0) (0.0–27.1)

CEAd 2.65 1.96 2.03 2.45 2.37 2.66 2.61 1.63 2.39
(0.4–22.2) (0.4–4.8) (0.3–5.6) (0.4–8.7) (0.5–15.5) (0.6–13.8) (0.6–14.0) (0.7–4.0) (0.3–22.2)

p53e 41.1 176.6 84.5 71.6 86.9 71.9 95.9 35.9 76.6
(0.01–748.0) (0.01–1378.0) (0.01–804.0) (0.1–1396.0) (0.01–1531.0) (0.01–1327.0) (0.01–1620.0) (0.01–507.0) (0.01–1620.0)

Fruit, fruit cultivation region. Individuals for whom smoking status was not known or reported are not included. 
aNumber of micronuclei per 1,000 binucleated cells. bμg/g creatinine. cCOMET was not measured in all study participants, but it was measured in at least 10 individuals per region;
COMET P90 and COMET median in % DNA in the comet tail. dng/mL. epg/mL. 



this MAP kinase, ATF2, MEF2C, MAX,
CDC25B, and p53, it is suggested to be associ-
ated with stress-related transcription and cell
cycle regulation, as well as genotoxic stress
response (Cuenda and Rousseau 2007).
MAPK is also known for its extensive role in
cell differentiation and proliferation, as well as
its involvement in the SOS-Ras-Raf-MAPK
cascade, which plays a central role in acquired
growth signal autonomy, considered a key
event on the route of cell normalcy to malig-
nancy, and at other levels of the carcinogenic
process (Cuenda and Rousseau 2007;
Hanahan and Weinberg 2000). PINK1 expres-
sion correlated significantly with endogenous
levels of PCBs and p,p´-DDE. PINK1 is a
PTEN-induced putative kinase. PTEN is a
tumor suppressor, functioning as an inhibitor
of the AKT/PKB signaling pathway, and is
mutated in a large number of cancers (Kim
and Mak 2006). CXCL1 is a chemokine whose
gene expression was found in the present study
to correlate significantly with blood measures
of dioxins and furans. It has been associated
with tumor growth and metastasis (Wang et al.
1998). TIGD3 expression, a gene encoding a
DNA-transposable element, correlated signifi-
cantly with the blood or urinary measures of
PCBs and with 1-OH-pyrene in urine.

TIGD3 expression also appeared to correlate
with serum levels of p53. Furthermore, a posi-
tive significant correlation was found between
dioxins/furans and DGAT2 expression, a gene
involved in triglyceride synthesis. The func-
tions of these two genes as described in litera-
ture, however, do not indicate a relationship
with environmental carcinogenesis. 

When we assessed the influence of sex on
the correlations of gene expressions and bio-
markers of exposure, early effect, or tumor
markers, we observed substantial differences
between females and males. The correlation
profile, as observed in males only, reflects the
total population profile more than that of
females only. This suggested unique correlation
profile in females includes significant associa-
tions of gene expression with mostly biomark-
ers of early effect, such as SOD2 expression
correlating with the number of cells with MN,
the number of MN per 1,000 binucleated cells,
and the serum level of CEA. CYP1B1 expres-
sion correlated with CEA levels. In addition,
DGAT2 expression correlated significantly with
blood measures of Pb and median COMET
values. Differences in kinetics, dynamics, and
biotransformation of xenobiotics between the
sexes (Beierle et al. 1999; Schwartz 2003) may
explain the differences observed in the present

study. These observations warrant more in-
depth analysis of this effect in the future. 

In general, the contributions of MAPK,
CREB, and PTEN to the cell circuitry
involved in carcinogenesis are also comprehen-
sively summarized by Hanahan and Weinberg
(2000) in their review on the essential altera-
tions in cell physiology that establish malig-
nant growth. Furthermore, observed effects on
CXCL1 may be linked with the process of
environmental carcinogenesis. These gene
expression markers appear promising in their
qualitative use because of their biologically
relevant modes of action and consequential
broadening of the insights into cancer risks
due to environmental carcinogen exposure.
We therefore suggest that the observed dose–
response relationships between these modified
gene expressions and well-known environ-
mental carcinogens as present in the Flemish
population deepen our understanding in envi-
ronmental cancer risks and clearly present the
value of gene expression analysis as a tool for
biological monitoring purposes. 

