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Abstract
The aim of this paper is to generalize permutation methods for multiple testing adjustment of
significant partial regression coefficients in a linear regression model used for microarray data. Using
a permutation method outlined by Anderson and Legendre [1999] and the permutation P-value
adjustment from Simon et al. [2004], the significance of disease related gene expression will be
determined and adjusted after accounting for the effects of covariates, which are not restricted to be
categorical. We apply these methods to a microarray dataset containing confounders and illustrate
the comparisons between the permutation-based adjustments and the normal theory adjustments. The
application of a linear model is emphasized for data containing confounders and the permutation-
based approaches are shown to be better suited for microarray data.
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INTRODUCTION
Permutation-based multiple comparison adjustments are among the most common methods
for adjustment of significance of gene expression between classes. [Dudoit et al., 2003; Ge et
al., 2003; Korn et al., 2004; Simon et al., 2004; Westfall and Young, 1993; Yang and Speed,
2003]. A t test or a simple ANOVA is applied to each of a large number of genes and the
adjusted significance is calculated using the joint distribution of P-values where the class
designation for each subject is randomly permuted several thousand times under the global
null hypothesis. Westfall and Young [1993] suggest several variations of this approach
including bootstrap as well as permutation resampling and a generalization to linear regression
with several independent variables. Their regression extension involves resampling residuals
from the full model, and controls only family-wise error rates (FWER). Simon et al. [2004]
and Korn et al. [2004] generalized the approach to control the number and proportion of false
discoveries, a more practical goal for analysis of microarray data, but did not retain Westfall
and Young’s [1993] generalization to linear regression. We wish to fill some gaps by discussing
permutation procedures generalized both to multiple linear regression and to the control of the
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number and proportion of false discoveries using recent results by Anderson and Legendre
[1999]. In particular, we will entertain permuting residuals from reduced models as proposed
by Freedman and Lane [1983].

We are unaware of any comparable permutation approach of the P-value adjustments in the
microarray literature if we wish to generalize to a linear regression with several independent
variables. Pollard and Van der Laan [2003] contrast permutation and bootstrap resampling to
address multiple testing for gene expression data, but do not extend to the problem of testing
partial regression coefficients. Shannon et al. [2002] apply permutation analysis to microarray
to assess the significance of Mantel statistics which can be used to test partial regression
coefficients in a linear regression but do not address the multiple comparisons problem.

This paper was prompted by recent high-throughput gene expression studies of psychiatric
illness utilizing postmortem brain tissues. Expression changes between a nonmentally ill brain
and a bipolar or schizophrenic brain are relatively small, often below two-fold. These
alterations could be masked by the effects of brain pH, a parameter that has been shown to
have the greatest influence on postmortem brain gene expression patterns [Li et al., 2004;
Tomita et al., 2004; Iwamoto et al., 2005; Mexal et al., 2006]. In addition to brain pH, cigarette
smoking may also contribute a significant amount of noise to microarray studies of psychiatric
illness. A recent microarray study has shown that there are considerable differences in gene
expression between postmortem brains of smokers and non-smokers [Mexal et al., 2005].
Because approximately 80% of schizophrenia patients smoke, changes due to the effects of
smoking could easily be interpreted as alterations associated with the disease state. Therefore,
in order to accurately capture the differential expression between mentally ill and control
brains, it is imperative to account for the effects of brain pH and smoking, as well as other
possible confounding variables.

BRB array tools [Simon and Lam, 2003] is a commonly used software package in the analysis
of the large datasets generated by microarray studies. Currently, this program is capable of
analyzing differences between classes while stratifying for one additional categorical covariate
or a two-way ANOVA without an interaction term. The SAS procedure MULTEST [SAS
Institute, Inc.: Cary, NC, 2004] that also calculates P-value adjustments for several multiple
testing procedures has similar limitations. By using the proposed method in this paper, one is
able to apply the same types of tests that are included in BRB array tools but is not restricted
to a simple ANOVA to model the gene expression data.

