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Ecological communities are structured in part by evolutionary interactions among their members. A number of recent
studies incorporating phylogenetics into community ecology have upheld the paradigm that competition drives
ecological divergence among species of the same guild. However, the role of other interspecific interactions, in
particular positive interactions such as mutualism, remains poorly explored. We characterized the ecological niche and
inferred phylogenetic relationships among members of a diverse community of neotropical Müllerian mimetic
butterflies. Müllerian mimicry is one of the best studied examples of mutualism, in which unpalatable species converge
in wing pattern locally to advertize their toxicity to predators. We provide evidence that mutualistic interactions can
drive convergence along multiple ecological axes, outweighing both phylogeny and competition in shaping
community structure. Our findings imply that ecological communities are adaptively assembled to a much greater
degree than commonly suspected. In addition, our results show that phenotype and ecology are strongly linked and
support the idea that mimicry can cause ecological speciation through multiple cascading effects on species’ biology.
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Introduction

A recent review of community ecology literature has
suggested that ‘‘there is a dynamic interplay between ecology
and evolution within communities’’ [1], such that under-
standing community structure requires study of both the
evolutionary history and recent interactions between con-
stituent species [2–4]. In this context, competition is usually
seen as the major force shaping community ecology [5,6],
causing ecological displacement among interacting species in
communities or biasing community assembly towards more
ecologically divergent species [7–10]. However, recent work
has uncovered the importance of positive interspecific
interactions in influencing the composition and ecological
structure of communities [11–15], suggesting that such
interactions could outweigh competition [16], for example
by facilitating colonization by invasive species [17]. Here we
explore the hypothesis that mutualistic interactions among
species that are ecologically similar in a broad sense (i.e.,
members of the same guild) can result in convergence along
multiple fine-scale ecological variables.

Müllerian mimicry is a spectacular example of ecological
adaptation that is mutually beneficial to multiple species
[18,19]. Butterflies are perhaps the best studied Müllerian
mimetic organisms [20], where unpalatable species have
evolved brightly colored wing patterns that advertize their
toxicity to predators. Multiple co-occurring species converge
in wing pattern, forming mimicry complexes (i.e., sets of
species sharing the same wing pattern), and thus share the
cost of educating predators [21]. However, although Müller-
ian mimicry favors convergence in warning signal locally, ten
or more distinct mimicry complexes may coexist in rainforest
butterfly communities [22,23]. There is evidence that mimicry
complexes are partially segregated by microhabitat such that
co-mimics (species that belong to the same mimicry complex)

tend to occur in similar microhabitats [24–27]. Key predators
including insectivorous birds are likely segregated in a similar
way [28], which in turn should reduce selection for
convergence in wing pattern across microhabitats, facilitating
the stable coexistence of several mimicry complexes in
communities [18,29]. Mimicry should therefore promote
adaptive convergence in microhabitat niche among co-mimic
species to maximize warning signal overlap, thereby counter-
acting competition within mimicry complexes. To date,
however, the microhabitat niche of mimetic butterflies has
never been studied in a phylogenetic context, and ecological
similarity among co-mimics could be largely due to common
ancestry.
Here we investigate the evolution of microhabitat use

among a diverse community of Müllerian mimetic butterflies
and conduct the first test of adaptive ecological convergence
at the community level. By examining multiple niche axes
simultaneously for butterfly species belonging to the same
and different mimicry complexes we are able to disentangle
the interplay between mimicry, common ancestry and
competition in the evolution of microhabitat niche. Our
study group is the ithomiines (Nymphalidae: Ithomiinae), the
most diverse (;350 species [30]) and abundant Müllerian
mimetic butterflies in the neotropics, which act as mimicry
models for many other Lepidoptera species [24,31]. Ithomiine
larvae feed almost exclusively on Solanaceae plants [32], and
adult males of nearly all species actively seek sources of
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pyrrolizidine alkaloids to provide chemical protection from
predators [33] as well as sex pheromone precursors [34].
Exploitation of such a relatively narrow range of resources
among diverse taxa makes ithomiines an ideal system in
which to investigate the relative roles of competition and
mutualistic interactions in shaping community structure.

