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Human solute carrier SLC6A14 is the β-alanine carrier
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The β-alanine carrier was characterized functionally in the 1960s to 1980s at the luminal
surface of the ileal mucosal wall and is a Na+- and Cl−-dependent transporter of a number
of essential and non-essential cationic and dipolar amino acids including lysine, arginine
and leucine. β-Alanine carrier-like function has not been demonstrated by any solute carrier
transport system identified at the molecular level. A series of experiments were designed to
determine whether solute carrier SLC6A14 is the molecular correlate of the intestinal β-alanine
carrier, perhaps the last of the classical intestinal amino acid transport systems to be identified
at the molecular level. Following expression of the human SLC6A14 transporter in Xenopus
laevis oocytes, the key functional characteristics of the β-alanine carrier, identified previously
in situ in ileum, were demonstrated for the first time. The transport system is both Na+ and
Cl− dependent, can transport non-α-amino acids such as β-alanine with low affinity, and has a
higher affinity for dipolar and cationic amino acids such as leucine and lysine. N -methylation
of its substrates reduces the affinity for transport. These observations confirm the hypothesis
that the SLC6A14 gene encodes the transport protein known as the β-alanine carrier which, due
to its broad substrate specificity, is likely to play an important role in absorption of essential
nutrients and drugs in the distal regions of the human gastrointestinal tract.
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Amino acids are required for many fundamental biological
functions such as protein synthesis, neurotransmission,
nitrogen metabolism, and cell growth. In humans and
mammals the requirements for most amino acids are
met by assimilation from diet. Transepithelial amino acid
absorption across the intestinal wall is mediated by a
number of amino acid transporters arranged in series
and parallel at the luminal and serosal membranes of the
intestinal epithelium (Ganapathy et al. 2006). Although
amino acid transporters vary in substrate selectivity,
ion dependency and substrate affinity, the attribution of
function to any particular transport system in intact tissues
is often hampered by overlapping substrate specificity.
One such amino acid transport system was described
at the mucosal surface of rabbit ileum and named the
β-alanine carrier (Munck & Schultz, 1969; Paterson et al.
1981; Munck, 1985; Anderson & Munck, 1987). This
carrier system transports a range of both essential and
non-essential amino acids and accepts non-α-amino acids
such as β-alanine but has a higher affinity for dipolar (e.g.
leucine) and cationic (e.g. lysine) amino acids; is Na+ and
Cl− dependent; is only moderately stereospecific; and has

a much lower affinity for the N-methylated derivatives of
its dipolar amino acid substrates (Munck, 1985; Munck
& Munck, 1990, 1992a,b, 1995). The β-alanine carrier is
unusual in that, under normal circumstances, its small
intestinal expression is limited to the ileum (Munck &
Munck, 1992a,b).

The cloning of transporter related genes over recent
years has allowed molecular identification of most of
the ‘classical’ amino acid transport systems characterized
functionally in specific cells and tissues during the 1960s
to 1980s. The purpose of this investigation was to establish
the molecular identity of the β-alanine carrier. The
solute carrier SLC6A14 has been cloned from human
mammary gland, mouse colon and rat lung (Sloan &
Mager, 1999; Hatanaka et al. 2001; Nakanishi et al. 2001;
Ugawa et al. 2001; Umapathy et al. 2004). SLC6A14 is
the 14th member of solute carrier family 6, a family of
Na+- and Cl−-dependent solute transport systems many
of which are involved in transmembrane movement of
neurotransmitters (Chen et al. 2004). SLC6A14 (also
named ATB0,+) functions as a dipolar and cationic
amino acid transporter with characteristics similar to
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system B0,+ (identified originally in mouse blastocysts;
Van Winkle et al. 1985). Thus far, β-alanine carrier-like
function has not been demonstrated by any solute carrier
transport system identified at the molecular level. In this
investigation, a series of experiments were designed to
determine whether SLC6A14 is the molecular correlate of
the intestinal β-alanine carrier, perhaps the last of the
classical intestinal amino acid transport systems to be
identified at the molecular level.