The method is proposed as a generalization to class comparison between groups of arrays. It
allows the use of a model with several independent variables, none of which are restricted to
be categorical, and can include interaction terms. In other words, it is possible to test the effects
of a continuous factor of interest on gene expression and perform the permutation-based
multiple testing adjustments used in BRB array tools. The goal of this experiment is to identify
those genes that have significant partial regression coefficients for the variables of interest in
a multiple regression model. This includes but is not limited to the important special case of
identifying those genes that are differentially expressed between groups of interest.

With consideration of this special case, a statistical test is performed to determine the
significance of the difference between the groups and the genes are then ranked. Once this
ranking has been established the next step is to determine a cutoff point, and create a list of
genes that are differentially expressed for the factor of interest. This cutoff point can be
determined several ways. The first is to use a cutoff value in which all of the genes with P-
values below a certain threshold are included in the list. Several alternative approaches make
multiple testing adjustments to the P-values and then apply the threshold to determine the list
of genes [Yang and Speed, 2003; Simon et al., 2004]. The permutation adjustments resample
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the data without replacement to approximate the distribution of P-values for all the tests. This
distribution is then used to adjust the raw P-values. Among these, the permutation approaches
discussed by Simon et al. [2004] are particularly appealing because of their ability to control
the FWER, numbers of false discoveries, and proportions of false discoveries in which the
correlations and distributional characteristics are incorporated into the adjustments [Westfall
and Young, 1993]. This makes the approach appropriate for microarray data because of the
correlations between genes and also new test statistics for which distributions have yet to be
determined. The statistical properties for the adjustments, which control the numbers of false
discoveries and proportions of false discoveries, are explored in Korn et al. [2004].

Other well-known multiple testing adjustments applied to microarray data are the Bonferroni
correction and Benjamini and Hochberg’s [1995] false discovery rate (FDR). The Bonferroni
correction is aimed at controlling the FWER by dividing the desired α level by the number of
tests performed. This approach is the most conservative of the P-value adjustments and rarely
do any of the expression changes reach significance, because the number of tests being
performed is usually in the thousands. Instead, Benjamini and Hochberg’s [1995] method
controls the expected proportion of falsely rejected hypothesis or the FDR. This is a step-up
adjustment, which in practice usually requires the assumption of independence between the
test statistics.

Suppose we are interested in finding which genes are differentially expressed between groups
but we also want to correct for the effect of other factors. The permutation method for a simple
one-way ANOVA is straightforward, but when we generalize to a regression model with
several independent variables, how does one use permutation to adjust the significance of only
one of the regression coefficients?

METHODS
PERMUTATION METHOD OF ADJUSTMENT FOR MULTIPLE TESTING

We will generalize the permutation approach of Simon et al. [2004] and Korn et al. [2004] for
the multiple testing adjustments for P-values when looking at a large number of genes. This
approach has been used when comparing expression between two groups but to our knowledge
it has not yet been applied to a more general multiple regression model, particularly when
subsets of the regression coefficients are to be tested. Consider an ANOVA model for testing
the significance of differences in gene expression between several groups. Simon et al.
[2004] and Korn et al. [2004], randomly permute the group labels several thousand times to
obtain an approximate distribution of the P-values for the test that there is no difference in gene
expression between any of the groups. The P-values can be adjusted based on several criteria
for multiple testing. The following are the permutation-based adjustments that are often used
when doing a simple comparison of expression between two groups.

(1)

where pj is the jth P-value for the observed data and q is the P-value calculated for each
permutation. The permutation based adjustments suggested by Simon et al. [2004] and Korn
et al. [2004] may be implemented by replacing q in (1) as indicated below.

If the P-value is to be adjusted for no false positives, (1) is equivalent to Westfall and Young’s
[1993] adjustment to control the classical FWER at an α level:

q = p(1) where p(1) is the smallest P-value for each permutation.

If the P-value is to be adjusted so that no more than U false positives are included:
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adj P-valuej = 0 for the first U ranked genes

q = p(u+1), where p(u+1) is the (u+1)th smallest P-value for each permutation.

If the P-value is to be adjusted to keep the false discovery proportion (FDP) < γ with confidence
1−α, where the test is rejected for all genes for which adj P-value < α:

If | rγ | > | (r−1)γ | then P-value = 0

q = p(|rγ|+1) where r is the rank of gene j.