Results/Discussion

The study community in the upper Amazon contained 58
ithomiine species [35] distributed among eight mimicry
complexes (Figure 1). A complete species phylogeny for the
community was generated from 3,511 bp of mitochondrial
and nuclear DNA sequence (Figure 1, Table S1). Microhabitat
variables representing forest structure, topography (ridge
versus valley) and flight height were recorded during a 3-
month field study of the ithomiine community. Forest
structure was assessed using 16 variables designed to capture
variation in vegetation density, height and light levels, which
were subsequently summarized by three principal compo-
nents, FS1, FS2 and FS3 (Table S2).

We first investigated whether mimicry complexes were
segregated by microhabitat. The abundance of individuals in
distinct mimicry complexes was significantly segregated along
each variable (ANOVAs; FS1: F7,947 ¼ 72.277, FS2: F7,947 ¼
7.791, FS3: F7,947 ¼ 5.226, Topography: F7,597 ¼ 28.318, Flight
height: F7,1215¼ 24.891; p � 0.0001 for all variables) and in the
multidimensional microhabitat space constituted by the five
variables measured (hereafter, global microhabitat; MANO-
VA: Pillai–Bartlett statistic35,4735 ¼ 1.594, p , 0.0001). Thus,
individuals are more likely to be found alongside others that
share the same color pattern than expected by chance.
Furthermore, the same is true at a species level, such that
segregation is not solely driven by the most abundant species.
Indeed, regardless of relative abundance, species were
segregated according to mimicry complex along FS1 (AN-
OVA: F7,46¼5.519, p¼0.0013) and flight height (F7,46¼14.648,
p , 0.0001), and for the global microhabitat (MANOVA:
Pillai–Bartlett statistic35,230¼ 1.594, p , 0.0001), meaning that
co-mimic species were ecologically more similar than
expected at random. Thus, mimicry complexes were segre-

gated in multiple microhabitat dimensions in the study
community, in line with previous observations in other
communities [24–27].
We then investigated the influence of phylogeny on

microhabitat use. Both global microhabitat and distances
along each individual microhabitat variable correlated
positively with phylogenetic distances (Figure 2), but corre-
lations were significantly supported only for flight height (r¼
0.168, n¼1,431, p¼0.0032) and global microhabitat (r¼0.137,
n ¼ 1,431, p ¼ 0.0262, Figure 2). Thus, as species diverge
genetically they also diverge ecologically, as might be
expected, but the phylogenetic signal for our measures of
microhabitat use is rather weak.
Weak overall phylogenetic signal appears to result from

heterogeneity between co-mimics and non-co-mimics. When
considering only pairs of non-co-mimic species, distances
along four of the five measured variables (FS2, FS3, top-
ography, and flight height) were significantly positively
correlated with phylogenetic distances (Figure 2), resulting
in a significant phylogenetic signal in global microhabitat (r¼
0.176, n¼1,206, p , 0.0001). By contrast, among co-mimics we
failed to detect a significant positive correlation for any of
the microhabitat variables (Figure 2). Mimicry thus obscures
patterns of phylogenetic signal in microhabitat niche.
We carried out a series of tests to specifically investigate the

hypothesis that this pattern was due to greater ecological
similarity among co-mimics than expected given phyloge-
netic relationships. Testing this hypothesis requires control-
ling for phylogeny. Phylogenetic signal can either be removed
from the ecological data (regression-based methods) or
incorporated into the expected distribution of type I error
(simulation-based methods). The first category of methods
showed a significant positive correlation between mimicry
distances and ecological distances for FS1, flight height, and
global microhabitat when phylogeny was controlled for in
partial Mantel tests (Table 1), indicating that species in the
same mimicry groups tend to be ecologically more similar
than species in different mimicry groups. A follow-up
analysis, in which ecological distances were regressed onto
phylogenetic distances and the resulting residuals tested for
convergence (negative values) and divergence (positive
values) among co-mimics and non-co-mimics, respectively,
confirmed that this pattern of ecological similarity among co-
mimics and ecological dissimilarity among non-co-mimics
was stronger than expected given the phylogeny (Table 1).
Finally, simulations of evolution of the microhabitat variables
on the phylogeny under both gradual and speciational models
of character evolution also showed that co-mimics were more
similar and non-co-mimics more dissimilar than expected
assuming no selection and given the phylogeny along FS1,
flight height, and global microhabitat (Table 1). Thus, the
observation of convergent microhabitat use among co-
mimics is robust to both simulation and regression analyses,
each based on a different set of assumptions.
Increased ecological similarity among co-mimics is likely to