Methods

Materials

[3H]β-Alanine (50 Ci mmol−1) was from American
Radiolabelled Chemicals. [3H]Lysine (99 Ci mmol−1),
[3H]leucine (115 Ci mmol−1) and [14C]MeAIB
(α-(methylamino)isobutyric acid) (51 mCi mmol−1)
were from PerkinElmer.

Functional expression in Xenopus laevis oocytes

Human SLC6A14 cRNA was produced by in vitro
transcription (using mMessage mMachine T7 Ultra kit
(Ambion)) of pSPORT1 plasmid containing the SLC6A14
sequence isolated originally from MCF-7 cells (Nakanishi
et al. 2001). Female Xenopus laevis were killed humanely
by cervical dislocation following Schedule 1 procedures.
Oocytes were prepared and injected with 50 nl cRNA
(1 mg ml−1) or water, as previously described (Kennedy
et al. 2002, 2005), and incubated at 18◦C in Barth’s solution
until required.

Figure 1. Amino acid uptake in SLC6A14-injected and
water-injected oocytes
Uptake of various radiolabelled amino acids (2–5 μCi ml−1; all 2 μM

except [14C]MeAIB which was 20 μM) was measured over 40 min in a
NaCl-containing pH 7.4 solution into oocytes injected with either
SLC6A14 cRNA or water (n = 18–20). NS, P > 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001 all versus water-injected oocytes.

Uptake of radiolabelled amino acids

Uptake of radiolabelled amino acids (2–5 μCi ml−1) was
measured in oocytes 2–5 days after injection, as previously
described (Kennedy et al. 2002). Oocytes were washed in
a NaCl-containing pH 7.4 solution (100 mM NaCl, 2 mM

KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM Hepes adjusted
to pH 7.4 with Tris base) and uptake measured at 22◦C
for 40 min. Uptake measurements were performed in
this NaCl-containing pH 7.4 solution or using a solution
adjusted as follows: for the Na+-free solution, NaCl was
replaced with choline chloride; for the Cl−-free solution,
NaCl, KCl, CaCl2 and MgCl2 were replaced with sodium
gluconate, potassium gluconate, calcium gluconate and
MgSO4, respectively; for the pH 5.5 solution, Hepes was
replaced by Mes. After uptake, oocytes were washed three
times in ice-cold buffer and lysed in 10% SDS. Radio-
activity was measured by scintillation counting.

Two-electrode voltage clamp

Oocytes (2–8 days post-injection) were superfused in
an open chamber with a NaCl-containing pH 7.4
solution (see above). Oocytes were clamped at −60 mV
and exposed to various concentrations of β-alanine
(0.2–20 mM, 2min) or different amino acids (all at
20 mM, 2min) to allow amino acid-induced currents to
be measured using a Geneclamp 500 amplifier, Digidata
1200 (Axon Instruments) and Clampex software (Kennedy
et al. 2005). Currents were analysed using Clampfit 8.2. To
determine the current evoked by a 2 min exposure to an
amino acid, the current measured over the last 15 s of
the 2 min exposure was averaged. The baseline current
(taken as the average current over the 15 s before exposure
to the amino acid) was then subtracted to determine
SLC6A14-specific current.

Statistics

Data are means ± S.E.M. Statistical comparisons were made
using ANOVA and Tukey’s post hoc test using GraphPad
Prism 4 (GraphPad Software Inc., San Diego, CA, USA).
Curves were fitted with GraphPad Prism 4.

Results

At a tracer concentration of 2 μM there was a
9.5-fold increase in [3H]β-alanine uptake in SLC6A14
cRNA-injected oocytes compared to water-injected
oocytes (P < 0.01) (Fig. 1). Similarly, other amino acids
identified as substrates for the β-alanine carrier in rabbit
ileum (Munck, 1985; Munck & Munck, 1992b) also
showed significant uptake into SLC6A14-injected oocytes
with 5.7-fold and 4.1-fold increases in uptake, compared
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Figure 2. Na+- and Cl−-dependent β-alanine uptake by SLC6A14
[3H]β-Alanine uptake (2 μM) was measured under control conditions
(NaCl-containing solution, pH 7.4), in Na+-free pH 7.4 (–Na+)
solution, in Cl−-free pH 7.4 (–Cl−) solution, or in a NaCl pH 5.5
solution. Under each condition, uptake in water-injected oocytes was
subtracted from that in cRNA-injected oocytes to give
SLC6A14-specific uptake (n = 20). ∗∗∗P < 0.001 versus control.

