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The yeast synthetic lethal genetic interaction network contains rich information about underlying pathways and
protein complexes as well as new genetic interactions yet to be discovered. We have developed a graph diffusion
kernel as a unified framework for inferring complex/pathway membership analogous to “friends” and genetic
interactions analogous to “enemies” from the genetic interaction network. When applied to the Saccharomyces cerevisiae
synthetic lethal genetic interaction network, we can achieve a precision around 50% with 20% to 50% recall in the
genome-wide prediction of new genetic interactions, supported by experimental validation. The kernels show
significant improvement over previous best methods for predicting genetic interactions and protein co-complex
membership from genetic interaction data.

[Supplemental material is available online at www.genome.org.]

Genetics establishes links between genotype and phenotype.
Many genes are pleiotropic, carrying out multiple functions in
different pathways under different environmental conditions
and can have partially redundant function with other genes. Ge-
netic buffering can be evolutionarily stable (Nowak et al. 1997).
While individual gene perturbations may have little or no effect,
combined perturbations can generate a phenotype. This is the
rationale of genetic interaction screens, which test for pheno-
types from two-gene perturbations that differ from the single-
gene effects. Pairwise genetic interaction screens have been valu-
able in understanding functional relationships between genes
and assigning functions to genes in a pathway-dependent man-
ner.

With the completion of the Yeast Knockout deletion collec-
tion (Giaever et al. 2002), high-throughput studies of pairwise
lethal or growth defect interactions between null or hypomorph
alleles of Saccharomyces cerevisiae (budding yeast) have made vast
progress in the past few years. “Synthetic growth defect” or “syn-
thetic sickness” describes a genetic interaction between two
genes whose individual deletion mutants have minimal growth
defects, while the double knockout results in a significant growth
defect under a given condition. A subset of those pairs whose
double knockouts lead to diminished growth or death are called
“synthetic lethal” (Dobzhansky 1946). We will refer to the union
of “synthetic sickness” and “synthetic lethal” as a “synthetic fit-
ness or lethal interaction,” or SFL. Multiple studies have screened
a subset of deletions or hypomorph alleles against the entire set
of viable yeast deletion mutants using methods including syn-

thetic genetic array (SGA) (Tong et al. 2001, 2004), synthetic
lethality analyzed by microarray (SLAM), and diploid-based
SLAM (dSLAM) (Ooi et al. 2003; Pan et al. 2004, 2006). A second
approach, termed an epistatic miniarray profile, searches for both
positive and negative interactions among a subset of genes (Col-
lins et al. 2007).

Large-scale yeast genetic interaction networks have proved a
valuable resource for understanding gene function and protein
complex or pathway organization (Kelley and Ideker 2005; Schul-
diner et al. 2005; Ye et al. 2005a,b; Pan et al. 2006; Collins et al.
2007; Ulitsky and Shamir 2007). SFLs tend to connect genes with
related, but not identical, functional associations. Instead, com-
ponents with identical pathway or complex membership tend to
have similar genetic interaction partners. These properties of the
yeast genetic interaction network have been exploited to predict
function and pathway membership for uncharacterized genes
(Tong et al. 2004), dissect large protein complexes into func-
tional modules (Collins et al. 2007), and understand organiza-
tions of essential pathways (Schuldiner et al. 2005; Pan et al.
2006). To achieve these goals, especially prediction of pathway
membership, algorithms have progressed from counting the
number of shared neighbors of a gene pair (Tong et al. 2004) to
calculating a hypergeometric P-value that corrects for the vertex
degrees of the pair (Ye et al. 2005a) and grouping genes into
pathways by iteratively finding an interaction motif that maxi-
mizes the likelihood of observed data (Qi et al. 2005). These
methods have achieved success in analyzing the accruing genetic
interaction data sets.

Most analysis of the genetic interaction network has focused
on pathway inference; predicting genetic interactions from ge-
netic interactions has received less attention. Previous methods
with good performance have required additional input of physi-
cal interactions (Kelley and Ideker 2005), which limits pre-
dictions for genes whose proteins’ interactions have not been
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mapped. Improved analysis methods for genetic interac-
tions should also boost performance when integrated with physi-
cal interactions and other functional association data (Ulitsky
and Shamir 2007; Bandyopadhyay et al. 2008; Ulitsky et al.
2008).

The motivation here is to extract more information from
SFL networks, quantified by the number of high-confidence SFLs
and pathway/complex memberships that can be predicted. Pre-
vious analysis methods for SFL networks have had two main
limitations. First, inference was based primarily on shared first
neighbors; gene pairs separated by three or more interactions are
ignored. Second, most predictions have focused on functional
similarities between genes and concordance with protein inter-
actions, rather than the complementary problem of direct pre-
diction of SFLs. The goal of this study is to introduce a method
that systematically explores neighborhoods of all distances, and
is able to predict both friend-type interactions—genes that are
likely to share pathway or complex membership—and enemy-
type interactions—genes that are likely to have a direct SFL in-
teraction.

A schematic illustrating our approach is provided (Fig. 1A).
Using a social network analogy, {A,B,C} and {D,E,F} correspond to
two social groups that dislike each other. In this purely bipartite
example, edges always cross between groups. Between-group en-
emies are connected by only odd-length paths; within-group
friends are connected by only even-length paths, as in the apho-
rism “The enemy of my enemy is my friend” describing length-2
paths. In this example, A and D are connected by one direct link,
one length-3 path and two length-5 paths, whereas A and B are
connected by only even-length paths. While the SFL network is
not purely bipartite, locally bipartite motifs are strongly enriched

in the SFL network (Ye et al. 2005b). Previously identified ex-
amples include the DNA damage/repair pathway (Fig. 1B) and
genes involved in the cell cortex (Fig. 1C; Kelley and Ideker 2005;
Pan et al. 2006).

Graph diffusion kernels generalize this idea by counting
paths of all lengths between all pairs of vertices in a graph, and
adding these path counts to give kernel values for all vertex pairs.
Kernels themselves are symmetric, positive semi-definite func-
tions formally equivalent to inner products for input objects
mapped to a feature space. Different diffusion kernels correspond
to different ways of weighting short paths versus long paths in
the sum, and different ways of weighting genes based on their
numbers of interaction partners. The term “diffusion” is used
because the paths correspond to diffusion of random walkers
outward from a source vertex (Fig. 2). Algorithms based on graph
diffusion kernels have been used to analyze friendship networks,
where edges represent similarity or affinity. It is the basis of
the original Google PageRank algorithm (Brin and Page 1998).
In biology, diffusion-based methods have been used to propagate
gene annotations across a graph of protein physical interactions
(Nabieva et al. 2005), improve remote homology detection for
proteins (Weston et al. 2004; Kuang et al. 2005), and define
functional distances between protein domains (Lerman and
Shakhnovich 2007). Diffusion kernels are important base
algorithms for statistical learning methods, especially support
vector machines, and have been used for protein function pre-
diction and gene annotation (Tsuda and Noble 2004; Ward et al.
2004).