The notation | x | indicates the greatest integer ≤ x and p(|rγ|+1)is the (| rγ | + 1)th smallest P-
value for each permutation.

adj P-valuej = max(1st through jth ranked P-values).

Note, the expected value of the FDP is Benjamini and Hochberg’s [1995] FDR and it is the
only adjustment which requires the tests to be sorted in rank order.

Most biologists are prepared to accept that some errors will occur and are therefore less likely
to want to control the FWER [Allison et al., 2006]. The choice of the P-value adjustment and
its level of control is chosen by the investigator to best reflect their willingness to accept false
positives.

Next, we modify the permutation-based multiple testing adjustment approach of Simon et al.
[2004] and Korn et al. [2004] in a simple ANOVA by introducing a more general permutation
method advocated by Anderson and Legendre [1999] for testing the significance of partial
regression coefficients, in which we can handle multiple and continuous covariates.

FREEDMAN AND LANE METHOD FOR TESTING PARTIAL REGRESSION COEFFICIENTS
Consider a partitioned linear regression model with two sets of independent variables.

(2)

where y is a n × 1 matrix, the α and βs are fixed and unknown constants and the elements of
ε are identically distributed random variables with mean zero. We wish to test the significance
of β1(i.e., β1 = 0) while correcting for x2, in other words, given x2 there is no further relationship
between y and x1. In the microarray setting this model would be fit separately for each gene,
thereby requiring an additional subscript.

The test statistic for the significance of the partial regression vector, β1, is the partial F statistic,
which can be calculated using a reduced model which excludes the effect of main interest

(3)

(4)

where RSSfull is the regression sum of squares from the full model (2), RSSreduced is the
regression sum of squares from the reduced model (3), k is the number of regression coefficients
in the vector β1, and EMSfull is the error mean square from the full model.

Several methods have been proposed for extending permutation analysis to the problem of
testing partial regression coefficients. These methods include permutation of raw data values
[Manly, 1997], permutation of residuals under the reduced model [Freedman and Lane,
1983; Kennedy, 1995], and permutation of residuals under the full model [Ter Braak, 1992;
Westfall and Young, 1993]. Anderson and Legendre [1999] tested the properties of some of
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these different methods using simulation studies. The Freedman and Lane [1983] reduced
model had the most consistent and reliable results, including stable type I error levels, when
tested under the effects of sample size, collinearity between regression coefficients, size of the
covariable’s parameter, the distribution of the random error and the presence of an outlier.
Hence, in this paper, we shall only consider the Freedman and Lane [1983] approach of
permuting the residuals from the reduced model. In our applications, all permutations will be
made under the null hypothesis that β1 = 0 globally for all genes. Permuting the residuals from
the reduced model preserves the covariances between y and x2, x1 and x2, and among the x1
variables if there are more than one.

After performing the regression model in (2) and the test statistic for the partial regression
coefficient is obtained using equation (4), the residuals from (3) are then randomly permuted
between subjects, after which new ys are calculated using the following:

(5)

where α ̂R and β̂R2 are the least squares estimators of αR and βR2 determined for the observed
permutation of the reduced model, and  is a randomly permuted residual determined for the
observed permutation of the reduced model.

Regress the new y*s on equation (2) to obtain estimates and partial F statistics for the β*s.

(6)

The permutation P-value for β̂1 is calculated as the number of F statistics associated with ,
which are greater than or equal to the Fref (the F statistic calculated for β̂1 from the observed
permutation) divided by the number of permutations performed.

APPLICATION
The Department of Psychiatry at the University of Colorado Health Sciences Center (UCHSC)
provided expression data for 5,190 genes from oligonucleotide arrays on postmortem
hippocampal brain tissue from 34 subjects (17 subjects with schizophrenia and 17 control
subjects). Additional information was also collected for each subject including mental illness
diagnosis, smoking status, brain pH, agonal state, age, and gender. The details of the collection
and preprocessing of this data can be found in Mexal et al. [2005]. We will use this dataset to
demonstrate the proposed method’s ability to determine which genes are differentially
expressed after adjusting for a covariate and for multiple testing.