to water-injected oocytes, being observed for the dipolar
amino acid [3H]leucine and the cationic amino acid
[3H]lysine (both P < 0.001 versus water) (Fig. 1). The
greater uptake of [3H]leucine and [3H]lysine compared to
[3H]β-alanine at tracer concentrations (Fig. 1) reflects the
earlier observation in rabbit ileum that leucine and lysine
are higher affinity substrates for the β-alanine carrier
(Munck, 1985). There was no significant uptake (P > 0.05
versus water) of [14C]MeAIB into SLC6A14-injected
oocytes (Fig. 1). MeAIB interacts very poorly with
the β-alanine carrier in rabbit ileum (Munck, 1985).
SLC6A14-mediated [3H]β-alanine uptake was abolished
in the absence of either extracellular Na+ or Cl− (Fig. 2)

Figure 3. Concentration-dependent β-alanine-induced current
in SLC6A14-expressing oocytes
β-Alanine-induced current in two-electrode voltage-clamped oocytes
was measured at −60 mV following exposure to β-alanine
(0.2–20 mM, 2 min) in a NaCl pH 7.4 solution. Data are expressed as
percentage current produced by 20 mM β-alanine (n = 4).

demonstrating that [3H]β-alanine uptake via SLC6A14 is
a Na+- and Cl−-dependent process as observed with the
β-alanine carrier in rabbit ileum (Munck & Munck, 1990,
1992a). Na+- and Cl−-dependent [3H]β-alanine uptake
is reduced as extracellular pH becomes acidic (pH 5.5)
(Fig. 2).

SLC6A14-mediated β-alanine/Na+/Cl− cotransport is a
rheogenic process which generates inward current under
two-electrode voltage-clamp conditions (Figs 3 and 4)
consistent with a stoichiometry of 2–3 Na+ : 1 Cl− : 1
amino acid, as suggested previously with other substrates
for SLC6A14 (Sloan & Mager, 1999). The relative low
affinity of SLC6A14 for β-alanine (K m = 2.1 ± 0.9 mM,
Fig. 3), compared to leucine and lysine, is consistent with

Figure 4. Amino acid induced inward current in
SLC6A14-expressing oocytes
A, example traces of amino acid-induced currents in
SLC6A14-expressing and water-injected oocytes following exposure
(2 min) to saturating concentrations (20 mM) of different amino acids
in NaCl pH 7.4 solution. B, mean results for experiments described in
A using SLC6A14-expressing oocytes where data are expressed as the
percentage current induced by 20 mM leucine (n = 7).
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earlier observations of the β-alanine carrier in rabbit
ileum (K m = 2 mM) (Munck, 1985; Munck & Munck,
1992a). At saturating substrate concentrations (20 mM),
β-alanine transport via SLC6A14 is associated with a
large inward current of similar magnitude (P > 0.05) to
that observed with the other dipolar substrate leucine
(Fig. 4). The cationic amino acid lysine was associated
with a larger current (P < 0.01, lysine versus β-alanine)
which raises the possibility that a component of the
current is carried by the positively charged amino acid
(Fig. 4). MeAIB, which is excluded from the β-alanine
carrier, failed to induce significant current (P > 0.05) in
the SLC6A14-injected oocytes (Fig. 4). None of the three
β-alanine carrier substrates induced inward current in
water-injected oocytes (Fig. 4A). The higher affinity of
SLC6A14 for lysine and leucine compared to β-alanine
is confirmed by the greater inhibition of [3H]β-alanine
uptake observed (Fig. 5) when all competing cold
substrates were present at a concentration (2 mM) around
the K m for β-alanine (leucine and lysine both P < 0.001
versus cold β-alanine; β-alanine P < 0.001 versus
control).

