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PPARγ is a ligand-dependent master transcription factor controlling adipocyte differentiation as well as multiple biological
processes taking place in other cells present in adipose tissue depots such as macrophages. Recent research indicates that HIV-1
infection-related events may alter adipose tissue biology through several mechanisms involving PPARγ, ranging from direct effects
of HIV-1-encoded proteins on adipocytes to the promotion of a proinflammatory environment that interferes with PPARγ actions.
This effect of HIV-1 on adipose tissue cells can occur even in the absence of direct infection of adipocytes, as soluble HIV-1-encoded
proteins such as Vpr may enter cells and inhibit PPARγ action. Moreover, repression of PPARγ actions may relieve inhibitory
pathways of HIV-1 gene transcription, thus enhancing HIV-1 effects in infected cells. HIV-1 infection-mediated interference of
PPARγ-dependent pathways in adipocytes and other cells inside adipose depots such as macrophages is likely to create an altered
local environment that, after antiretroviral treatment, leads to lipodystrophy in HIV-1-infected and HAART-treated patients.

Copyright © 2009 Marta Giralt et al. This is an open access article distributed under the Creative Commons Attribution License,
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1. Introduction

A complex set of metabolic alterations, preferentially involv-
ing adipose tissue, has emerged in recent years in a substan-
tial number of HIV-1-infected patients under highly-active
antiretroviral treatment (HAART). This is the so-called HIV-
1/HAART-associated lipodystrophy syndrome. Disturbances
in adipose tissue of these patients range from lipoatrophy
of subcutaneous adipose tissue to visceral adipose accumu-
lation or lipomatosis [1]. Moreover, during recent years,
basic research on adipose tissue biology has succeeded in
identifying major molecular players in the differentiation
and function of adipose tissue. Among them, the peroxisome
proliferator-activated receptor γ (PPARγ)subtype of PPARs
has emerged as a master transcriptional regulator of adipose
cells [2]. Although we are still far from a full understanding
of the molecular basis of HIV-1 lipodystrophy, research has
been actively undertaken in this area and has examined
the role of alterations in PPARγ-dependent pathways in
eliciting the syndrome [3, 4]. Regardless of the potential
effects of antiretroviral drugs on PPARγ, several recent

findings suggest that HIV-1 infection-related events may
cause disturbances in the PPARγ-dependent pathways of
control of adipose tissue physiopathology, and they are
summarized in the present review.

2. Adipose Tissue, HIV-1 Infection, and
Lipodystrophy

The concepts concerning the causal basis of HIV-1 associated
lipodystrophy have evolved substantially in the last few
years. The initial identification of HIV-1 lipodystrophy was
coincident with the introduction of drugs from the protease
inhibitor family for use in antiretroviral treatment, and these
drugs were at first considered to be causative of the syndrome
[5]. After it was recognized that patients without protease
inhibitor treatment could also develop lipodystrophy, the
syndrome was associated with HAART overall. Although
several drugs of HAART regimes are known at present to be
more prone to induce the appearance of lipodystrophy or of
some of their particular features (abdominal fat hypertrophy
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versus peripheral lipoatrophy) than others [6], no single
class of drugs can account for elicitation of the overall
syndrome. On the other hand, there have been suggestions
that antiretroviral treatment causes lipodystrophy only when
acting upon HIV-1-infected patients, and that events related
to HIV-1 infection are intrinsically associated with the
development of the syndrome. Evidently, there are no
data on long-term antiretroviral treatment of non-HIV-1-
infected patients that could establish the specific role of
HAART independent of the HIV-1 infection, and a single
two-week study of nucleotide-analog reverse transcriptase
inhibitor treatment of non-infected volunteers indicated
the appearance of only a few features of the lipodystrophy
syndrome [7].

