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The yucca—yucca moth interaction is one of the most well-known and remarkable obligate pollination
mutualisms, and is an important study system for understanding coevolution. Previous research suggests
that specialist pollinators can promote rapid diversification in plants, and theoretical work has predicted
that obligate pollination mutualism promotes cospeciation between plants and their pollinators, resulting
in contemporaneous, parallel diversification. However, a lack of information about the age of Yucca has
impeded efforts to test these hypotheses. We used analyses of 4322 AFLP markers and cpDNA sequence
data representing six non-protein-coding regions (trnT-trnL, trnL, trnL intron, trnl—trnF, rps16 and clpP
intron 2) from all 34 species to recover a consensus organismal phylogeny, and used penalized likelihood to
estimate divergence times and speciation rates in Yucca. The results indicate that the pollination mutualism
did not accelerate diversification, as Yucca diversity (34 species) is not significantly greater than that of its
non-moth-pollinated sister group, Agave sensu latissimus (240 species). The new phylogenetic estimates
also corroborate the suggestion that the plant-moth pollination mutualism has at least two origins within
the Agavaceae. Finally, age estimates show significant discord between the age of Yucca (ca 6-10 Myr) and
the current best estimates for the age of their pollinators (32-40 Myr).
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1. INTRODUCTION
Interactions with pollinating insects have played a
fundamental role in the evolution and diversification of
flowering plants (Grant 1949; Whittall & Hodges 2007),
and lineages of plants that have evolved features associated
with specialist pollinators are often particularly diverse
(Hodges & Arnold 1995; Sargent 2004). Some of the most
remarkable adaptations for pollination are found in plants
associated with seed-feeding pollinators, such as those of
yuccas and yucca moths (Yucca and Hesperoyucca;
Tegeticula and Parategeticula, respectively; Pellmyr
2003), figs and fig wasps (Janzen 1979; Machado et al.
2001; Weiblen 2002), Glochidion shrubs and gracillariid
(Epicephala) moths (Kato et al. 2003; Kawakita er al.
2004) and the senita cactus and senita moth (Holland &
Fleming 1999). In these associations, plants rely almost
exclusively on a single pollinator species, whose larvae in
turn feed on some of the host’s developing seeds.

In the yucca-yucca moth association, which Darwin
considered ‘the most remarkable pollination system ever
described’ (Darwin 1874), the female moth uses unique
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tentacular appendages on its mouthparts to gather and
manipulate pollen from yucca flowers. The female moth first
oviposits into the floral ovary, before actively pollinating the
flower by depositing pollen directly onto the stigma in a
highly stereotypical manner (Pellmyr 2003). Because the
larva requires fertilized seeds to complete its development,
and as there are no co-pollinators, active pollination by the
female moth is critical for ensuring its reproductive success
and the system is an obligate mutualism.

The intimacy and specificity of this pollination system
have led to suggestions that pollination by seed feeders
presents the opportunity for rapid, simultaneous diversi-
fication in both the plants and the pollinators through
joint speciation and adaptive radiation (Sanderson &
Donoghue 1996; Schluter 2000; Good-Avila ez al. 2006).
Testing these hypotheses on a macroevolutionary scale
requires sufficient species diversity, information about
evolutionary patterns and data on the timing of evolution-
ary events (Kiester er al. 1984; Page 1991). Significant
progress has been made in addressing these questions for
some sections of the extraordinarily species-rich figs and
fig wasps (Weiblen 2004; Machado et al. 2005; Ronsted
et al. 2005; Jiang er al. 2006; Marussich & Machado 2007)
and for the Glochidion—Epicephala associations (Kawakita
et al. 2004), but these hypotheses have yet to be tested for
the association between yuccas and yucca moths.
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In the past 10 years, the number of recognized
pollinating yucca moths has increased to approximately
25 species in all, and a robust phylogeny based on
molecular data is now available for the moths (Pellmyr
1999; Althoff ez al. 2006; Pellmyr ez al. in press). However,
information about the timing and rates of speciation in
both partners is critical for studying cospeciation (Page
1991) and adaptive radiations (Sanderson & Donoghue
1996; Hodges 1997; Schluter 2000; Pybus ez al. 2002), so
the lack of robust plant age estimates has prevented the
tests of these hypotheses.