A key functional characteristic of the β-alanine carrier
in rabbit ileum (Munck, 1985) is the reduction in
affinity of the carrier for dipolar substrates following
N-methylation. As measured in rabbit ileum (Munck,
1985), the effects of N-methylation on the ability of
leucine, glycine, alanine and aminoisobutyric acid (AIB)
to inhibit [3H]β-alanine transport via the β-alanine
carrier were determined here in SLC6A14-injected oocytes
(Fig. 6). An identical pattern of results was obtained
in SLC6A14-injected oocytes (Fig. 6) to those measured

Figure 5. Inhibition of SLC6A14-mediated β-alanine uptake by
unlabelled amino acids
Inhibition of [3H]β-alanine (100 μM) transport into
SLC6A14-expressing oocytes by various amino acids (all 2 mM) in NaCl
pH 7.4 solution (n = 18–21). NS, P > 0.05; ∗∗∗P < 0.001; all versus
SLC6A14 control.

earlier for the β-alanine carrier in rabbit ileum (Munck,
1985). The ability of each amino acid to inhibit
[3H]β-alanine transport was reduced by N-methylation.
For example, greater inhibition of [3H]β-alanine
uptake into SLC6A14-injected oocytes was observed
at 10 mM for leucine (Leu) versus N-methyl-leucine
(N-Me-Leu) (P < 0.001) (Fig. 6A), glycine (Gly) versus
N-methyl-glycine or sarcosine (Sar) (P < 0.001) (Fig. 6B),
alanine (Ala) versus N-methyl-alanine (N-Me-Ala)
(P < 0.001) (Fig. 6C), and AIB versus MeAIB (P < 0.001)
(Fig. 6D).

Discussion

The key functional characteristics of the β-alanine carrier,
as previously described only in situ in rabbit ileum
(Munck, 1985), are demonstrated following expression
of the SLC6A14 transporter in Xenopus laevis oocytes
(Figs 1–6). The transport system is both Na+ and Cl−

dependent, can transport non-α-amino acids such as
β-alanine with low affinity, and has a higher affinity
for dipolar and cationic amino acids such as leucine
and lysine (Figs 1–5). N-methylation of the substrates
leucine, glycine, alanine and AIB reduces the affinity
for transport (Fig. 6). In addition, the characteristic of
weak stereoselectivity has been demonstrated previously
with the identification of D-serine transport via SLC6A14
(Hatanaka et al. 2002). These observations confirm
the hypothesis that the SLC6A14 gene encodes the
transport protein known as the β-alanine carrier (Munck,
1985; Anderson & Munck, 1987). The β-alanine carrier
is considered to be the Na+-dependent transporter of
leucine, lysine and alanine observed originally in rabbit
ileum by Munck & Schultz (1969) and Paterson et al.
(1981). Importantly, these observations also indicate that
the studies of the β-alanine carrier in the 1960s to 1980s
can now be considered to represent in situ measurements
of SLC6A14 function in the intestine.

The tissue distribution of the β-alanine carrier is
unusual as the only intestinal location where function
has been described is at the luminal surface of the ileum
(Munck, 1985; Anderson & Munck, 1987; Munck &
Munck, 1990, 1992a,b, 1995). This predominantly distal
intestinal expression pattern is supported by observations
using mouse gastrointestinal tract that demonstrate
greater expression of SLC6A14 mRNA in the ileum and
colon compared to duodenum and jejunum (Hatanaka
et al. 2001, 2002; Ugawa et al. 2001; Sloan et al. 2003). In
the rabbit, the physiological role of the β-alanine carrier
seems certain to lie in nutrient absorption from the diet
as the ileum is the site of maximal amino acid absorption
in rabbit small intestine (Munck & Munck, 1992b). The
physiological role in the human intestine is not known
but the broad substrate specificity of SLC6A14 means that
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this distal intestinal site of absorption could be important
in both nutrient and drug absorption. β-Alanine is a
non-proteinogenic amino acid and is a component of
the dipeptide carnosine (β-alanine–L-histidine), found at
high concentrations in both vertebrate and non-vertebrate
skeletal muscle. In humans, dietary supplementation with
β-alanine (at concentrations relevant to diet) leads to an
increase in skeletal muscle carnosine (Harris et al. 2006)
which is associated with an improvement in performance
during exercise, proposed to be due to the enhanced pH
buffering effect of carnosine (Harris et al. 2006; Stout
et al. 2007; Zoeller et al. 2007). In addition to cationic
and dipolar amino acids, SLC6A14 transports carnitine, a
range of nitric oxide synthase inhibitors, and the antiviral
prodrugs valacyclovir and valganciclovir (Hatanaka
et al. 2001, 2004; Nakanishi et al. 2001; Umapathy
et al. 2004). Thus, SLC6A14 has great potential as a
target for drug delivery programmes using slow release
formulations or rectal suppositories. In addition, the
colonic expression may have relevance for the absorption
of bacterially derived D-amino acids as D-serine is