While some of these examples incorporate the idea of edge
weights or connection strengths, edges are always considered to
represent affinity or similarity. The work described here provides

Figure 1. The parallel pathway model in the synthetic genetic interaction network. (A) A synthetic genetic interaction network is analogous to a social
network of enemies. The two branches represent genes in parallel pathways, analogous to people in competing social groups. Nodes within the same
branch are friends (or members of the same pathway), while nodes in different branches are enemies (or genes with a synthetic lethal genetic
interaction). (B) The functionally overlapping DNA damage checkpoint genes and DNA repair checkpoint genes have enriched between-pathway SFL
interactions (Pan et al. 2006). (C) Two groups of cell cortex genes have enriched between-pathway SFL interactions (Kelley and Ideker 2005).
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a natural and novel extension to edges that represent dislike and
are largely orthogonal to the affinity edges mentioned above.

The success of advanced graph-theoretic approaches for
“friendship” biological networks motivated us to develop graph
diffusion kernels for analyzing the SFL network. These methods
capture the unique property of the SFL network being an “enemy
network” by classifying network paths by parity of the path
length, which provide a unified framework for inference of “en-
emies” or SFL interactions and “friends” or co-complex member-
ship. The odd- and even-parity kernels quantify the association
by odd- and even-length paths, respectively, while accounting
for the degrees of all nodes on the paths. The odd-parity kernel is
a powerful predictor of new SFL interactions, with a precision of
45% when about 3100 interactions (recall = 24%) are correctly
predicted. In a prospective experimental validation of the top
100 novel predictions for each of two genes, the odd-parity ker-
nel achieved precisions of 50% with recall of 20%–50%. In pre-
dicting protein complex and pathway membership, we explore a
family of graph diffusion kernels and show that the even-parity
and full graph diffusion kernels achieve significant improve-
ments over the current best algorithms.
Finally, we show how the graph diffu-
sion kernels can be integrated with other
information sources for improved per-
formance.

Results

Motivation and overview

Given a network in which vertices are
genes and edges are synthetic fitness and
lethality interactions (SFLs), a graph dif-
fusion kernel sums weighted paths of all
lengths between pairs of genes. In addi-
tion to a standard diffusion kernel, G,
that counts all paths, we introduce two
parity-aware diffusion kernels: G�,
which counts odd-length paths, and G+,
which counts even-length paths, de-
fined in Equation 8. By counting only
the odd-length paths, G� should dis-

criminate between SFL and non-SFL pairs. Discrimination was
confirmed by analyzing an SFL network extracted from BioGRID
(Stark et al. 2006); for known SFL partners, cross-validation was
used to suppress the contribution of their direct interaction to
the kernel. Known SFL pairs have higher G� scores than non-SFL
pairs (Supplemental Fig. 1A). Similarly, the even-length kernel G+

discriminates between co-complexed and non-co-complexed
gene products (Supplemental Fig. 1B), with protein complex in-
formation taken from MIPS (Mewes et al. 2004).

This discrimination can be improved by optimizing the
single adjustable parameter �, which controls the relative contri-
bution of small paths (large �) to long paths (small �). In a net-
work in which every vertex has the same degree, the mean path
length is ��1. Cross-validation was used to optimize this single
parameter based primarily on the optimal F-score along the Pre-
cision-Recall curve, a balanced measure of precision and recall;
the area under the receiver operating characteristic curve was also
calculated to investigate performance over the entire range of
predictions (see Methods).

The results first present in silico performance evaluations by
cross-validation for predicting new SFL interactions from SFL
data, followed by in vivo experimental confirmation of novel
predictions. Finally, the ability to predict co-complex member-
ship from SFL kernels is assessed. Graph diffusion kernel results
are compared with previous methods, including raw counts of
paths of length 2 and 3 from elements of the square and cube of
the adjacency matrix A and its degree-normalized form (Equa-
tion 7).

SFL prediction from SFL data

The source of SFL interactions was BioGRID version 2.0.27 (Stark
et al. 2006), containing 18,492 raw interactions involving 2700
genes. After pruning singletons and removing duplicates, these
were reduced to 13,022 nonredundant interactions involving
1817 genes. Cross-validated prediction of SFL interactions from
these data is optimized with � � 32 for G�, � = 1 for G, and
� � 32 for G+ (Supplemental Fig. 2). The odd-parity kernel G�

performs the best (Fig. 3). Performance for G� has attained a
plateau for � = 32, which indicates that only the shortest possible
paths contribute to the kernel.

Figure 3. Performance of predicting genetic interactions from BioGRID by three diffusion kernels and
the raw counts of length-3 paths. The optimal diffusion parameters used are � = 32 for G�, � = 1 for
G and � = 32 for G+. The raw counts of length-3 paths is A3. The odd-parity diffusion kernel G�

significantly outperforms all other methods. (A) Precision-recall curves. (B) Receiver operating charac-
teristic curves.

Figure 2. Diffusion of a hypothetical fluid on a graph. (A) Diffusion with
source and sink. Fluid is pumped from the source into a selected set of
query nodes and is allowed to leak out from each node into a sink at
first-order rate �. For clarity, an undirected network is shown. (B) Diffu-
sion between two nodes in a directed network. Fluid diffuses in both
directions according to the two edge weights between nodes i and j. A
directed network is shown for generality.

Graph diffusion kernels for genetic interactions
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This performance may be surprising because previous inves-
tigations concluded that counting length-3 paths was a poor pre-
dictor, with precision of only 5% at a threshold of eight length-3
paths and below 20% at a very stringent threshold of 36 paths
(Kelley and Ideker 2005). Predictions based on the raw count of
length-3 paths, A3, are also presented in Figure 3, and are, in-
deed, worse than G�. Part of the performance boost for G� is
therefore due to the symmetric normalization, which down-
weights paths that traverse high-degree vertices. If normalization
precedes calculating length-3 paths, the performance is identical
to the optimized odd-parity diffusion kernel (Supplemental Fig.
2). Although these results suggest that odd-length paths of length
>3 can be ignored, this may be due to a bias in training data that
densely maps interactions around functionally related genes
used as queries in high-throughput studies. More detailed results
(see “Experimental confirmation” below) demonstrate that per-
formance for many genes is optimized by � ≈ 1, which counts
longer paths.

The Precision-Recall curve for G� drops from initial 100%
precision down to roughly 45% precision, without degrading
much further as recall increases to 30%–40% (Fig. 3A). The drop-
off in precision is due to false positives between the 179 high-
throughput queries and the remaining 1638 genes (Supplemen-
tal Fig. 4). Some of the high-ranked predictions scored as false
positives may, in fact, be true SFL interactions missed by the
high-throughput experimental screens; evidence for this possi-
bility is provided by experimental validations described below.