be due initially to mimicry evolving among spatially co-
occurring species (i.e., species with at least partial micro-
habitat niche overlap), followed by further ecological
convergence to maximize the efficiency of the warning signal.
Divergence among non-co-mimics could be a byproduct of
convergence among co-mimics, but could also be enhanced
by competitive interactions (niche partitioning). Although
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Author Summary

What governs the composition of communities of species?
Competition promotes divergence in behavior and habitat, allowing
species to co-exist. But the effects of other interactions, such as
mutualism, are less well understood. We examined the interplay
between mutualistic interactions, common ancestry and competi-
tion in mimetic butterflies, one of the best studied examples of
mutualism, in which species converge in wing pattern to advertize
their toxicity to predators. We showed that mutualism drives
convergence in flight height and forest habitat, and that these
effects outweigh common ancestry (which should lead related
species to be more similar) and competition (which promotes
ecological divergence). Our findings imply that species that benefit
from one another might evolve to form more tightly knit local
communities, suggesting that adaptation is a more important
process affecting community composition than is commonly
suspected. Our results also support the idea that mimicry can cause
speciation, through its multiple cascading effects on species’
biology.



the microhabitat variables measured here do not represent
resources per se, they are likely correlated with key limiting
resources, including adult pyrrolizidine alkaloids and food
sources, lek sites or larval host-plants [24,27].

To investigate whether interspecific competition occurred
along the variables measured and to determine the interplay
between competition and mimicry we used niche comple-
mentarity, whereby species that are similar along one niche
axis diverge along another [36], as an indicator of competi-

tion. As only co-mimics benefit from occurring together,
niche complementarity is expected to be greater among non-
co-mimics. In agreement with these predictions, significant
negative correlations between two microhabitat variables
were detected only among non-co-mimics, for FS1–FS3, FS2–
FS3 and FS1–flight-height (Table 2). Corresponding correla-
tions for co-mimics were not significantly different from zero
and correlation coefficients were positive (Table 2). This
provides evidence for competitive interactions between non-

Figure 1. Phylogeny of the Ithomiine Species of the Community

The relaxed-clock tree (maximum clade credibility tree resulting from a Bayesian phylogenetic analysis using a mitochondrial region and a nuclear gene)
shows the 60 ithomiine taxa (58 species) of the community, after pruning 20 additional taxa not present in the community. All nodes have a posterior
probability above 0.90. Brackets indicate rare species that were excluded from the analyses because not all microhabitat variables could be measured.
The eight mimetic patterns are shown on the right with their names and relative abundance in the community, and indicated by colored symbols at the
tips of the tree (see Table S1 for the list of taxa and corresponding mimetic patterns). There was a significant phylogenetic signal in the mimicry
structure of the community (r¼ 0.162, n¼ 1,431, p , 0.0001), confirming that closely related species share color patterns more often than expected at
random.
doi:10.1371/journal.pbio.0060300.g001

PLoS Biology | www.plosbiology.org December 2008 | Volume 6 | Issue 12 | e3002644

Mutualism Drives Ecological Niche Convergence



co-mimic species only, showing that mimicry counteracts the
effects of competition along the variables measured by
promoting co-occurrence. Nonetheless, although all tests
performed produced similar correlation coefficients, the
significance of niche complementarity among non-co-mimics
was not robust to the different tests. This was most probably
due to reduced power to detect effects in the simulation
analysis caused by the inherent increase in complexity and
stochasticity associated with this method (unlike the previous
tests, here two variables were simulated simultaneously). This
also suggests that niche complementarity along microhabitat
variables is a weak phenomenon relative to the convergence
observed between co-mimics.
Although previous studies have shown that competitive