In a few previous studies, gene expres-
sion has also been monitored in peripheral
blood from human populations. Wu et al.
(2003) described gene expression profiling in
a Taiwanese population exposed to arsenic

Transcriptome analysis in human blood as a biomarker
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Figure 1. Gene expression (mean ± SE) per region, relative to the total population averages, for all nonsmokers (former and never-smokers). Fruit, fruit cultivation region. 
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Table 6. Correlation coefficients (CCs) of the correlations of any of the gene expressions with blood or urinary measures of biomarkers of exposure, markers of
early biological effect, or tumor markers, regardless of regions of residence, among current nonsmokers (never-smokers and former smokers combined) for all
individuals, female participants only, and male participants only. 

Abbreviations: HCB, hexachlorobenzene; MN ‰, number of micronuclei per 1,000 binucleated cells.
*p < 0.05. 

CYP1B1 ATF4 MAPK14 SOD2 CXCL1 DGAT2 TIGD3 PINK1

All individuals
Dioxins

CC –0.021 –0.058 –0.008 –0.006 0.136 0.119 –0.069 0.068
p-Value 0.723 0.323 0.898 0.918 0.021* 0.043* 0.242 0.248

PCBs
CC 0.021 0.053 0.127 0.145 0.076 0.089 0.143 0.125
p-Value 0.704 0.345 0.023* 0.010* 0.177 0.111 0.010* 0.026*

HCB
CC –0.017 0.083 0.116 0.079 0.046 0.046 0.045 0.086
p-Value 0.762 0.141 0.039* 0.161 0.41 0.416 0.424 0.127

p,p´-DDE
CC 0.022 0.049 0.137 0.124 –0.063 0.03 0.104 0.175
p-Value 0.701 0.38 0.014* 0.027* 0.265 0.599 0.063 0.002*

Cd (blood)
CC 0.058 –0.07 0.113 0.101 0 0.05 0.072 –0.035
p-Value 0.302 0.215 0.045* 0.072 0.996 0.371 0.201 0.534

Cd (urine)
CC 0.023 0.029 0.118 0.131 0.051 0.103 0.071 –0.085
p-Value 0.676 0.604 0.034* 0.019* 0.363 0.066 0.207 0.13

Pb
CC 0.042 0.005 0.013 –0.057 –0.045 –0.105 –0.037 0.003
p-Value 0.455 0.923 0.819 0.307 0.424 0.061 0.509 0.961

t,t-MA
CC –0.158 –0.019 –0.056 –0.021 –0.016 –0.056 0.051 –0.086
p-Value 0.007* 0.744 0.341 0.718 0.782 0.334 0.379 0.14

1-OH-pyrene
CC –0.012 0.134 –0.012 0.041 –0.004 0.003 0.147 –0.021
p-Value 0.825 0.016* 0.837 0.461 0.946 0.962 0.008* 0.706

COMET (median)
CC 0.096 0.102 0.019 0.095 0.052 0.104 0.049 0.115
p-Value 0.148 0.123 0.774 0.151 0.431 0.117 0.464 0.082

Cells with MN
CC –0.001 0.093 –0.017 –0.036 –0.017 0.071 –0.002 –0.008
p-Value 0.984 0.144 0.785 0.567 0.788 0.261 0.981 0.905

MN ‰ a
CC –0.027 0.075 –0.032 –0.037 –0.009 0.048 –0.022 –0.011
p-Value 0.669 0.235 0.616 0.558 0.891 0.452 0.731 0.859

8-OH-dG
CC 0.033 –0.008 0.071 0.055 0.013 0.086 0.011 0.031
p-Value 0.554 0.884 0.209 0.327 0.811 0.127 0.839 0.579