For a comparison with previous methods, we reanalyzed a
data set of 4812 SFL interactions involving 1434 genes (Kelley
and Ideker 2005), with 3930 interactions remaining after pruning
genes with a single SFL interaction. Optimal performance was
obtained with G� at � = 64 (Supplemental Fig. 5). As opposed to
our method, based solely on SFL interactions, the previous
method incorporated physical interactions to improve predic-
tions. At precision = 87%, G� performs at least as well as the
previous method, with 39 correct predictions compared to 37
previously (Supplemental Fig. 6).

Returning to performance on the current SFL network, on
average, more than 620 SFL interactions out of ∼2600 are cor-
rectly predicted (Recall = 24%) in each cross-validation fold, and
a total of 3100 SFLs are correctly predicted (Precision = 45%). The
current genetic interaction network, although incomplete and
doubtless including spurious interactions, already holds great po-
tential for inference of missing SFL edges.

Experimental confirmation of top-ranked novel SFL
predictions

We further validated the power of the G� kernel with a simul-
taneous experimental effort to identify genetic interactions for
almost 40 genes involved in histone acetylation and deacetyla-
tion that had not previously been used in genome-wide screens
in yeast (Lin et al. 2008). High-throughput screens used dSLAM
(Pan et al. 2004), with SFL interactions confirmed using random
spore analysis or tetrad dissection (Methods). The resulting ge-
netic interaction network from this study contains 2718 SFL ge-
netic interactions involving 763 genes regulating histone modi-
fications, termed the HTS data. Nonessential HTS queries had 42
SFL interactions on average, and hypomorph alleles of essential
genes averaged 188 interactions.

In a parallel computational effort, candidate SFL partners for
37 of these queries were predicted using G� calculated from the

full BioGRID SFL data, which included 2050 nonessential and
650 essential genes. The motivation for this blinded comparison
was to determine how the method performed in practice for
genes that had not yet been extensively studied. For two of these
queries, the knockout allele of ADA2 and a temperature-sensitive
(Ts) allele of ESA1 (esa1-531), the top 100 predictions at � = 1
(selected prior to the analysis of the optimal �) were subjected to
follow-up experiments to determine whether putative false posi-
tive predictions were really false negatives in the HTS data.

Ada2 is a transcriptional coactivator in histone acetylation
and part of the ADA and SAGA complexes. Esa1 is the catalytic
subunit of the NuA4 complex, the only essential histone acetyl-
transferase in yeast, which acetylates H2A, H4, and Htz1. The
ADA2 gene has 10 known SFL interactions, and ESA1 has four
known SFL interactions in the BioGRID training data. These in-
teractions involve prior discovery of ADA2 and ESA1 only as tar-
get genes. The HTS data generated 75 new SFL partners for ADA2
and 210 for ESA1, which were compared with the top 100 pre-
dictions from G�, excluding the known BioGRID interactions.

For ADA2, 30 of the top 100 predictions were in the 75 HTS
partners (40% recall). The maximum possible recall in this case is
84% (= 63/75) because 12 of the HTS partners have no BioGRID
SFL interactions. The 70 putative false positives were tested ex-
perimentally by random spore analysis and tetrad dissection,
identifying 18 as ADA2 partners missed by the high-throughput
experiment. Counting these additional positives yields 48% pre-
cision and 52% recall (Table 1).

In Figure 4, predicted and confirmed partners of ADA2 are
organized according to known protein complexes (Mewes et al.
2004) and protein–protein interactions (Gavin et al. 2006; Kro-
gan et al. 2006). Correctly predicted partners participate in his-
tone acetylation (SAGA, NuA3, NuA4), deacetylation (Rpd3,
Set3), and methylation (COMPASS). ADA2 also has extensive ge-
netic interactions with the transcription machinery including
SWI/SNF transcription activator, RNA polymerase II, the Media-
tor complex, and the Elongator complex. The SFL interactions
between ADA2 and these target complexes are consistent with
histone acetylation and deacetylation as a dynamic regulator of
diverse biological processes including transcription, gene silenc-
ing, chromosome condensation, DNA replication, and DNA
damage repair (Millar and Grunstein 2006).

The top 100 predictions for ESA1 overlapped with 34 from
the HTS data (16% recall). Here the maximum possible recall is
48% because of the large number of partners in HTS. Additional
known positives may be found further down the ranked list

Table 1. Summary of SFL partner prediction for ADA2

ADA2 Pattern Total

Top 100 Y Y Y N 100
HTS Y N N Y 75
Follow-up N Y N N 18
Count 30 18 52 45
Category TP1 TP2 FP FN

HTS is the set of validated nonessential targets from high-throughput
experiments, excluding known targets (see text for details). The top 100
predicted partners (patterns YYN, YNY, YNN) exclude the 10 known
ADA2 SFL partners or essential genes. “Follow-up” represents novel tar-
gets validated only by low-throughput experiments following in silico
predictions. Also note that 12 out of 75 HTS targets did not have any SFL
interactions in our training data and could not be predicted. The preci-
sion and recall for the top 100 predictions are (30 + 18)/100 = 48% and
(30 + 18)/(75 + 18) = 52%.
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(Supplemental Data 1). Experimental tests of the 66 putative false
positives in the top 100 revealed 20 as true interactions missed by
HTS, yielding a true performance of 54% precision and 23% re-
call (Table 2). The knockouts of the interaction partners missed
by HTS often exhibited slow growth on the haploid-selecting
magic medium used by dSLAM, explaining their absence from
the HTS data.

The performance of G� for the top 100 predictions of all 37
queries, including ADA2 and ESA1, is heterogeneous (Fig. 5).
Some, like ESA1, GCN5, and YNG2, have good precision but low
recall. Others, like ELP2,4,6 and SOH1, have very high recall
but low precision. And some, like HST1,4, perform poorly by
both criteria. Much of the heterogeneity is explained by the
number of new partners identified by HTS: More partners
correlate with better precision and worse recall in the top 100.
Toward the high end is GCN5, with 192 SFL targets in HTS, 28%
precision (vs. 192/4700 nonessentials = 4% for a random pre-

dictor), and 16% recall. At the other extreme is ELP2, which has
11 SFL targets in HTS. By identifying five in the top 100 predic-
tions, the recall was 46%. The precision of 5% is almost half the

Table 2. Summary of SFL partner prediction for ESA1

ESA1 Pattern Total

Top 100 Y Y Y N 100
HTS Y N N Y 210
Follow-up N Y N N 20
Count 30 20 46 176
Category TP1 TP2 FP FN

See Table 1 for description of the row headers and the meaning of the
patterns. The overlap between HTS targets and the top 100 in silico
predictions is 34. We uncovered 20 interactions missed by HTS in follow-
up validations of 66 predictions. The recall of true partners is (34 + 20)/
(210 + 20) = 24%, and the precision is (34 + 20)/100 = 54%.

Figure 4. SFL targets of ADA2 were obtained by combining high-throughput screening results and predictions by the odd-parity kernel G�, validated
by random spore analysis or tetrad dissection. (Confirmed) Experimentally tested positive. Protein–protein interactions are derived from the MIPS
database and Krogan et al. (2006) and Gavin et al. (2006). The SFL targets of ADA2 are most enriched of histone and chromatin modification complexes
and the mRNA transcription machinery.
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maximum possible of 11%, and a 20� improvement over ran-
dom.