Some data have indicated that mild alterations of adipose
tissue biology are already present in nontreated HIV-1-
infected patients [8]. The studies of body composition in
the era before HAART reported a disproportionate loss of
body fat mass in men with advanced HIV-1 disease or AIDS
[9]. This was attributed to the progression towards AIDS-
related wasting and associated diseases. However, some
data suggested that weight loss and depletion of body fat
may precede the progression to AIDS, even in adults with
normal CD4+ lymphocyte counts [10]. Further studies
confirmed an indirect effect of HIV-1 viremia leading to
effects similar to AIDS wasting. Studies by Visnegarwala
et al. of HIV-1-infected men with CD4+ lymphocyte counts
>200 cells/mm3 suggested that malnutrition due to decreased
caloric intake and increased energy demands associated
with an active opportunistic infection was not contributing
factors in explaining reduced body weight [11]. It was
concluded that reduction in fat mass is related to HIV-
1 infection itself, independent of the additive effects of
opportunistic illnesses. Similar conclusions were obtained
from the analysis of dyslipemia. Before the introduction of
HAART, the early appearance of hypertriglyceridemia and
enhanced lipolysis was observed in HIV-1-infected patients
before the onset of overt illness [12, 13]. Recent studies have
confirmed that HIV-1 infection-induced changes in lipolysis
are unrelated to the further effects of HAART leading to
full-blown lipodystrophy [14]. Finally, several rodent models
relevant to HIV-1 infection events have shown metabolic
disturbances in the absence of any exposure to antiretroviral
drugs. For instance, transgenic mice expressing the HIV-1
accessory viral protein R (Vpr) in liver and adipose tissue
exhibit altered systemic fat metabolism [15]. Disturbances of
PPARγ, as a master regulator of adipose tissue differentiation
and function, may play a major role in the alterations
of adipose mass and lipid metabolism elicited by HIV-1
infection, and this issue is summarized in the present review.

3. PPARγ and Its Pivotal Role in
Adipose Tissue Function

PPARγ is highly expressed in adipose tissue, where it plays
a key role in adipose tissue development and function.
There are two major splice variants of PPARγ, γ1 and γ2,
which differ in their N-terminal region (PPARγ2 contains

an additional 30 amino acids) and in their tissue-specific
expression; PPARγ2 is found almost exclusively in white
and brown adipose tissues whereas PPARγ1 is also relatively
abundant in macrophages and endothelial cells [16–18]. The
activity of both isoforms is regulated by posttranscriptional
modifications and by ligand-dependent transactivation and
recruitment of coactivators. For instance, phosphorylation
inhibits the transcriptional activity of PPARγ [19] and pro-
motes sumoylation, which further reduces its transcriptional
activity [20]. PPARγ forms heterodimers with retinoid X
receptors (RXRs) to bind to specific DNA sequences in its
target genes. In the absence of ligands, corepressors such as
nuclear receptor corepressor (N-CoR) or silencing mediator
of retinoid and thyroid (SMRT) receptors bind to these
heterodimers and recruit histone deacetylases to repress tran-
scription (reviewed in [21]). Binding of ligands to PPARγ
triggers conformational changes that allow the recruitment
of transcriptional coactivators, including members of the
steroid receptor coactivator (SRC) family [22] and PPARγ-
coactivator 1α (PGC-1α) [23] that ultimately recruit histone
acetyltransferase coactivators such as p300/CBP or PCAF
[21].

However, the natural ligands for PPARγ remain un-
known. Recent studies have provided functional evidence for
an unidentified natural ligand that is produced transiently
during adipogenesis [24]. There is also evidence that small
lipophilic compounds, such as polyunsaturated fatty acids
and fatty acid derivatives (eiocosanoids) bind and activate
this receptor [25], thus supporting the concept that PPARγ is
a nutrient sensor that finely regulates metabolic homoeosta-
sis in response to different nutritional states.

Regarding synthetic ligands, it is clear that members of
the thiazolidinedione (TZD) family of antidiabetic drugs
are high-affinity agonists for PPARγ [26]. TZDs have been
reported to enhance insulin sensitivity in animals and
humans [27]. Furthermore, cellular, genetic, and pharmaco-
logical studies have provided strong evidence both that TZDs
function via PPARγ, and that adipose tissue is the main site
where the insulin-sensitizing effects of PPARγ are produced
(reviewed in [28]).