interactions among species can alter community-level pat-
terns of phylogenetic niche conservatism and cause over-
dispersion [7–9,37], we provide evidence for the opposite
pattern, namely adaptive, increased ecological similarity
locally between species that benefit from co-occurrence.
Mutualistic and commensal interactions that could lead to
similar ecological convergence are widespread among plants
[38], animals [39–41], and microorganisms [11]. For example,
vertebrates commonly form mixed-species groups or flocks,
thereby enhancing protection against predators [40,42–44]
and foraging efficiency [40]. Species involved in mixed-
species groups should have similar habitat requirements [40]
and are therefore a nonrandom subset of species of the
community. Furthermore, such associations should prevent
habitat divergence and could also promote increased habitat
similarity, provided that the costs of competition are
outweighed by the benefits of coexistence. Facilitative
interactions among plants via shared pollinators, shared seed
dispersers, or shared seed predators might also promote
adaptive convergence in several ways. Plant species that are
pollinated by the same pollinator guild often show dramatic
convergence in flower morphology [45,46], in a manner
analogous to Müllerian mimicry, because coexisting species

Figure 2. Correlation Between Ecological and Phylogenetic Distances

(A) Correlation coefficients among all species (gray, n ¼ 1,431), among
co-mimics (white, n¼ 225) and among non-co-mimics (black, n¼ 1,206)
for the global microhabitat and for each ecological variable. One-tailed p-
values for positive correlation are shown for all comparisons with a
significant correlation: *, p , 0.05, **, p , 0.01, ***, p , 0.001 (tests
performed using 10,000 permutations, all significant after correction for
multiple tests).
(B) Scatterplots showing the relationship between flight-height distances
and phylogenetic distances for co-mimics and for non-co-mimics, as an
example illustrating the results above. The correlation is significant for
non-co-mimics only.
doi:10.1371/journal.pbio.0060300.g002

Table 1. Tests of Adaptive Association Between Mimicry and Ecological Variables

Type of Test Test Statistic Global

Microhabitat

FS1 FS2 FS3 Topography Flight

Height

Correlation between mimicry and ecological

distances controlling for phylogenya

r 0.137 0.129 –0.025 0.016 0.020 0.204

p 0.0012 0.0013 0.7357 0.3713 0.2777 ,0.0001

Tests of convergence among co-mimics Ecological distance 0.873 0.681 1.073 0.997 1.006 0.644

Simulationsb p (gradual evolution) 0.0300 0.0023 0.9023 0.6398 0.6351 0.0005

p (speciational evolution) 0.1236 0.0096 0.9049 0.6973 0.6837 0.0025

Sign of residualsc Residuals –0.468 –0.476 0.099 0.008 0.000 –0.454

p ,0.0001 ,0.0001 0.9315 0.5443 0.5104 ,0.0001

Tests of divergence among non-co-mimics Ecological distance 1.037 1.062 1.010 1.012 1.022 1.076

Simulations b p (gradual evolution) 0.0013 0.0555 0.9229 0.889 0.6613 0.0142

p (speciational evolution) 0.0002 0.0322 0.9196 0.8930 0.7042 0.0042

Sign of residualsc Residuals 0.0487 0.061 –0.017 –0.018 0.004 0.064

p 0.0012 ,0.0001 0.9546 0.9230 0.4014 ,0.0001

Bold p-values indicate tests that remain significant after correction for multiple independent tests.
aPartial Mantel test of correlation between ecological and mimicry distances, controlling for phylogenetic distances (r, correlation coefficient; test performed using 10,000 permutations).
bTests of ecological convergence among co-mimics and divergence among non-co-mimics based on simulations (ecological distance: average standardized ecological distance among co-
mimics and non-co-mimics, respectively; p (gradual evolution) and p (speciational evolution): one-tailed p-values with simulations based on gradual and speciational model, respectively;
10,000 simulations).
cOne-tailed tests on sign of residuals of regression of ecological distances on phylogenetic distances for co-mimics (test for negative residuals) and non-co-mimics (test for positive
residuals); tests performed using 10,000 permutations. Sample sizes are n¼1,431 for all pairs of species, n¼225 for pairs of co-mimic species and n¼1,206 for pairs of non-co-mimic species.
doi:10.1371/journal.pbio.0060300.t001
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benefit from the increased abundance of pollinators. Such
species are also likely to show habitat convergence similar to
that observed here, as well as increased synchrony of
flowering time [47,48]. This would act to maximize overlap
with pollinators, provided that the benefits outweigh the costs
of increased competition and cross-pollination. In addition,
synchrony in flowering time and seed set could also be
promoted by limitation in seed dispersers [49] or to ensure
satiation of generalist seed predators [47,49,50]. Our study
demonstrates a tight link between the evolution of a
mutualism and the evolution of microhabitat niche, which
implies a long history of ecological interactions between
members of local communities. If pervasive, such effects
would imply that local ecological communities are adaptively
assembled to a greater and more complex degree than is
commonly considered.