Previous studies have indicated that the effects of smoking status and brain pH on gene
expression are important confounders to consider in this type of study [Li et al., 2004; Tomita
et al., 2004; Iwamoto et al., 2005; Mexal et al., 2005, 2006]. Therefore, to accurately capture
the differential expression between the groups of interest (i.e., schizophrenics and controls), it
is imperative to account for these effects. This can be seen from the results displayed in Table
I in which a separate list of ranked genes is obtained depending on whether or not the model
determining the significance of disease status accounts for smoking status and pH. After
looking at the corresponding genes for the top 10 ranked probesets for each model, it appears
that the genes listed have different functions. The model that does not include smoking and pH
as covariates includes genes that are mostly related to the ribosomal structure. Once smoking
and pH are included in the linear model the top ranked genes are more related to nucleotide
binding. Multiple testing adjustments are not commonly used with this type of experiment due
to the fact that the highly conservative adjustments do not leave any significant results. It is of
interest to apply the less conservative permutation-based methods to this dataset to determine
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if this problem can be alleviated. Currently, the significance of the disease status using the
model that accounts for these other factors can only be adjusted using normal theory analysis
of covariance, and Simon et al.’s [2004] permutation-adjusted P-values as of yet could not be
obtained.

The expression data were analyzed using a linear model in which disease status (ds), smoking
status (sm) and pH were independent variables.

(7)

where ds and sm are vectors of indicator variables and pH is a vector of continuous values.

The main comparison of interest is the difference in gene expression between the two disease
diagnosis groups or whether β1 = 0 adjusting for smoking status and pH as covariates while
using the Freedman and Lane [1983] method outlined previously.

The reduced model is therefore:

(8)

The least squares estimates of the parameters were obtained and the residuals from the reduced
model were randomly permuted. The P-values were calculated for each of the 5,190 genes,
and were adjusted by Bonferroni and FDR [Benjamini and Hochberg, 1995], using SAS proc
MULTTEST [SAS Institute, Inc.: Cary, NC, 2004] and the three methods from Simon et al.
[2004] and Korn et al. [2004] outlined earlier, using 1,500 permutations and where U = 5 and
γ = .30. The proposed method was applied to the dataset using a program written in SAS IML
[SAS Institute, Inc.: Cary, NC, 2004]. Requests for a copy of the program can be obtained from
the corresponding author.

Using a 5% significance level there are 515 rejections using raw P-values for the model testing
genes which are differentially expressed between disease groups after accounting for the effects
of smoking status and pH of the samples. The raw P-values for the first 150 ranked genes are
displayed in Figure 1. This figure also includes both permutation-based multiple testing
adjustments and the common adjustments, Bonferroni and FDR [Benjamini and Hochberg,
1995]. The Bonferroni approach is the most conservative, whereas the permutation-based
adjustment for no false positives is less so because it capitalizes on the correlation that exists
between genes. However, this difference in conservativeness decreases with increasing rank
of the gene. The permutation approach controlling the actual number of false discoveries to be
less than five and even more so the permutation approach controlling FDP to be less than 0.3
also capitalize on the correlation between genes, and their adjustments are flexible in that the
number or proportion of false positives may vary. These methods are therefore less
conservative and hence likely more useful to medical investigators. The FDR approach of
Benjamini and Hochberg [1995] yielded adjusted P-values that were initially more
conservative than the permutation-based counterparts, but then more liberal. However, the
FDR approach controls only the expected number rather than the actual number or proportion
of false discoveries and under the naive assumption that genes express independently. Korn et
al. [2004] showed through simulation that when correlations between the genes increase, the
control of the expected rather than actual number or proportion of false discoveries can “give
a false sense of security.” That is, the FDR approach leads incorrectly to smaller P-values when
correlations are present.

This permutation method allows for the correction of continuous covariates as in the above
example and also the ability to test the significance of a continuous variable such as pH. Setting
the number or proportion of false discoveries allows the control of the actual rather than
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expected false discoveries and the adjustments can be made as stringent or accommodating as
is deemed appropriate.

DISCUSSION
We have proposed a merging of two previously published methods, the Freedman and Lane
[1983] permutation method as discussed by Anderson and Legendre [1999] for assessing
significance of partial regression coefficients and the Simon et al. [2004] permutation-based
multiple testing adjustments. The merging of these two approaches allows one to apply the
multiple testing adjustments to a more general linear regression model and to test association
with continuous variables.