It was reported that TZDs induce adipocyte differentia-
tion even before they were known to be ligands of PPARγ
[29]. By now, the key role of PPARγ as a master regulator
of adipogenesis has been clearly established, and gain-of-
function experiments have demonstrated that PPARγ is
sufficient to induce adipocyte differentiation in the presence
of an appropriate ligand [30]. However, loss-of-function
experiments to prove that PPARγ is required for this process
have been more difficult, since PPARγ homozygous inactiva-
tion results in embryonic death due to placental alteration,
in a developmental stage before there is any adipose tissue
development [31]. Later, however, studies utilizing chimeric
mice [32] and adipose-specific PPARγ knockout mice [33]
confirmed the essential role of PPARγ in adipose tissue
differentiation.

PPARγ also plays an important role in regulation
of lipid metabolism in mature adipocytes. Activation of
PPARγ increases both fatty acid uptake and its storage
into adipocytes by promoting the transcription of genes
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such as those encoding lipoprotein lipase, fatty acid binding
protein-4 (aP2/FABP4), phosphoenolpyruvate carboxyki-
nase (PEPCK) [34–37], and also glucose transporter GLUT-
4, in order to increase fatty acid synthesis [38]. These effects
of PPARγ may underlie its insulin-sensitizing effects. Thus,
together with the proadipogenic role of PPARγ (glucose
homeostasis requires adequate amounts of adipose tissue),
the improvement of lipid storage in this tissue will prevent
ectopic lipid accumulation in nonadipose tissues such as
liver, skeletal muscle, and β-cells. Furthermore, PPARγ has
been reported to induce transcription of the PGC-1α gene
in adipose tissue [39]. The coactivator PGC-1α promotes
mitochondrial biogenesis, thus leading to an increase in
fatty acid oxidation in adipose tissue, which may protect
against adipocyte hypertrophy [40]. Finally, adipose tissue
has endocrine functions, and PPARγ regulates expression
of genes encoding adipokines such as adiponectin, lep-
tin, resistin, or cytokines such as TNFα. Activation of
PPARγ promotes the expression of a pro-insulin-sensitizing
adipokine profile (i.e., induction of adiponectin and reduc-
tion of TNFα gene expression) thus involving the cross-talk
between adipose tissue and other insulin-sensitive organs
(liver, skeletal muscle) in the insulin-sensitizing effects of
PPARγ [41].

Evidence from human mutations in PPARγ has further
underlined the importance of PPARγ in the development
of adipose tissue, in the maintenance of glucose and lipid
homeostasis and more generally in the control of energy
balance (reviewed in [42]). Patients harboring mutations in
the ligand-binding domain of PPARγ have a stereotyped phe-
notype characterized by partial lipodystrophy, severe insulin
resistance, dyslipidemia, hepatic steatosis, and hypertension,
thus identifying PPARγ as playing a molecular role in the
pathogenesis of the metabolic syndrome [43, 44].

PPARγ is also expressed in macrophages and endothelial
cells, that is, cells that are present in adipose tissue [17, 18,
45]. In endothelial cells, activation of PPARγ has antiprolif-
erative, antiangiogenic, and anti-inflammatory effects [45].
PPARγ is induced during macrophage differentiation, and
its activation increases the expression of macrophage-specific
markers, such as CD14 and CD11b [17, 46]. However,
loss-of-function approaches have demonstrated that PPARγ
is not essential for monocyte/macrophage differentiation
either in vivo or in vitro [47, 48] but selective deletion of
PPARγ in macrophages results in increased insulin resis-
tance [49]. Recently, macrophage-mediated inflammation in
adipose tissue has been proposed to play a central role in
the pathogenesis of insulin resistance [50]. Two types of
macrophages, proinflammatory M1 and anti-inflammatory
M2, are present in adipose tissue and their relative abundance
may change dynamically through recruitment of polarized
monocytes from the blood (macrophage infiltration) or
through the effects of local cytokines on macrophages in
adipose tissue. Activation of PPARγ by TZDs has now been
reported to increase the proportion of anti-inflammatory
M2 macrophages in adipose tissue [51]. Furthermore,
TZDs also act through PPARγ to inhibit the expression of
inflammatory mediators in macrophages, and as reported
above, to negatively regulate expression of cytokines such

as IL-6, TNF-α, and monocyte chemoattractant protein—1
(MCP-1/CCL-2) in adipocytes [52]. In summary, activation
of PPARγ improves adipose tissue function by having a
beneficial effect on the adipocyte—macrophage relationship,
which may result in prevention of insulin resistance.