The purpose of this paper is to fill this void by providing
information about the age and phylogenetic relationships
within Yucca. Here, we have inferred phylogenetic
relationships within the genus using relaxed-clock
methods to date key nodes in the radiation of the group.
A recent analysis of nearly 100 samples using a dataset of
4322 AFLP markers recovered historically recognized
sections within the genus and provided evidence for the
monophyly of most conservatively delineated taxa
(Pellmyr er al. 2007). We combine those AFLP data
with approximately 3785 bases of cpDNA sequence data
from six non-protein-coding regions to recover a con-
sensus organismal phylogeny for the yuccas, determine the
age of the genus Yucca and its phylogenetic placement
within the Agavaceae, and estimate absolute and relative
speciation rates within Yucca. The results strengthen the
case for multiple origins of the mutualism and reject the
hypothesis that yucca moth pollination caused accelerated
diversification in Yucca. Additionally, the ages inferred
here show that diversification of Yucca substantially post-
dates the best estimates for the age of their pollinators; we
discuss possible implications of this result.

2. MATERIAL AND METHODS

(a) Data collection

The genus Yucca L. has not been subject to a comprehensive
taxonomic revision, despite considerable interest in the
genus, not least from horticulture. Recent studies have cited
approximate numbers for the total diversity in the genus,
generally ranging from 40 to 50 species. However, a recent
AFLP-based analysis that included nearly 100 samples
representing the most commonly named taxa (Pellmyr ez al.
2007) identified 34 phylogenetically defined species. In the
present study, 96 individuals were selected for PCR and
sequencing, representing the 34 species identified by Pellmyr
et al. (2007) and several putative outgroups, including Agave,
Hesperoyucca and Hesperaloe. Whenever possible, samples
selected for sequencing were the same individuals included in
the AFLP study (Pellmyr ez al. 2007).

DNA sequence data were generated from six chloroplast
regions (trnT-trnL intergenic spacer, trnL, trnL intron, trnl—
trnF intergenic spacer, rpsl6 intron and clpP intron 2) and
were combined with data from homologous regions in
Phalaenopsis aphrodite (Orchidaceae) and Acorus calamus
(Acoraceae) obtained from GenBank, which served as
outgroups. Additionally, data from the trnlL gene and
trnL—trnF intergenic spacer obtained from GenBank for
more than 50 species from across the Asparagales, together
with data from A. calamus and Amborella trichopoda
(Amborellaceae), were used to infer ages in the Agavaceae
and the position of Yucca within the family. The complete list
of taxa is available in the electronic supplementary material.
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The new data were combined with GenBank sequences to
produce four datasets: 1404 bases of cpDNA sequence data
from the trnL gene and trnl—trnF intergenic spacer from 153
taxa (including 139 taxa within the Agavaceae sensu lato and 14
outgroups); 3785 bases of cpDNA sequence data from 6 loci
from 98 taxa (including 91 Yucca sequences, 3 Hesperoyucca
whippler sequences and 4 outgroups); a combined dataset
containing 3366 bases of cpDNA and 4322 AFLP markers
from 83 taxa, including 81 Yucca samples and 2 H. whippler; and
a conflict-free dataset (see electronic supplementary material)
combining 3366 bases of cpDNA sequences and 4322 AFLP
markers from 46 taxa (44 Yucca samples and 2 H. whippler).
Differences in total base counts resulted from the elimination of
gap-only characters corresponding to indels in excluded taxa.