Figure 6. The effects of substrate N-methylation on β-alanine carrier-like transport by SLC6A14
SLC6A14-mediated [3H]β-alanine (100 μM) uptake (measured in NaCl pH 7.4 solution) in the presence of various
amino acids (filled squares) and their N-methylated analogues (open squares) at 0.1, 1 and 10 mM. Amino acids
are: A, leucine and N-methyl-leucine (N-Me-Leu); B, glycine and sarcosine (Sar; N-methyl-glycine); C, alanine and
N-methyl-alanine (N-Me-Ala); D, AIB (aminoisobutyric acid) and MeAIB (α-(methylamino)isobutyric acid). Data are
expressed as percentage of control (absence of competing amino acids) after subtraction of uptake in water-injected
oocytes under each condition (n = 18–20).

transported by SLC6A14 (Hatanaka et al. 2002). Inter-
estingly, the distribution pattern of SLC6A14 parallels
the regions of the gastrointestinal tract that are generally
colonized by bacteria. The hypothesis that SLC6A14
expression might be up-regulated following bacterial
colonization is consistent with the recent demonstration
of selective up-regulation of SLC6A14 mRNA and
protein expression in acute cholera patients compared
to convalescence such that SLC6A14 protein has been
immunolocalized to the luminal surface of the human
duodenum during acute infection (Flach et al. 2007). After
induction, e.g. following infection with cholera, SLC6A14
could provide a highly concentrating mechanism (due to
its Na+ and Cl− dependence) for absorption of essential
amino acids such as lysine and leucine that could otherwise
be lost during excess intestinal fluid and electrolyte
secretion. The SLC6A14 gene seems highly regulated being
associated with obesity (Suviolahti et al. 2003; Durand
et al. 2004), and being up-regulated in colorectal cancer
(Gupta et al. 2005), cervical cancer (Gupta et al. 2006),
and ulcerative colitis (Flach et al. 2006).
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In summary, this study describes the first demonstration
of β-alanine carrier-like function by any cloned
transporter. The functional characteristics described here,
which are identical to those determined by measurement
of amino acid uptake across the luminal surface of flat
sheets of rabbit ileal mucosa (Munck, 1985; Munck &
Munck, 1990, 1992a,b, 1994, 1995), can account for
all β-alanine carrier-like function and emphasize the
added value of in situ measurements of physiological
function over theoretical predictions of transport protein
function based solely upon measurements of mRNA
distribution.

SLC6A14 was isolated originally from human
mammary gland (Sloan & Mager, 1999) and named
ATB0,+ due to its similarity in function to the amino
acid transport system B0,+, described in mouse blastocysts
(Van Winkle et al. 1985). The observations reported in this
study demonstrate that SLC6A14 is the β-alanine carrier
and that the blastocyst ATB0,+ and intestinal β-alanine
carrier are one and the same transport system (Munck
& Munck, 1995). The term β-alanine carrier is somewhat
inappropriate as a means of identification of this intestinal
transport system as it has a low affinity for β-alanine,
and the intestinal tract contains another transport
system for β-alanine namely the H+-coupled amino acid
transporter SLC36A1 which is also known variously as
system PAT, PAT1 or the imino acid carrier (Thwaites et al.
1993; Chen et al. 2003; Anderson et al. 2004; Thwaites &
Anderson, 2007). To reduce confusion in the literature,
the term β-alanine carrier should be avoided and the
names SLC6A14 and ATB◦,+ adopted to be consistent
with descriptions in other tissues (Van Winkle et al. 1985;
Munck & Munck, 1994, 1995; Sloan & Mager, 1999; Sloan
et al. 2003).
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