Because it is important to know whether good predictions
can be made for any specific query gene, we developed a quan-
titative multiple regression model to relate F-score performance
to biological features of a gene and the local topology of the SFL
and PPI networks. Sixteen features were entered into a linear
model, and an exhaustive search using BIC identified six for a
parsimonious model (Supplemental Data 2). The most significant
factor was the number of new SFL interactions (num_SFL) dis-
cussed above. In order of decreasing significance, the other five
factors are the average G� score of the top 100 predictions (score_
top100), the average clustering coefficient of known SFL partners
in the SFL network (cc), the clustering coefficient of the query
gene in the protein–protein interaction network determined by
affinity purification and mass spectrometry (APMS_cc), the ORF
size (orf_size), and the downstream conservation (downstream-
_conservation).

All significant features except the average clustering coeffi-
cient of the known SFL partners in the SFL network (cc) are posi-
tively correlated with performance (Supplemental Data 2;
Supplemental Fig. 7). While the clustering coefficient is often a
good measure of local density of interactions, it may not be a
good measure for SFL networks because of the enrichment of
bipartite motifs. Factors such as the codon adaptation index,
number of protein–protein interaction partners, phyletic reten-
tion (Gustafson et al. 2006), and essentiality (Tong et al. 2004;
Davierwala et al. 2005) were not retained in the model, possibly
owing to correlations with retained factors. The adjusted R2 for
the final model was 0.69. Excluding the number of new interac-
tions, which would not be known before a screen, the adjusted R2

drops to 0.41, and the only significant factor retained is the av-
erage G� score of the top 100 predictions. These results indicate
that the G� score is useful in predicting performance.

The sensitivity to the single parameter � was characterized
by calculating the F-score for each of the 37 queries over the
range � = 0.01 to 256. For an individual query, a broad range of

� values can give near-optimal results
(Supplemental Fig. 8; complete data in
Supplemental Data 3). Across different
queries, however, there is wide disper-
sion of the optimal � (Fig. 6; Supplemen-
tal Fig. 9). The genes for which the F-
score is largest, including ADA2 and
ESA1, have large optimal �, similar to the
BioGRID training data. Genes, whose
partners are predicted less accurately,
with optimal F-scores between 0.1 and
0.2, perform best with � ≈ 1. Genes,
whose partners are predicted the least
accurately, favor � < 1.

Prediction of protein complex
co-membership and direct functional
associations

We assessed the ability of kernels gener-
ated from only genetic interactions to
predict direct functional associations
(Fig. 7). Co-membership in a protein
complex is a strong indicator of func-
tional association. Using MIPS curated

complexes, � values were optimized for G (� = 0.1), G+ (� = 0.25),
and G� (� = 0.05) (Supplemental Fig. 10). Each of these kernels
improves substantially over raw counts of length-2 paths and
over the P-value for enrichment of length-2 paths, termed the
“congruence score” (Ye et al. 2005a). As anticipated, the even-
parity kernel, G+, performs better than the odd-parity kernel, G�.
The overall best performance, however, is with the full kernel G.
Note that all these kernels have small optimal � values, leading to
average path lengths of roughly four steps for G+ to 20 steps for
G�. This blurs the distinction between the different kernels, and
the disparity be different kernels, and the disparity between G+ and
G� is much smaller than when SFL interactions were predicted.

Figure 5. Precision and recall for the top 100 SFL predictions for 37 query genes at � = 1 by the G�

kernel. Query genes are color coded according to the number of SFL partners from a recent screen (Lin
et al. 2008).

Figure 6. Optimal � parameters for predicting new SFL partners using
G� are query-specific. Performance assessed by F-score is positively cor-
related with �.
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An alternative measure of func-
tional association is the similarity of da-
tabase annotations. Semantic similarity
(Resnik 1995) was calculated for gene
pairs based on Gene Ontology (GO) an-
notations. Larger kernel scores corre-
spond to greater semantic similarity.
Pairs ranked by diffusion kernels are
more similar than pairs ranked by the
congruence score (Fig. 8). For molecular
function, G performs the best, with G�

slightly better than G+. For biological
process and cellular component, G and
G+ provide similar performance, with
G� slightly worse.

A convenient property of a diffu-
sion kernel is that ranking based on a
multiple gene query is a fast linear op-
eration. Compound queries can improve
performance by reinforcing weak lines
of evidence (Asthana et al. 2004) and in-
creasing specificity (Myers et al. 2005; Stuart et al. 2007). Com-
pound queries were tested systematically for the MIPS curated
protein complexes using the G (� = 0.1) kernel. Precision and
recall were estimated using the position of known members in
the ranked list, excluding the self-terms for known members
when computing scores (see Supplemental Methods).

Several complexes are recovered with high recall, with ad-
ditional predicted components not annotated as complex mem-
bers (Fig. 9). Known protein–protein interactions from BioGRID
and other high-throughput studies (Gavin et al. 2006; Krogan et
al. 2006; Stark et al. 2006) are overlaid. For clarity, physical in-
teractions between known members of the complexes are not
shown. Several themes emerge. First, many high-ranking
proteins belong to a parent of the query complex (yellow
nodes). Usually, these additional proteins have extensive physi-
cal interactions with the proteins in the query complex (Fig.
9A–C,E,J). Second, the automated analysis identifies proteins
that have been reported as complex members but not yet up-
dated by MIPS. These include Hrt1 for the SCF–Cdc4 complex
(Kamura et al. 1999), Swm1 and Mnd2 for the anaphase
promoting complex (Hall et al. 2003), and Ost5 for the oligosac-
charyltransferase complex (Fig. 9F–H; Knauer and Lehle 1999).

Third are proteins that physically associate with the query com-
plex and function in the same pathway. For example, Cdc20 is an
activator of the APC (Visintin et al. 1997), and Sec4, Sec9, and
Sro7 associate with the exocyst complex (Fig. 9G,I).

In greater detail, the query complex in Figure 9A contains
actin-associated motor proteins. Two of the seven proteins in this
complex, Smy2 and Myo4, have no SFL interactions and do not
appear. Proteins returned by the query include six that belong to
a parent complex. Five of those—Bem1, Rvs167, Arp2, Vpr1, and
Las17—belong to actin-associated proteins and form a dense
physical interaction subnetwork with Myo3 and Myo5. This sub-
network is composed of proteins functioning coherently in actin
cytoskeleton dynamics. Las17 is an actin assembly factor that
activates the Arp2/3 complex, which is also part of the subnet-
work (Li 1997; Winter et al. 1999). Arp2 and Arp3 form actin
nucleation centers essential for the integrity of actin patches
(Winter et al. 1997; Machesky and Gould 1999). Bzz1 colocalizes
with Las17 to actin patches and recruits actin polymerization
machinery (Soulard et al. 2002). Hof1 regulates actomyosin ring
dynamics and septins (Lippincott and Li 1998). Cmd1 is a regu-
lator of biological processes such as mitosis, bud growth, and
endocytosis where actin organization is crucial (Stirling et al.