Phylogenetic analyses were completed using parsimony
and Bayesian inference in PAUP v. 4.0b10 (Swofford 2002)
and MrBayes v. 3.1.2 (Huelsenbeck & Ronquist 2001),
respectively. Conflict between AFLP and cpDNA data
partitions was assessed using an ILD test, partitioned Bremer
supports (Baker & DeSalle 1997), and Bayesian analysis, and
ParaFit (Legendre e al. 2002) was used to identify a subset of
taxa where there was significant (»p<0.05) agreement
between the data partitions. Divergence times and mutation
rates were estimated using penalized likelihood in r8s v. 1.71
(Sanderson 1997, 2002). Relative and absolute speciation
rates were compared between Yucca and its sister group
(Agave sensu latissimus) using a randomly branching Marko-
vian model (Slowinski & Guyer 1989), a likelihood ratio test
(Sanderson & Donoghue 1994), a Yule model (Baldwin &
Sanderson 1998), and lineages-through-time plots, calculting
Phybus’s gamma statistic (Pybus er al. 2002). Detailed
descriptions of the laboratory and analytical methods are
available as electronic supplementary material.

3. RESULTS

(a) Phylogeny of Agavaceae

The Bayes consensus tree of the trnL—trnF (153-taxa)
dataset (figure 1) showed strong (99-100%) support for
the monophyly of the Asparagales, the monophyly of the
‘core’ Asparagales (the Agapanthaceae, Hyacinthaceae,
Ruscaceae (=Convallariaceae), Anthericaceae, Behnia-
ceae and Agavaceae) and for a clade containing the
Anthericaceae and Agavaceae. There was also moderate
support (81%) for the monophyly of the Agavaceae sensu
lato (Agavaceae+ Hosta). Parsimony bootstrap support
was lower but also offered moderate (more than 60%) to
strong (100%) support for these same groupings.

Within the Agavaceae (figure 1), posterior probabilities
offered strong support for the monophyly of the genera
Camassia and Chlorogalum, for a clade containing both
Camassia and Chlorogalum and for the monophyly of Agave
sensu latissimus (Agave, Beschorneria, Furcraea, Manfreda,
Polianthes, and Prochnyanthes). Non-parametric bootstrap-
ping also showed moderate support for these groups.
Finally, there was weak support (more than 50%) within
the Agavaceae for a clade containing Hesperoyucca and
Hesperaloe, for the monophyly of Yucca and for a sister-group
relationship between Yucca and A. s. latissimus, but support
for these relationships was considerably stronger in the
analyses of the complete dataset from all the six cpDNA
regions (see §3b and figure 2).
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Figure 1. Chronogram of the Agavaceae based on the Bayes consensus tree derived from 153 cpDNA sequences from the trnLL
gene and the trnL—trnF intergenic spacer. Amborella trichopoda was used to root the topology and was pruned in the r8s analysis.
Node labels show Bayesian posterior probabilities (above) and non-parametric bootstrap supports (below). Unlabelled nodes
have less than 50% support. Error bars represent the standard deviation of age estimates profiled across post-burn-in trees
(below the arrow; values above the arrow represent the node age in Bayes consensus). For the complete consensus tree, see
electronic supplementary material.

(b) Phylogeny of Yucca: 98-taxa dataset the monophyly of Hesperoyucca and for a sister-group
The Bayes consensus tree of the 98-taxa dataset showed relationship between Hesperoyucca and Hesperaloe (figure 2).
strong (96—100%) support for the monophyly of Yicca, for There was also moderate support (85% posterior
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probability) for a clade containing Yucca and Agave. These
relationships also received moderate to strong support
(73-100%) from non-parametric bootstrapping.

Within Yiucca, all three traditionally recognized sections
(Sarcocarpa, Clistocarpa and Chaenocarpa) were para-
phyletic, contrary to the topology recovered from the
AFLP data in previous studies (Pellmyr et al. 2007).
However, the relationships recovered here were generally
very weakly supported, with most major groups receiving
less than 50% posterior probability. One grouping
receiving some support (69% posterior probability) was
a clade containing Yucca brevifolia (Clistocarpa) and a
number of geographically proximate—but morpho-
logically distinct—taxa from the Colorado Plateau region.