4. HIV-1 Infection and PPARγ

Recent studies revealed that expression of marker genes of
adipogenesis, such as those encoding GLUT-4, adiponectin,
or lipoprotein lipase is already altered in subcutaneous
adipose tissue from HIV-1-infected patients in the absence
of treatment [53]. These genes are known targets of PPARγ,
and the expression of PPARγ itself is also reduced in HIV-
1-infected patients without treatment, relative to healthy
controls [53]. In fact, in this same sense, it has been
observed that PPARγ expression is lower in HIV-1-infected
and HAART-treated patients with lipodystrophy relative to
healthy controls [54], but similar when compared to levels
in antiretroviral-naive patients [55]. These findings point to
the possibility that HIV-1 infection and associated events
interfere with the action of PPARγ as a master transcriptional
controller of adipogenesis and, in a broader sense, of
adipose tissue biology, thus contributing to the appearance
of lipodystrophy. Recent experimental evidence is supportive
of this possibility (see below). However, a relevant role of
HAART in worsening potential HIV-1-mediated alterations
in PPARγ expression cannot be excluded. In this sense, it
has been recently reported that a 6-month interruption of
antiretroviral treatment results in a significant amelioration
of PPARγ levels in patients formerly under HAART con-
taining protease inhibitors [56]. On the other hand, one
of the features of HIV-1-associated lipodystrophy is insulin
resistance. It cannot be excluded that PPARγ impairment in
HIV-1-infected patients may contribute to reduced insulin
sensitivity, as PPARγ is a known target of drugs with insulin-
sensitizing properties (see above).

It must be taken into account that the action of HIV-1
infection in adipose tissue and PPARγ activity should not be
considered only in relation to adipocytes. As stated above,
adipose tissue depots contain, in addition to adipocytes,
other cells such as preadipocytes, macrophages, or endothe-
lial cells. Recently, even lymphocytes have been reported
to be present inside adipose depots [57, 58]. As these
other cell types (e.g., macrophages or endothelial cells) also
express PPARγ, they could themselves be sensitive to HIV-
1-mediated disturbances in PPARγ expression and activity.
Moreover, cells inside adipose tissue can release regulatory
factors (such as adipokines or cytokines) or metabolites
(free fatty acids) capable of influencing surrounding cells,
for instance preadipocytes and adipocytes, and the overall
pathways of gene regulation dependent on PPARγ.

5. How May HIV-1 Infection Affect PPARγ
Pathways in Adipose Tissue?

The possibility that HIV-1 infection could influence PPARγ
activity leads to the first consideration; whether the cells
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Figure 1: Schematic representation of the potential effects of HIV-1 infection on PPARγ-mediated pathways in adipocytes and macrophages.
HIV-1 infection of macrophages may lead to the synthesis of HIV-1 encoded proteins, that is, Vpr, with negative effects on the expression of
PPARγ target genes. This may lead to reduced expression of anti-inflammatory genes as well as promotion of HIV-1 replication. Release
of HIV-1-encoded proteins as well as enhanced production of inflammatory cytokines, that is, TNFα and other, by macrophages as a
consequence of HIV-1 infection may lead to impaired PPARγ action in adipocytes and preadipocytes, thus impairing adipogenesis and fat
accretion. Direct effects of HIV-1 infection in line with what happens in macrophages cannot be excluded. Similar events to those depicted
for macrophages could be considered to occur in endothelial cells or even lymphocytes present in adipose tissue depots as a consequence of
HIV-1 infection.