This method was applied to a schizophrenia microarray dataset and used to find permutation-
based multiple testing adjusted P-values for the test of association for disease status after
accounting for smoking status and pH, which in previous studies of schizophrenia have been
determined to be nonignorable confounders. The permutation approach to P-value adjustment
is not subjected to the same assumptions as adjustment under parametric theory and is actually
better suited for microarray data, in that it is capable of reducing conservatism by capitalizing
on the correlation between genes. The Bonferroni and the FDR [Benjamini and Hochberg,
1995] corrections that ignore or assume no correlation are more conservative and falsely
generous, respectively, compared with the corresponding permutation-based adjustments.
Although the permutation P-value adjustments still did not yield significant results at the given
adjustment levels, we have successfully shown that the permutation-based adjustments are
more appropriate and have extended the adjustments to include partial coefficients in a
regression model.

The application of a linear regression model to microarray data requires caution. The factors
are considered additive and in the case of continuous covariates linearly related to gene
expression. The modeling assumptions need to be validated just as they would for univariate
data. Some standard needs to be adopted as to when these assumptions are considered met for
a substantial portion of the genes of interest, because some genes will not meet these
assumptions merely by chance. The selection of variables to be included in the model as
covariates is of consequence to the end results. Ideally, covariates are determined a priori based
on clinical relevance or findings from previous studies as was the case for smoking status and
pH. In a situation where there is no prior information available, a variable selection procedure
might be useful.

At the suggestion of a referee, age and gender were added as covariates. In addition, a random
covariate was generated by random uniform numbers between 0 and 1. The results from the
inclusion of these additional covariates are listed in the last two columns of Table I. As
expected, the addition of the random covariate did not drastically change the ranking of the
genes. Although the inclusion of age and gender did disarrange the ranks, all of the original
top 10 ranked genes remain significantly differentially expressed between disease groups. It
is interesting to note that pH and smoking status were individually significant (p<0.05) for 41.1
and 7.3%, respectively, of the 5,190 genes. Age and gender were significant only for 12.4 and
4.7% of the genes, respectively.

Due to the permutation of residuals, the interpretation is related to, but differs slightly from
the concept of randomization tests. The fundamental randomization test restricts inference to
include only those subjects in the dataset and is best based on the assumption of the physical
act of randomization [Kempthorne, 1955]. The reference set for the basic randomization test
consists of considering the permuted raw data as other possible realizations under replication
of the original experiment. Freedman and Lane’s [1983] approach permutes observed residuals
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and therefore extends the reference set to conceptual observations that were not observed. This
results in a permutation test that has an asymptotically exact significance level. The application
of this permutation method implies that each permuted dataset is equally likely under the null
hypothesis or that we are assuming the exchangeability of the residuals [Freedman and Lane,
1983]. Freedman and Lane [1983] emphasize two conditions for their permutation method: (1)
the data should not have extreme outliers and (2) x1 and x2 should not be highly collinear.

The permutation approach does not work well with extremely small sample sizes, because
enough subjects are needed in each group to be able to calculate sufficient permutations.
Without a sufficient number of permutations it is impossible to obtain permutation P-values
below a specified level, e.g. with a sample of three subjects, the total number of permutations
is 3! (factorial) or 6, and the smallest possible P-value is .14. Discussion of sample size is
always difficult, and is particularly complex with a large number of genes. If there were but
one gene, we could evoke rough rules of thumb for regression analysis such as that of Harrell
[2001], “a sample size of 10p, where p is the number of predictors, is required in order for the
regression model to be reliable”, or better yet, we could employ a formal power analysis for
our single test. Extending these concepts to situations where there are large numbers of genes,
each fitted with a regression model, is beyond the scope of this paper, but certainly a useful
area for further research. One approach might be to generalize the method proposed by Dobbin
and Simon [2005].

Several other possible test statistics [Chen et al., 2005; Yang and Speed, 2003] and analysis
methods [Tusher et al., 2001] have been developed for microarray data, and could be easily
incorporated because this approach does not rely on distributional assumptions.
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Fig. 1.
Raw and multiple testing adjusted P-values for testing the partial regression coefficient
associated with schizophrenia after correcting for the effects of smoking status and pH.
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