(c) Assessment of conflict between partitions
Although the ILD test suggested no statistically significant
conflict between the AFLP and cpDNA sequence data in
the 83-taxa dataset (p=0.24), the partitioned Bremer
supports suggested widespread disagreements between the
two data partitions. In a combined parsimony analysis of the
two data partitions, 60 of 80 nodes had non-positive Bremer
supports from the cpDNA and four nodes received
non-positive Bremer supports from the AFLP data.
Partitioned Bremer supports for nodes in the Bayes
consensus trees also showed widespread disagreements: 61
of the 80 nodes in the topology inferred from the cpDNA
sequence data received non-positive supports from the
AFLP data, and seven nodes in the topology inferred from
the AFLP data received non-positive supports from the
cpDNA data (figure 2).

Analysis in a Bayesian context also suggested significant
differences between the cpDNA gene tree and the tree
inferred from the AFLP data. As in the analysis of the
complete 98-taxa cpDNA dataset (§35), analysis of the
smaller 83-taxa cpDNA dataset found sections Chaenocarpa
and Sarcocarpa to be polyphyletic, with a clade of plants
from the Colorado Plateau being nested within the remaining
Sarcocarpa (figure 2). Filtering the post-burn-in trees from
the separate analyses suggests that both datasets significantly
reject (p<<0.001) the topology favoured by the other.

However, despite the widespread conflicts between
partitions, comparison of the topologies and branch
lengths using PARAFIT revealed significant overall con-
gruence (p<0.001) between the two Bayes consensus
trees. Of the 83 taxa for which complete AFLP and
cpDNA sequence data were available, 46 contributed
significantly (p»<0.05) to the overall congruence between
the two datasets (see electronic supplementary material).
Because the possibility of introgression could be statisti-
cally rejected for these taxa, they were included in the
combined, conflict-free dataset to compute a phylogeny of
Yucca and infer divergence times (§3d and §3e).

(d) Phylogeny of Yucca: 46-taxa dataset

The Bayesian analysis of the conflict-free (46-taxa) dataset
found strong support for the monophyly of sections
Chaenocarpa and Sarcocarpa and for the series Rupicolae
(figure 3). All of these relationships also received moderate
(86%) to strong (100%) support from the Bayesian
posterior probabilities and non-parametric bootstrapping
(figure 3). Separate analyses of the AFLP and cpDNA
data for the 46-taxa dataset produced topologies similar to
that inferred from the combined data and support indices
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that were consistent with—although weaker than—those
inferred in the combined analysis (figure 3).

(e) Divergence time estimates and rates
of evolution
The age of Agavaceae including Hosza, estimated from the
Bayes consensus, was approximately 14.5+0.94 Myr
(figure 1). Ages estimated from the Bayes consensus tree
were consistently lower than the mean age across post-
burn-in trees (table 1). The largest disparity in this regard
is in the age of Yucca, perhaps owing to alternate
placements for the basal taxon Y. queretaroensis (see §4).
Mutation rates in the trnl—trnF dataset across the
Agavaceae showed stark differences between substitution
rates and insertion/deletion rates. Substitution rates in the
trnLL gene and the trnL-trnF intergenic spacer, profiled
across post-burn-in trees, were 0.0006+0.000021 sub-
stitutions per site per Myr, while insertions and deletions
occurred at a rate of 0.06+0.05 insertions per deletions
per locus per Myr. In addition, there was considerable
variation in mutation rates between loci (table 2), with the
trnT-trnlL region showing the highest substitution rate
(0.004 substitutions per site per Myr) and the rps16 intron
showing the highest rate of insertion/deletion events (0.25
mutations per locus per Myr). Across all loci, observed
mutation rates were at least an order of magnitude higher
for indels than for substitutions.