PSA
CC –0.115 –0.039 –0.063 –0.111 0.019 0.002 0.073 –0.008
p-Value 0.146 0.625 0.429 0.164 0.808 0.983 0.358 0.924

p53
CC –0.022 –0.044 –0.067 –0.105 –0.084 –0.125 0.02 –0.065
p-Value 0.719 0.459 0.263 0.08 0.161 0.037* 0.734 0.279

CEA
CC 0.113 –0.107 –0.015 –0.097 –0.108 0.018 –0.106 –0.018
p-Value 0.07 0.085 0.815 0.121 0.082 0.771 0.09 0.779

Females only
Dioxins

CC –0.055 –0.154 –0.086 –0.067 0.056 0.051 –0.129 –0.007
p-Value 0.510 0.066 0.307 0.426 0.508 0.542 0.124 0.931

PCBs
CC –0.065 0.008 0.028 0.050 0.013 –0.042 0.145 –0.015
p-Value 0.413 0.920 0.730 0.531 0.874 0.596 0.068 0.854

HCB
CC –0.099 0.122 0.002 –0.044 –0.079 –0.038 0.017 0.041
p-Value 0.213 0.124 0.978 0.584 0.325 0.633 0.831 0.611

p,p´-DDE
CC –0.050 0.042 0.028 0.037 –0.163 –0.092 0.099 0.074
p-Value 0.532 0.598 0.723 0.648 0.040* 0.249 0.214 0.354

Cd (blood)
CC 0.060 –0.032 0.083 0.092 –0.015 –0.030 0.077 0.084
p-Value 0.452 0.688 0.300 0.251 0.854 0.704 0.334 0.294

Cd (urine)
CC –0.062 –0.015 0.005 0.014 –0.011 –0.073 0.070 –0.098
p-Value 0.439 0.849 0.952 0.863 0.886 0.361 0.378 0.220

Pb
CC –0.045 –0.045 –0.065 –0.132 –0.099 –0.178 –0.009 –0.074
p-Value 0.575 0.572 0.415 0.098 0.216 0.025* 0.910 0.354

t,t-MA
CC –0.164 0.023 –0.055 –0.019 0.093 –0.061 0.036 –0.074
p-Value 0.045* 0.782 0.508 0.815 0.259 0.458 0.662 0.371

CYP1B1 ATF4 MAPK14 SOD2 CXCL1 DGAT2 TIGD3 PINK1

Females only
1-OH-pyrene

CC –0.033 0.147 –0.069 –0.066 0.001 –0.144 0.146 –0.041
p-Value 0.682 0.065 0.387 0.411 0.986 0.071 0.066 0.605

COMET (median)
CC 0.150 0.041 0.085 0.138 0.124 0.255 0.106 0.134
p-Value 0.106 0.662 0.358 0.136 0.182 0.005* 0.252 0.147

Cells with MN
CC 0.085 0.065 –0.143 –0.230 –0.153 –0.084 –0.118 0.009
p-Value 0.341 0.464 0.109 0.009* 0.085 0.347 0.185 0.921

MN ‰ 
CC 0.081 0.038 –0.138 –0.216 –0.147 –0.098 –0.124 0.017
p-Value 0.364 0.670 0.122 0.015* 0.098 0.271 0.165 0.851

8-OH-dG
CC –0.004 0.061 0.04 0.044 –0.017 0.022 0.109 0.054
p-Value 0.960 0.447 0.621 0.583 0.831 0.782 0.175 0.504

p53
CC –0.042 –0.106 –0.111 –0.129 –0.059 –0.153 –0.002 –0.141
p-Value 0.625 0.214 0.191 0.128 0.490 0.071 0.977 0.096

CEA
CC 0.180 –0.119 –0.059 –0.186 –0.008 0.031 –0.094 –0.097
p-Value 0.041* 0.178 0.507 0.034* 0.927 0.730 0.286 0.271

Males only
Dioxins

CC 0.012 0.029 0.067 0.054 0.227 0.181 –0.011 0.138
p-Value 0.889 0.729 0.424 0.523 0.006* 0.030* 0.895 0.098

PCBs
CC 0.089 0.092 0.228 0.258 0.150 0.213 0.146 0.233
p-Value 0.262 0.247 0.004* 0.001* 0.058 0.007* 0.065 0.003*