1994; Geli et al. 1998). Many remaining
module members are also closely in-
volved in the above-mentioned pro-
cesses. Products of two uncharacterized
ORFs, YKR074W and NCS2, and one pro-
tein with unknown function, Chs7, are
predicted to be part of this module, sug-
gesting their potential role in actin cyto-
skeleton organization.

The kernel-based search can return
several protein complexes involved in
closely related biological processes (Fig.
9C). The largest connected component
retrieved by a nucleosomal protein
query includes a histone acetyltransfer-
ase, Gcn5, that acetylates histones H2B
and H3, and several components of
chromatin remodeling complexes: Isw1
and Itc1, Sth1 and Sfh1, and Snf5. The

Figure 7. Performance of co-complex/pathway membership prediction by three diffusion kernels,
congruence score, and the raw counts of length-2 paths. Complex data are obtained from the MIPS
protein complex database (Mewes et al. 2004). The optimal diffusion parameters used are � = 0.25 for
G+, � = 0.1 for G and � = 0.05 for G�. (CS) Congruence score; (A2) raw counts of length-2 paths. (A)
Precision-recall curves. (B) Receiver operating characteristic curves.

Figure 8. Gene Ontology (GO) semantic similarity correlation with score percentile. Cumulative
average semantic similarity correlations between score percentile and each of the three GO catego-
ries—(A) molecular function, (B) biological process, and (C) cellular component. (CS) Congruence
score. GO annotations for yeast genes are downloaded from the Saccharomyces Genome Database
(SGD). Diffusion kernel scores optimized for predicting co-complex membership were used (� + 0.25,
0.1, 0.05 for G+, G, and G�). See text for details.
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module also contains the elongator complex (Elp2, Elp4, Elp6,
and Iki3) and the CBF3 complex (Cep3, Cbf2, and Ctf13). This
probably reflects tight coupling between chromatin remodeling,
histone modification, and transcription elongation.

Linked processes are also observed for two subgroups of pro-
teins involved in N-linked glycosylation (Fig. 9H). One comprises
OST genes that catalyze asparagine-linked glycosylation of newly
synthesized proteins. The other subgroup consists of the ALG genes
involved in oligosaccharyl synthesis. Using four genes in the OST
gene subgroup as query identifies an additional OST gene absent
from MIPS and six ALG genes. This module is consistent with a
cluster found in EMAP data (Schuldiner et al. 2005).

Discussion

Our results show that diffusion kernels for a genetic interaction
network improve over methods that consider only local network

information to predict genetic and physical interactions. Odd-
parity kernels boost the performance further for predicting new
genetic interactions. Even-parity kernels perform somewhat
worse than full kernels, however, for predicting physical interac-
tions. The performance of the full kernel for protein co-complex
prediction reflects the existence of genetic interactions both within
and between pathways. Between-pathway interactions dominate,
representing 70%–80% of genetic interactions (Kelley and Ideker
2005; Ulitsky and Shamir 2007). Nevertheless, the remaining 20%–
30% of within-pathway interactions are effective in predicting
physical interactions. An important motif is a genetic interaction
that bridges partially redundant subunits of a protein complex,
such as the two subunits of the Ndc80 complex, Nuf2/Spc24 and
Tid/Spc25, which form fully-connected SFL and PPI subnetworks.
More complicated patterns, such as partial redundancy between
three pathways or complexes, can also lead to odd-length paths
connecting physically interacting proteins.

Figure 9. Modules from complex-based search. Cyan nodes (module) are labeled with the ID of the MIPS complex used as query. Known members
of the query complex with no SFL interaction in our training set are not shown. (Blue edges) Physical interactions absent from MIPS but present in
high-throughput data (Gavin et al. 2006; Krogan et al. 2006; Stark et al. 2006). Physical interactions between known members are not shown.
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The variation of the optimal � with
performance for SFL prediction (Fig. 6) is
consistent with network topology pre-
dictors of performance. When the
known local SFL network around a gene
is dense, short length-3 paths are suffi-
cient to find new SFL partners, leading
to large optimal � and good perfor-
mance. This is the case for many genes
in the BioGRID training data. When the
local network has been less well
mapped, for example, indicated by fewer
genes connected to multiple first neigh-
bors, longer paths and smaller � values
are optimal. This was the case for novel
queries selected for experimental confir-
mation. These results indicate a possible
benefit for optimizing � through cross-
validation with known partners prior to
predicting new partners, which can be
readily done by pre-calculating G� over
a range of � (Supplemental Fig. 9). For
protein interaction prediction, diffusion
kernels that sample longer paths domi-
nate methods that only look at second neighbors.

Other diffusion kernel formulations are possible. In fact, the
most widely used formulation may not be the steady-state kernel
adopted here but, rather, an exponential kernel simulating tran-
sient decay, with a single parameter representing the decay time
(see “Exponential kernel” in Supplemental Methods). The expo-
nential kernel has been used for string kernels and support vector
machine (Kondor and Lafferty 2002), protein sequence similarity
searches (Weston et al. 2004, 2006; Kuang et al. 2005), and pro-
tein–protein interaction networks (Lee et al. 2006). The full ex-
ponential kernel did not perform as well as the full steady-state
kernel in predicting protein complex membership (Supplemental
Fig. 12). Although parity-specific exponential kernels can be de-
fined, calculations are far more cumbersome than for steady-state
kernels (Supplemental Equation 9).

An important use of kernels is as features in integrative
methods that combine heterogeneous data (Schölkopf et al.
2004). By integrating physical interaction data, for example, SFL
interactions could be predicted for genes that are absent from
genetic interaction training data but present in the physical in-
teraction network. Support vector machines (SVMs) are highly
effective classifiers that can make use of integrated kernels (Boser
et al. 1992).

We trained SVM classifiers by combining kernels from
genetic interactions (G�), physical interactions (GMIPS, GY2H,
GAPMS), and Gene Ontology annotations (GOfunc) using radial
basis functions. The performance of an SVM with an integrated
kernel was only slightly better than the performance of an SVM
using just the G� kernel, or ranking by G� itself (Fig. 10; Supple-
mental Table 1). An SVM that integrated all data except for G�

performed much worse. Note that the precision reported here is
artificially inflated because, for computational feasibility, train-
ing sets were balanced between known positives and known
negatives.

An SVM combining kernels from protein–protein in-
teraction data, genetic interactions, and amino acid sequence
data recently achieved high accuracy for predicting co-complex
membership (Qiu and Noble 2008). This method first com-

puted an exponential diffusion kernel K(a,b) between pairs
of genes, then used a tensor product kernel (TPK) to define
inner products between two gene-pairs, TPK[(a,b), (c,d)] =
K(a,c)K(b,d) + K(a,d)K(b,c). Using a full TPK is computationally
intensive because it scales as (number of genes)4, as opposed to
(number of genes)2 for calculating diffusion kernels or SVMs
based on diffusion kernels.