Determining the factors that shape local species assemb-
lages is a hot topic in modern community ecology [51,52]. In
addition to interactions among species, local assemblages
may also be determined by neutral processes, such as
dispersal limitation and drift, or by habitat filtering, whereby
only species adapted to a certain habitat can colonize, and

each of these processes can have different relative impor-
tance. This field has recently benefited from the development
of neutral theories of diversity [53–56] and the incorporation
of phylogenetic information into community ecology [4].
Both approaches facilitate the detection of non-neutral
processes [57]. However, despite positive interactions among
species being widespread [12,14,15,40,41], the majority of
theoretical and empirical studies that incorporate phyloge-
netic information have considered only habitat filtering and
competitive interactions [4,8,10,57]. One notable exception is
a recent study of Mexican woody plant communities, which
demonstrated that facilitation turns to competition with
increased phylogenetic relatedness [58]. This involved a study
of the relationship between phylogenetic relatedness and
temporal patterns of co-occurrence among species from the
same community. The approach was very different to that
taken here, in which species of similar levels of relatedness
are either mutualistic (co-mimics) or not (non-co-mimics).
More generally, community ecology theory would greatly
benefit from expanding current phylogenetic models [57] to
incorporate positive interactions alongside neutral processes,

Table 2. Tests for Niche Complementarity (One-Tailed Tests for Negative Correlations)