HCB
CC 0.156 0.081 0.225 0.124 0.135 0.062 0.058 0.245
p-Value 0.049* 0.310 0.004* 0.118 0.088 0.438 0.469 0.002*

p,p´-DDE
CC 0.109 0.061 0.236 0.193 0.028 0.117 0.105 0.287
p-Value 0.170 0.444 0.003* 0.015* 0.727 0.141 0.185 0.000*

Cd (blood)
CC 0.114 –0.091 0.133 0.067 –0.015 0.075 0.060 –0.064
p-Value 0.152 0.255 0.094 0.403 0.853 0.346 0.452 0.426

Cd (urine)
CC 0.198 0.093 0.224 0.182 0.076 0.205 0.061 0.009
p-Value 0.012* 0.240 0.004* 0.022* 0.337 0.009* 0.440 0.910

Pb
CC 0.110 0.049 0.092 0.033 0.020 –0.035 –0.061 0.051
p-Value 0.168 0.537 0.247 0.680 0.807 0.665 0.443 0.522

t,t-MA
CC –0.115 –0.041 –0.060 –0.057 –0.139 –0.082 0.058 –0.055
p-Value 0.166 0.625 0.470 0.495 0.093 0.321 0.485 0.512

1-OH-pyrene
CC 0.038 0.135 0.029 0.104 –0.026 0.089 0.144 0.029
p-Value 0.633 0.089 0.712 0.189 0.745 0.265 0.069 0.712

COMET (median)
CC 0.039 0.174 –0.055 0.044 –0.037 –0.038 –0.017 0.101
p-Value 0.684 0.068 0.566 0.645 0.702 0.692 0.860 0.293

Cells with MN
CC 0.003 0.165 0.095 0.089 0.117 0.156 0.140 0.081
p-Value 0.973 0.068 0.298 0.326 0.198 0.085 0.123 0.374

MN ‰ 
CC –0.048 0.157 0.053 0.065 0.128 0.116 0.100 0.069
p-Value 0.602 0.083 0.560 0.473 0.158 0.202 0.271 0.449

8-OH-dG
CC 0.105 –0.069 0.098 0.040 0.031 0.126 –0.092 0.048
p-Value 0.185 0.383 0.216 0.618 0.696 0.112 0.245 0.544

PSA
CC –0.115 –0.039 –0.063 –0.111 0.019 0.002 0.073 –0.008
p-Value 0.146 0.625 0.429 0.164 0.808 0.983 0.358 0.924

p53
CC –0.031 0.172 0.020 –0.097 –0.169 –0.122 –0.109 0.101
p-Value 0.846 0.281 0.900 0.545 0.290 0.448 0.497 0.530

CEA
CC 0.016 –0.106 0.039 0.028 –0.230 0.018 –0.123 0.041
p-Value 0.859 0.235 0.665 0.754 0.009* 0.838 0.166 0.643



pollution through drinking water. They
found differential expression between groups
with low-, intermediate-, and high-arsenic
exposure, in particular, inflammation-related
genes showing up-regulation with increasing
exposure. In addition, gene expression profil-
ing has been used to examine the risks of
occupational exposures to benzene and metal
fumes (Forrest et al. 2005; Wang et al. 2005).
However, these studies did not include as
many study subjects as the present study. 

Conclusions

In this large cross-sectional study, we have
demonstrated the potential of gene expression
analysis for monitoring in relation to environ-
mental carcinogenic exposures in humans. We
found that a gene expression profile differed
significantly between human populations
according to their environmental exposure.
Many correlations between gene expression
and blood or urinary measures of biomarkers
of exposure to environmental carcinogens
were observed. Furthermore, we found evi-
dence for the contribution of xenobiotic expo-
sure to environmental carcinogenesis at the
molecular level in terms of impact on the
expression of genes related to metabolism,
stress response, signaling pathways, and
tumorigenesis. We therefore conclude that
gene expression profiling appears promising
for application to the analysis of environmen-
tal health risks. This should be considered
with respect to the increased human biomoni-
toring activities as foreseen under the
European Environment Action Programme
(European Commission 2008). 
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