We investigated an alternative approach, motivated by one-
class classification, using a TPK to score the similarity of a gene
pair (a,b) to all known SFL pairs. Since the pairwise kernel K(a,b)
is meant to indicate similarity, G+ is appropriate for this role,
leading to a similarity score of

score�a,b� = �
i,j∈SFLpairs

G+�a,i�G+�j,b� = [G+AG+��a,b�. (1)

This projection of the TPK, which we term the GAG kernel, is
similar to G� in having only odd-number powers of the adjacency
matrix A, but has a slightly different normalization. The GAG ker-
nel is inferior to G� according to the F-score, although it does have
higher precision in the low recall regime (Supplemental Fig. 13).

These results do suggest, however, that improved kernels for
SFL prediction may come from an integrated kernel of the form
(I � KAKA)�1KAK, generalizing “two-hop” predictors (Wong
et al. 2004). Here, K stands for a pairwise kernel that could com-
bine the even-parity SFL kernel G+ with protein interactions and
other positive predictors of functional associations, including
pre-integrated data sources such as YeastNet (Lee et al. 2007) and
String (von Mering et al. 2007).

Conclusion

Graphs are a useful abstraction for biological networks, and dif-
fusion kernels have been effective for inferring similarities be-
tween nodes in a graph. A tacit assumption is that the graph
edges themselves represent similarities. This is not necessarily the
case for genetic interactions, which are often highly enriched
between rather than within pathways and complexes, resulting
in bipartite motifs. The same motifs are anticipated to occur in

Figure 10. Results of SFL prediction with and without data integration. Four features—three derived
from protein–protein interactions and one obtained from Gene Ontology annotations—were used in
data integration by the support vector machine (SVM). The G� scores used in direct ranking and for
the SVM were obtained with � = 32. (*) The results of the SVM classification. See text for details. (A)
Precision-recall curves of four methods. The SVM classifier that integrates additional features with G�

performs the best. (B) Receiver-operator characteristic curves of four methods. The SVM classifier that
integrates additional features with G� performs the best.
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social networks where edges represent antipathy rather than am-
ity.

Extracting just the odd-parity contributions to the diffusion
kernel leads to substantial improvements in the ability to predict
new genetic interactions from a network of synthetic fitness and
synthetic lethal interactions in yeast. Optimal predictors rely on
shortest-possible length-3 paths for well-mapped regions of the
yeast genetic interaction network and include longer paths for
regions that are less well mapped. These methods are effective in
identifying candidate interactions that can be confirmed experi-
mentally. The odd-parity kernel performs as well as, if not better
than, previous methods that combined genetic and physical in-
teractions to make predictions.

The even-parity kernel is effective in predicting protein in-
teractions and co-complex membership, and much more effec-
tive than previous methods based solely on synthetic lethal data.
The full kernel performs slightly better than the even-parity ker-
nel, possibly because of the existence of both within-pathway
and between-pathway genetic interactions.

These parity-specific kernels provide improved base meth-
ods for use with machine learning and data integration strategies.
Although tested in yeast, these methods should also be effective
for RNAi-based genetic screens in higher organisms, and for
chemical-genetic screens where a ligand–target interaction simu-
lates a loss-of-function allele. These methods may also be useful
for analyzing social preference networks based on dislike.

Methods

Graph diffusion kernel
A generic directed network (V,E) is defined by nodes V (here
genes) and edges E (here SFL interactions). The weights Aji of
edges to node j from i define the graph adjacency matrix A. We
consider symmetric networks only. A diffusion kernel is the so-
lution to a continuous-time model for the distribution of a hy-
pothetical fluid in this network (Fig. 2A). All nodes contain no
fluid initially. Query nodes are then selected to serve as sources,
where the hypothetical fluid is pumped in at a constant rate.
Fluid diffuses from node to node through the network according
to the edge connections and their weights. The source input is
balanced by fluid loss out of each node at a constant first-order
rate �. Large � leads to fast loss, hence short diffusive paths, while
small � allows deep diffusion and places more emphasis on ran-
dom walks that explore more of the network. At equilibrium, no
net flow occurs anywhere in the network. The better connected
a node is to the query nodes, the more fluid it will contain at
equilibrium.

The amount of fluid contained by node i at time t is denoted
pi(t). The dynamics of pi(t) is governed by flow in from the source
and i’s neighbors and flow out to the sink and i’s neighbors (Fig.
2B),

ṗi �t� = �
j

Aijpj�t� − {� + �
j

Aji}pi�t� + biu�t�,

where u(t) is a unit step function, bi > 0 if node i is a query node,
and bi = 0 otherwise.

Using the usual notation of a linear dynamical system, the
diffusion process on the entire network is given by

˙p� �t� = �A − S − �I�p��t� + b�u�t�, (2)

where S is a diagonal matrix with Sii the sum of the ith column
of A and b� is a query selection vector.

Letting L = �(A � S � �I) (the graph Laplacian shifted by
�), the full response of the system is

p��t� = �t�=0

t
e−L�t−t��b�u�t��dt�.

As t → �, the system reaches a steady state. The equilibrium
distribution of fluid density on the graph is

p�ss = lim
s→0

s
1
s

�sI + L�−1b� = L−1b�. (3)

If we define G ≡ L�1, p�ss is fully determined by b� and G,
while b� represents the set of query nodes selected and the
amount of source input into each query, and G is a query-
independent constant defined by the graph structure.

Assuming that L is nonsingular, the matrix G is given by

G = �G0
− 1 − A�−1

= �G0
− 1�I − G0A��−1

= �I − G0A�−1G0. (4)

This transformation is useful because it changes the matrix in-
verse problem to an easier matrix multiplication problem. The
self-term G0 ≡ (S + �I)�1 is the inverse of a diagonal matrix and
hence trivial to calculate. The matrix inverse (I � G0A)�1 can be
computed using a power series expansion,

�I − G0A�−1 = �
n=0

�

�G0A�n. (5)

The infinite sum in Equation 5 is guaranteed to converge
when � is greater than the largest eigenvalue of A � S (see “Con-
vergence” in Supplemental Methods). When L is close to singu-
lar, we can use the pseudo-inverse as an alternative.

Combining Equations 4 and 5, the matrix G can be written as

G = G0 + G0AG0 + G0AG0 AG0 + . . . (6)

When A is symmetric, G is the sum of symmetric matrices
and hence also symmetric. When A � S is full-rank, G is positive
semi-definite and hence a kernel (Kondor and Lafferty 2002).
From here on, we use both matrix and kernel to refer to G.

A kernel function K maps a pair of points in sample space �

to a scalar similarity measure in real space R. When there is a
graph structure underlying the data, kernels that capture the
global link structure of a graph often outperform algorithms that
only use local information in various statistical learning tasks.
While many graph diffusion kernels are based on transient prop-
erties of random walks on a lattice, equivalent to matrix elements
of an exponential time evolution operator (Kondor and Lafferty
2002; Lafferty and Lebanon 2005), ours is instead based on
steady-state properties of the same operator. Applications of
graph diffusion kernels include but are not limited to ranking,
searching, clustering, and classification (Brin and Page 1998;
Weston et al. 2004; Zhou et al. 2004; Lee et al. 2006).