Correlations Among Pairs of Variables Simulations Residuals

r (raw) p (grad.) p (spec.) r (residual) p

All species FS1–FS2 0.141 0.873 0.837 0.140 0.933

FS1–FS3 –0.093 0.054 0.049 –0.094 0.172

FS2–FS3 –0.040 0.228 0.203 –0.044 0.327

FS1–topography 0.151 0.878 0.854 0.152 0.972

FS2–topography 0.010 0.447 0.430 0.010 0.624

FS3–topography 0.390 0.994 0.992 0.390 1.000

FS1–height –0.034 0.255 0.239 –0.035 0.378

FS2–height –0.014 0.343 0.323 –0.023 0.403

FS3–height 0.181 0.926 0.896 0.172 0.967

Topography–height 0.098 0.769 0.740 0.103 0.954

Co-mimics FS1–FS2 –0.096 0.080 0.066 –0.090 0.086

FS1–FS3 0.059 0.538 0.499 0.068 0.844

FS2–FS3 0.015 0.387 0.355 0.034 0.692

FS1–topography 0.150 0.774 0.736 0.159 0.985

FS2–topography 0.110 0.690 0.645 0.110 0.939

FS3–topography 0.293 0.945 0.923 0.290 1.000

FS1–height 0.028 0.434 0.395 0.052 0.779

FS2–height 0.022 0.415 0.378 0.059 0.811

FS3–height 0.221 0.884 0.858 0.275 1.000

Topography–height 0.080 0.601 0.558 0.102 0.925

Non-co-mimics FS1–FS2 0.180 0.922 0.890 0.180 1.000

FS1–FS3 –0.107 0.050 0.049 –0.108 0.0001

FS2–FS3 –0.053 0.204 0.194 –0.063 0.012

FS1–topography 0.153 0.879 0.859 0.153 1.000

FS2–topography –0.010 0.394 0.381 –0.009 0.389

FS3–topography 0.406 0.995 0.992 0.407 1.000

FS1–height –0.061 0.178 0.170 –0.061 0.013

FS2–height –0.015 0.379 0.356 –0.030 0.140

FS3–height 0.182 0.929 0.908 0.168 1.000

Topography–height 0.103 0.789 0.761 0.105 1.000

Correlation between distances along one microhabitat variable and distances along another variable, tested by two different methods, simulation of microhabitat characters on the
phylogeny (r (raw): correlation coefficient performed on raw variables; p (grad.) and p (spec.): one-tailed p-values with simulations based on gradual and speciational model, respectively;
10,000 simulations), and partial Mantel test controlling for phylogeny (r (residuals): correlation coefficient performed on the residuals of the regression of ecological distances against
phylogenetic distances; p-value obtained from 10,000 permutations). Sample sizes are n¼1,431 for all pairs of species, n¼225 for pairs of co-mimic species and n¼1,206 for pairs of non-
co-mimic species. Bold p-values indicate tests that remain significant after correction for multiple tests. Note that distances along some variables are positively correlated, but these
correlations are found among both co-mimics and non-co-mimics, and therefore represent genuine correlations that apply to the entire community. Niche complementarity occurs as
long as distances along at least one pair of variables are negatively correlated (regardless of other correlations), which is the case for non-co-mimics only.
doi:10.1371/journal.pbio.0060300.t002

PLoS Biology | www.plosbiology.org December 2008 | Volume 6 | Issue 12 | e3002646

Mutualism Drives Ecological Niche Convergence



habitat filtering, and competition in order to derive testable
predictions and disentangle these processes.

Finally, our findings further support the idea of mimicry as
a driver of speciation through ecological adaptation [59]. The
implications of mimicry evolution extend far beyond the
evolution of warning signals, with links to microhabitat use,
including flight height and forest structure [24–26], but also
to mate choice [60], flight physiology [61], and larval host-
plant use [24,27]. Here we show that the links between
mimicry and microhabitat use are a clear result of adaptation.
Our results therefore support the hypothesis that shifts in
mimicry trigger shifts in microhabitat and vice versa.
Divergence in both factors contributes to prezygotic repro-
ductive isolation and ultimately speciation through assorta-
tive mating [60,62], while shifts in mimicry additionally cause
postzygotic isolation through selection against hybrids with
intermediate, non-mimetic wing patterns [63,64]. Hence
multiple coevolved factors may act together to generate
reproductive isolation.

Materials and Methods

Ecological data. The field site for this study covered an area of ;15
km2 on the south bank of the Napo River, Ecuador (;08329S,
768249W) [35]. Field work was conducted between October and
December 2005. Sixteen variables representing forest structure
(Table S2) were measured in 18 circular plots (diameter: 30 m)
established in different areas of the study site. A principal component
analysis was then performed on these variables to extract meaningful
information on forest structure (Table S2). The first three principal
components (FS1: dense understorey, abundance of vines, 25.1%;
FS2: abundance of palms, absence of trees, 18.1%; and FS3: open
canopy, palms variable, 14.5%) were retained. Eight of these plots
comprised paired adjacent ridge and valley plots to measure
topographic influence. Ithomiines were surveyed in each study plot,
captured with a hand net, identified, and either marked and released
or kept for genetic analyses. Height at initial observation was
recorded [65], and the individual was attributed measures of forest
structure and topography (0: valley, 1: ridge) for the plot of capture. A
total of 1,231 individual butterflies were surveyed and included in the
analyses. Averages were calculated for each variable for each species,
and distance matrices for each variable computed. Global micro-
habitat distances were calculated as the Euclidean distances between
species in the 5-dimensional ecological space defined by the five
centered and scaled microhabitat variables measured. Each species
was classified among eight mimicry complexes [27,59] to generate a
mimicry distance matrix (0: co-mimics, 1: non-co-mimics).

Phylogenetic analyses. We generated a phylogeny of the 58
ithomiine species (24 genera) of the community using Bayesian
Inference under the uncorrelated lognormal relaxed clock model
implemented in BEAST [66], using a 2,296 bp mitochondrial region
spanning the CoI, tRNA leu and CoII genes, as well as a 1,215 bp
fragment of Elongation Factor 1a, a nuclear gene (Table S1) [35]. Each
region followed a GTRþC model of substitution, and two MCMC
chains were run for 200 million generations (sampling every 1,000
generation, 10% burn-in). Two species had two subspecies each with
different color patterns in the community, which were considered as
separate taxa in both cases (Figure 1). To increase the accuracy of the
tree topology we added published sequences of genera that were not
represented in the community [67,68], but these additional taxa were
pruned from the tree prior to the analyses presented below. Six rare
ithomiine species were also excluded from the analyses because of
missing ecological data (Figure 1).