present in adipose tissue depots can be infected by HIV-1.
The capacity of HIV-1 to infect adipocytes is controversial.
Whereas some initial reports indicated that adipocytes could
be infected [59, 60], later data appeared to exclude this
possibility [61]. However, more recently, it was reported that
substantial infection of adipocytes could take place when
TNFα was present in the medium [62]. High levels of TNFα
are found in adipose tissue from HIV-1-infected patients
even before treatment and are part of a proinflammatory
environment already present in adipose tissue as a conse-
quence of long-term HIV-1 infection [53, 63]. It should
be noted that studies on the capacity of HIV-1 to infect
adipose cells have focused on mature adipocytes and less is
known concerning preadipocytes. In adipose depots, resident
preadipocytes are found and they can differentiate into
mature adipocytes. Lipoatrophic situations combine a loss of
adipose cells (primarily via apoptosis) and an incapacity of
preadipocytes to differentiate and replenish the depot; thus
any direct or indirect effect of HIV-1 infection that interferes
with PPARγ could lead to this impaired differentiation.
Recent identification of PPARγ gene mutations causative of
lipodystrophies of genetic origin supports the notion that
abnormal PPARγ function can lead to lipodystrophy [42, 64].

Evidently, if a cell of the adipocyte lineage is infected by
HIV-1, it will be exposed to gene products of HIV-1 and to
their potential effects on PPARγ actions. A reported example
of this is Nef, a 27 kDa HIV-1-encoded protein that localizes
in the cytoplasm as well as nucleus of infected cells [65].
It has been shown that nuclear Nef results in a reduction
in the expression of PPARγ and of PPARγ gene targets in
human T cells and macrophages as well as interfering with
fat accumulation in cell lines [66]. The effects of Nef were
specific in impairing PPARγ-dependent, but not PPARα-
dependent, transcriptional activity.

However, the most relevant evidence of interference
of PPARγ pathways by HIV-1-encoded products concerns
the HIV-1 accessory protein Vpr. Kopp and collaborators
have recently shown that Vpr suppresses the differentiation
of adipocytes in cell culture by interfering with PPARγ-
dependent transactivation of target genes [67]. Vpr acts as a
corepressor of PPARγ by interacting with the ligand-binding
domain of the receptor in an agonist-dependent manner.
Remarkably, this effect could be observed when Vpr was
added to the adipose cell culture media thus indicating that,
as already shown in other cell types [68], exogenous Vpr
can enter the cell and interfere with metabolic pathways.
These findings are highly relevant to an understanding
of the etiopathogenesis of lipodystrophy in HIV-1-infected
patients. Thus, it is expected that adipose cells can be
affected by Vpr either due to direct infection by HIV-1, or
indirectly, because Vpr is known to be present as a soluble
protein in the circulation of HIV-1 infected patients [69].
Moreover, adipocytes and preadipocytes may be exposed to
local concentrations of Vpr higher than those in the overall
circulation, given the proximity of cells such as macrophages
(or even resident lymphocytes) that can be infected and
release Vpr.

Finally, recent research has revealed several features of
the biology of PPARγ, in relation to adipogenesis, in which
HIV-1 infection may be hypothesized to interfere. Thus,
several players in cell cycle control, such as cyclin D3 and
CDK4, have been reported to promote adipogenesis through
interaction with PPARγ [70, 71], whereas E2F4 represses
PPARγ during adipogenesis [72]. HIV-1 infection may
interfere with the cell cycle machinery, and specifically the
HIV-1-encoded proteins Vpr and Tat have been recognized
as being capable of interacting with CDK4, cyclin D3, and
E2F4 [73–75]. However, the capacity of these interactions
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to influence PPARγ-dependent pathways in adipocytes or in
other cells present in adipose depots, and their consequences
for metabolism, remains to be explored. Similarly, a number
of reports have indicated that HIV-1-encoded Tat or Vpr
can interact with known coactivators of PPARγ required for
its transcriptional activity, such as p300/CBP or PCAF [76,
77]. It cannot be excluded that HIV-1 infection-mediated
events affect PPARγ activity in adipose tissue through these
interactions, although experimental evidence for this is
lacking at present.