In practice, we usually normalize edge weights by node de-
grees. In an undirected network, we would like to preserve the
symmetry of the adjacency matrix after the normalization. One
such normalization scheme is to replace A with N(A) =
S�1/2AS�1/2 and replace S with the corresponding diagonal ma-
trix S� whose diagonal elements contain the column sums of
N(A) in Equation 2. The (i,j)-th element of the “normalized ad-
jacency matrix” is
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A�ij = �S−1�2AS−1�2�ij
= �S−1�2�ii�AS−1�2�ij
= Sii

−1�2AijSjj
−1�2

=
Aij

���m Ami���m Amj�
. (7)

It is clear from Equation 7 that the edge weights between
nodes i and j are normalized by the degrees of both nodes and
hence every path is weighted according to degrees of all the
nodes on the path. In all analysis that follows, the symmetric
normalization scheme is used. Note that we normalize the adja-
cency matrix and then calculate the Laplacian, as opposed to a
normalized Laplacian defined as I � D�1/2AD�1/2 for diagonal
degree matrix D.

Other normalizations are also possible. For example, replac-
ing A with AS�1 gives G0 = (1 + �)�1 I and an identical transi-
tion rate out of each vertex, which has been used for Markov
Cluster Linkage (Enright et al. 2002). This does not produce a
kernel because kernels are symmetric. Post-symmetrization by
geometric mean or harmonic mean with the matrix transpose
can be applied, but did not perform as well in practice and does
not have a simple interpretation.

The asymmetric normalization is useful, however, in pro-
viding intuition about the meaning of the decay parameter �.
Here we interpret the fluid density as the population of discrete
particles executing a continuous-time random walk. From Equa-
tion 2, the probability that a random walker inserted at time 0 is
still present at time t is exp(��t), giving a mean lifetime of ��1.
The rate of transitions out of each vertex is given by the column
sums of A�, all equal to 1 by the A� = AS�1 normalization. The
mean number of transitions is the transition rate times the mean
lifetime, also equal to ��1, and gives the mean length of diffusive
paths contributing to the sum.

The matrix elements Gij represent the connectedness be-
tween node i and node j due to paths of all lengths between the
two nodes. Each multiplication by A represents a one-step tran-
sition to an immediate neighbor. Hence each component Gn =
(G0A�)nG0 in Equation 6 represents the connectedness contrib-
uted by length-n paths. We can group the components with odd
and even number of transitions to give

G− = �
k=0

�

�G0A��2k+1G0

G+ = �
k=0

�

�G0A��2kG0.

G � G+ + G− (8)

The matrices G� and G+ quantify the “reachability” by odd-
and even-length paths, respectively. The full kernel G and the
even- and odd-parity kernels can be computed by iterative matrix
multiplication (Supplemental Code). The estimate of G at itera-
tion k, denoted G(k), can be calculated using the previous esti-
mate G(k � 1) as G(k) = G0 + G0A�G(k � 1), with initial condi-
tion G(0) = G0. Iterations continue until each element has con-
verged. The updated equation G+(k) = G0 + G0A�G0A�G+(k � 1)
is used for G+, with initial condition G+(0) = G0. The odd-parity
kernel G� is obtained from the converged G+ as G� = G+A�G0.

Recall that in a network of enemy-only links, enemies are
connected by many odd-length paths, while friends are con-
nected by many even-length paths. Hence G� and G+ are natural
choices for predicting enemies and friends. When applied to the
synthetic genetic interaction network where nodes are genes and
edges are SFL interactions, an undirected network with binary

edges is used where Aij = 1 if an SFL interaction exists between
genes i and j in at least one direction, and Aij = 0 otherwise.

Kernel scores are additive over queries, with

G � b� = �
q

Gjq � bq (9)

for bq = 1 if q ∈ Q and bq = 0, otherwise. This is equivalent to
searching a set of keywords in a web search engine. Non-equal
weights can indicate that queries are of varying importance. This
is the same idea as the “label propagation algorithm” proposed in
Zhu et al. (2003) and Zhou et al. (2004) and used by Tsuda et al.
(2005) for protein function prediction. Other search mechanisms
can be easily implemented by changing the query weight vector
b�. For example, search for “q NOT l” is equivalent to setting bq to
be a positive number and bl to be a negative number.

Performance assessment by cross-validation
Optimization relied on standard assessments of performance:
Precision, (number of known positives predicted as positive)/
(number of predicted positives); Recall or True Positive Rate
(TPR), (number of known positives predicted as positive)/
(number of known positives); and False Positive Rate (FPR),
(number of known negatives predicted as positive)/(number of
known negatives). A single summary statistic for the entire Pre-
cision-Recall (PR) curve is the maximum value of the F-score, the
harmonic mean of Precision and Recall, 2 � Precision � Recall/
(Precision + Recall).

A summary statistic for the Receiver Operating Characteris-
tic (ROC) curve of TPR versus FPR is the Area Under the Curve
(AUC) (Egan 1975). The AUC is independent of the ratio of
known positives to negatives and depends on performance over
an entire ranked list of predictions (Fawcett 2003). The F-score
provides a better assessment of the ability to enrich true positives
among the top-ranked predictions, particularly when positives
are much rarer than negatives and misclassifications at the tail of
the list have little cost (Davis and Goadrich 2006). The F-score
was used to compare performance of different predictors. AUCs
from ROC plots are provided as well.

For prediction of SFL interactions, fivefold cross-validation
was used to calculate each diffusion kernel at 14 logarithmically
spaced � values ranging from 0.01 to 256. Each kernel was then
used to rank the held-out pairs and the known negatives. Cross-
validation was not used for protein interaction prediction. In
both cases, tests on independent subsets of the data did not yield
differences in the single parameter � found to be optimal.

Algorithms for comparison

Congruence score method
The number of common neighbors in genetic network is a strong
predictor of protein interactions (Tong et al. 2004). The hyper-
geometric P-value for the shared neighbor count (Goldberg and
Roth 2003) is an improved predictor termed the congruence
score in the context of genetic interactions (Ye et al. 2005a):

congruence score = − log10 �
x=k

min�di,dj�

C�di,x�C�t − di,dj − x��C�t,dj�.