Statistical analyses. All analyses on the phylogeny were performed
on the maximum clade credibility tree with average branch lengths,
computed by TreeAnnotator [66] from the 360,000 trees retained. To
account for phylogenetic uncertainty we collapsed all nodes that had
a posterior probability less than 0.90. Analyses were conducted on all
54 taxa for which sufficient ecological data was recorded. All
statistical analyses were performed with R [69], using packages APE
2.1–3 [70], Geiger 1.2–06 [71], Vegan 1.11–0 [72], and Cluster 1.11.10
[73].

To investigate ecological segregation of mimicry complexes we
performed a MANOVA on all variables and an ANOVA for each

individual variable. These analyses were performed on the entire data
set to test whether mimicry complexes are ecologically segregated
(regardless of species identity), and on species’ averages to test
whether co-mimetic species are more similar than species picked at
random (regardless of species abundance). The significance of
ANOVA/MANOVA test statistics was assessed by permuting the
observed ecological data (10,000 permutations).

Correlations between phylogenetic and ecological distances among
all species, among co-mimics and among non-co-mimics were
computed and their significance was tested by permuting the
observed ecological data among species (10,000 permutations, one-
tailed test for positive correlation). We performed a partial Mantel
test for the correlation between ecological and mimicry distances
while controlling for phylogeny. We did this by first regressing
ecological and mimicry distances against phylogenetic distances and
then assessing the significance of correlations between residual
ecological and mimicry distances by permutation of the residual
distances among species pairs (logistic regression for mimicry
distances; 10,000 permutations, one-tailed test).

Tests for ecological convergence and divergence for each micro-
habitat variable and for the global microhabitat were performed in
two additional ways: (1) simulated character evolution, which
incorporates phylogeny into the expected distribution of type I
error, and (2) regression-based methods, which remove the phyloge-
netic component of variation in ecological characters. In the first
way, we calculated the average ecological distance among co-mimics
standardized by the total tree ecological distance (tests for ecological
convergence among co-mimics), or the average distance among all
non-co-mimics standardized by the total tree ecological distance
(tests for ecological divergence between mimicry complexes).
Character evolution was then simulated on the phylogeny assuming
gradual and speciational character evolution (10,000 simulations),
and the actual value of the parameters of interest compared with the
distribution of the same parameter generated by the simulations to
obtain p-values. As we wanted to test whether scaled ecological
distances were smaller than expected among co-mimics and greater
than expected among non-co-mimics, one-tailed tests were used in
each case. In the second way, ecological distances were regressed
against phylogenetic distances using all species. We then permuted
these residual ecological distances among species pairs to determine
whether the observed residuals were more negative or positive then
expected by chance for co-mimics and non-co-mimics, respectively
(10,000 permutations).

Niche complementarity was investigated by calculating the
correlation coefficient of distances along one ecological variable
with distances along another variable, for all pairs of variables. The
significance of correlation coefficients was tested in two ways. First, as
above, the actual value was compared with the distribution of the
same parameter generated from 10,000 replicate simulations of
character evolution under both gradual and speciational models.
Second, a partial Mantel test was carried out for each pair of
ecological variables, in which distances along each of the two
variables were regressed against phylogenetic distances. We assessed
the significance of correlations between residuals for each pair of
ecological variables by permutation of the residual distances among
species pairs. The tests were one-tailed (negative correlations) and the
significance of each test was based on 10,000 permutations.

We controlled for multiple tests using the false discovery rate
procedure [74], a powerful alternative to the Bonferroni correction
that seeks to minimize both type I and type II errors, with the allowed
proportion of false positives set at 0.05. Unless stated otherwise, all
tests presented in the text, tables and figures are significant after this
correction.

Supporting Information
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