6. The Reciprocal Issue: the Effect of PPARγ on
HIV-1 Biology, and the Implications of
This for Adipose Tissue Pathophysiology

What we have described up to now provides evidence that
HIV-1 infection may alter PPARγ activities. However, several
reports also indicate the occurrence of reciprocal events, that
is, the action of PPARs and particularly PPARγ on HIV-1
biology, especially on the replication and transcription of the
HIV-1 genome. The capacity of nuclear receptors to interact
with the long-terminal repeat of HIV-1 was recognized
several years ago [78]. It was observed that heterodimers of
RXR and PPARα were capable of binding a region between
−356 to −320 in the long terminal repeat. Accordingly,
PPARα agonists such as clofibric acid were shown to activate
HIV-1 transcription [79]. This effect, which may be relevant
in tissues such as liver which express high levels of PPARα, is
not expected to be involved in alterations of white adipocytes
and preadipocytes which are almost devoid of PPARα [80].

In contrast, it was reported recently that the PPARγ
agonist ciglitazone inhibits HIV-1 replication in a dose-
dependent manner in acutely-infected human monocyte-
derived macrophages and in latently-infected and viral entry-
independent U1 cells, suggesting an effect at the level of HIV-
1 gene expression [81]. Cotransfection of PPARγ wild-type
vectors and treatment with PPARγ agonists inhibited HIV-1
promoter activity in U937 cells, and activation of PPARγ also
decreased HIV-1 mRNA stability following actinomycin D
treatment. Thus, natural and synthetic PPARγ agonists may
play a role in controlling HIV-1 infection in macrophages
[81, 82]. Similar observations were obtained by Skolnik
et al. who observed that activation of PPARγ, and also of
PPARα, by specific agonists also decreased HIV-1 replication
in peripheral blood mononuclear cells acutely infected with
HIV-1, in a chronically-infected monoblastoid cell line and
in alveolar macrophages from HIV-1-infected subjects and
uninfected controls [83]. The precise mechanisms of action
of PPARγ on HIV-1 are not fully known and, in addition
to the potential direct interaction with specific regions of
the long-terminal repeat mentioned above, indirect effects
via nuclear factor κB have also been proposed on the
basis of the effects of PPARγ and its ligand rosiglitazone
impairing nuclear factor κB-mediated enhancement of HIV-
1 replication in macrophages [84].

All these findings indicate the occurrence of a potential
cross-talk between PPARγ and HIV-1 that could reinforce the
activity of HIV-1 proteins in cells harboring PPARγ. Thus, a

reduction in PPARγ levels and/or activity as a consequence
of HIV-1 infection may lead to depression of such a pathway
of potential inhibition of HIV-1 transcription and could
create an environment prone to enhancement of HIV-1 gene
expression, establishing a “vicious cycle” further augmenting
adipose pathogenesis.

7. Conclusions

In summary, research to date indicates that HIV-1 infection-
related events may alter adipose tissue and contribute to
development of the full-blown lipodystrophy syndrome
after antiretroviral treatment. The role of HIV-1 infection
of cells in adipose tissue, of soluble proteins released by
infected cells as well as of the indirect effects elicited by
the mild proinflammatory environment associated with viral
infection, is issues expected to be the subject of intense
research in the near future. For all these aspects, PPARγ
appears as a main candidate for the mediation of pathogenic
events. Moreover, a full understanding will be required of
the relationships among the complex set of cell types that, in
addition to adipocytes, are present in adipose tissue depots.
Macrophages, endothelial cells, preadipocytes, and perhaps
even lymphocytes are present in adipose depots and establish
a complex regulatory cross-talk that is altered by HIV-1
infection, and which may ultimately lead to disturbances in
adipocytes and in the whole adipose mass (see Figure 1).
All of these cell types express PPARγ, and the pivotal
role of this receptor in adipogenesis, insulin sensitivity,
lipid metabolism, and inflammatory pathways point to this
receptor as a key target of future research on adipose tissue
disturbances in the HIV-1/HAART-associated lipodystrophy
syndrome.
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