Here di and dj are the degrees of genes i and j, k is the number
of shared neighbors, and t is the total number of genes in the
network, possibly adjusted for the experimental design if a small
number of query genes were tested against a complete library of
knockout strains.
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Other length-2 and length-3 path based methods
A naive-scoring matrix based on length-2 paths is A2 (A is the
un-normalized adjacency matrix), whose matrix elements count
the number of length-2 paths between every pair of nodes. One
may normalize the number of length-2 paths between i and j by
the total number of length-2 paths that connects to i or j,

N�A2� = T−1�2A2T−1�2, (10)

where T is diagonal with Tii = ∑j[A
2]ij. Alternatively, one can

weight the edge between i and j by the degrees of the two nodes
before taking the square, giving a kernel,

�N�A��2 = �S−1�2AS−1�2�2 (11)

where S is a diagonal matrix in which the diagonal elements
are the column sums of A. This kernel normalizes the length-2
paths by the degrees of i and j. Similarly, the raw count of
length-3 paths is A3, [N(A)]3 is (S�1/2AS�1/2)3, and N(A3) is
T��1/2A3T��1/2 with diagonal T�ii = ∑j[A

3]ij.

Data sources

Genetic interaction data
We obtained 12,237 synthetic lethal interactions and 6255 syn-
thetic growth defect interactions between 2700 yeast genes from
the General Repository for Interaction Data sets (BioGRID) ver-
sion 2.0.27 release (Stark et al. 2006). For SFL interaction predic-
tion, this data set was randomly partitioned into five equal-sized
sets for cross-validation (CV). In order for the adjacency matrix in
each CV to be nonsingular, we iteratively pruned genes having a
single SFL interaction. The pruned data set contained 13,022
nonredundant SFL interactions involving 1817 genes. In each
fold of CV, one out of the five sets was held out as the positive
test set, while the remaining four sets were used to train diffusion
kernels. We also compiled a set of 179 query genes from several
large-scale studies (Tong et al. 2001, 2004; Krogan et al. 2003; Pan
et al. 2006) and defined the negative test set to contain all double
knockouts that were not tested positive in those studies. Note
that the negative test set is not perfect in the sense that not every
interaction is guaranteed to have been tested, even in the large-
scale studies. Since query-target information is not available or
applicable for every SFL interaction from BioGRID, the congru-
ence score can be computed only in the target-to-target fashion.
For the congruence score, this limits the number of usable SFL
interactions to those between the target genes and the 179 query
genes we compiled.

Protein co-complex data
The Munich Information Center for Protein Sequences (MIPS)
database (Mewes et al. 2004) provides a reliable source of protein
complex information curated from many small-scale experi-
ments. Hence we formed our test set based on MIPS complex
information, excluding complexes that came solely from high-
throughput studies. This test set contains 206 MIPS complexes.
We obtain 10,887 protein pairs within the same complex involv-
ing 1171 genes, of which 822 genes are present in the genetic
interaction network. These 822 genes form 337,431 pairs. Of
these pairs, 4291 that are co-complexed in MIPS are taken as
known positives, and the remaining 333,140 pairs are used as
known negatives. We did not remove pairs based on either co-
localization or existence of pairwise interactions in high-
throughput data. The full genetic interaction data as described
previously are used to generate the graph kernels. The perfor-
mance of the predictive methods based solely on genetic inter-

actions is likely to be limited by the incomplete overlap between
functional associations and physical interactions (Chua et al.
2006).

Data integration with support vector machine for predicting
SFL interactions
A gold standard test set for the classification task comprised
13,022 SFL gene pairs from BioGRID and the same number of
gene pairs uniformly sampled from all non-SFL gene pairs as
defined previously. The balanced test set was used to evaluate the
performance of the SVM classifier using different features. We
generated five such test sets, each with a different random sample
of non-SFL gene pairs and report results averaged across the five
data sets.

Note here that each entity to be classified is a pair of genes
or proteins and the task is to assign them to the SFL class or
non-SFL class. Hence, the features we considered are also for
gene/protein pairs rather than for an individual gene or protein.
We describe five features and their data sources below.

1. G� score trained from known SFL interactions in BioGRID.
Note that the SFL status of a gene pair is also the class label
that we were predicting; to avoid reusing this information in
the G� score, we obtained G� scores using a scheme similar to
fivefold cross-validation. The SFL data set was randomly di-
vided into five equal-sized subsets, and five G� kernels were
obtained, each trained on SFLs with one subset left out. For a
SFL gene pair, we used the G� score from SFLs excluding the
subset that this gene pair resided in. For a non-SFL gene pair,
we used the average of the five G� kernel scores;

2. GMIPS, diffusion kernel (Equation 6) trained on 10,887 co-
complex protein pairs (source: MIPS);

3. GY2H, diffusion kernel trained on 9888 yeast two-hybrid pro-
tein–protein interactions (source: BioGRID);

4. GAPMS, diffusion kernel trained on 32,808 protein–protein in-
teractions obtained by affinity purification coupled with mass
spectrometry (source: BioGRID and Gavin et al. [2006] and
Krogan et al. [2006]);

5. GOfunc, Semantic similarity of the molecular function cat-
egory of Gene Ontology annotations (source: SGD, the Gene
Ontology database).

Values of � for the diffusion kernels were selected to opti-
mize prediction of SFLs. The G� kernel used � = 32. The three PPI
kernels for predicting SFLs were insensitive to �, with F-score and
AUC performance criteria for each varying by less than 0.01 over
the range � = 0.1 to 2. The SVMs used PPI kernels trained with
� = 1. Missing values were replaced by the mean values of each
feature, a standard procedure. In training an SVM, we concat-
enate all or a subset of the five features, and apply a radial basis
kernel to the resulting vectors. The SVM parameters were opti-
mized by grid search with fivefold CV. We evaluated the perfor-
mance of each method at the optimal SVM parameters by preci-
sion-recall and receiver operator characteristic curves averaged
across the five folds and then across the five test sets in addition
to the classification accuracy. We used the publicly available sup-
port vector machine software package libsvm (http://www.
csie.ntu.edu.tw/∼cjlin/libsvm) to construct the SVM classifiers.

Experimental validation of new SFL predictions
To validate the target genes of ADA2, the query construct
(ada2�::URA3 PCR product) was transformed into the individual
haploid-convertible heterozygous diploid YKOs of the 100 target
genes. Two independent transformants were sporulated on
sporulation medium (1% of potassium acetate, 0.005% zinc ac-
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etate, 0.3 mM histidine) for 5 d and then tested by random spore
analysis (RSA). Haploid progeny were spotted as 10-fold serial
dilutions on three selective media: magic medium or MM (selects
for single-mutant xxx�::kanMX and double-mutant cells), MM-
Ura-G418 (selects for single-mutant ada2�::URA3 and double-
mutant cells), and MM-Ura (selects for double-mutant cells) (Pan
et al. 2004). The plates were incubated at 30°C, and the number
and size of viable colonies were recorded after 3 and 4 d. SFL
interactions were scored when the growth of the double mutant
was worse than the growth of both single mutants. To validate
the target genes of ESA1, two sequential transformations (first
with the query construct esa1::natMX PCR product, then with a
CEN plasmid containing the Ts allele esa1-531) were performed
to select the appropriate transformants. RSA was instead carried
out by comparing the growth of the haploid progenies on MM-
Ura+CloNat versus on MM-Ura and MM-Ura-G418+CloNat at
30°C, a semipermissive temperature for esa1-531.
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