(f) Comparisons of diversification rates

The comparison of species numbers and the likelihood
ratio test indicates no significant difference in speciation
rates between Yucca s. s. and Agawve s. latissimus (p=0.25
and 0.20, respectively). Likewise, the tests that explicitly
considered topology and branch lengths suggest that the
two groups do not differ in their tempo of diversification.
The rate of speciation in A. s. latissimus under the Yule
model was estimated to be 0.21 +0.001 species per lineage
per Myr; within Yucca, the speciation rate was estimated to
be 0.33+0.06. These estimates are separated by slightly
less than two standard deviations.

Although the lineages-through-time plots (figure 4)
indicate that Agave appears to have diversified earlier than
Yucca, the gamma statistics (—4.56 and —3.23, respecti-
vely) suggested that the rates of speciation in both groups
have declined significantly over time (p=0.026 for Agave
s.l.5 p<0.001 for Yucca).

4. DISCUSSION

The phylogenies inferred here show strong support for the
Agavaceae s. lato as currently recognized (Bogler er al.
2006), including Hosta as a basal taxon, sister to
the remainder of the Agavaceae. Our results also offer
strong support (99% posterior probability) for a clade
containing the Anthericaceae and Behniaceae, sister to the
Agavaceae s. lato.

Within the Agavaceae, there was strong support (100%
posterior probability) for the monophyly of Camassia and
Chlorogalum, and these genera are strongly supported as
sister taxa. In the combined (98 taxa) cpDNA dataset,
there was relatively strong support (85% posterior
probability) for the monophyly of a group containing
Agave s. latissimus and Yucca, to the exclusion of
Hesperoyucca. This result corroborates previous studies
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Figure 3. Chronogram of Yucca based on the Bayes consensus of the 43-taxa conflict-free dataset. Node labels show Bayesian
posterior probabilities (above) and non-parametric bootstrap supports (below) from the cpDNA, AFLP and combined datasets,
respectively. Unlabelled nodes have less than 50% support. Error bars on nodes represent the standard deviation of age estimates
profiled across post-burn-in trees (below the arrow; values above the arrow represent the node age in Bayes consensus). The two
Hesperoyucca samples were used to root the tree and have been pruned for the r8s analysis.

Table 1. Ages within the Asparagales estimated using penalized likelihood from the Bayes consensus tree of the trnL-trnF

(153-taxa) dataset and profiled across post-burn-in trees.

Bayes consensus tree

across post-burn-in trees

taxon age (Myr) maximum (95% CI) minimum (95% CI) mean s.d. Good-Avila ez al.
Asparagales 94 94 93.91 90.33 5.3 60
Agavaceae+Hosta 14.48 15.14 13.26 23.69 9.66 25.8
Agavaceae sensu 12.83 13.35 12.34 22.44 9.46 —

stricto
Yucca+ Agave 11.43 12.04 10.99 15.81 7.35 —
Agave s. 1. 9.07 9.46 8.69 12.63 5.11 9.8+3.3
Yucca 9.52 10.15 9.05 15.81 7.35 17.24+2.3
‘crown’ Yucca 6.41 6.81 6.06 10.19 6.49 —

arguing that Hesperoyucca did not belong within Yucca s. s.
and that there may therefore have been more than one
origin of the yucca-yucca moth mutualism (Bogler &
Simpson 1995; Bogler ez al. 1995; Clary & Simpson 1995).

There is evidence for considerable conflict between the
AFLP and cpDNA datasets, particularly in the placement
of Clistocarpa. The AFLP data place Clistocarpa as a
sister group to the Chaenocarpa. In the cpDNA data, the
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Clistocarpa were nested within the Sarcocarpa, along with
a number of other species from the Colorado Plateau
region. This conflict most likely represents introgression
by the plastid genome. All of the taxa in this group were
from the Mojave Desert and Colorado Plateau region of
Arizona, California, and Utah, suggesting a strong
biogeographic signature that would be consistent with
chloroplast introgression, and this relationship has also
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Figure 4. Lineages-through-time plot for Agave. s. latissimus
(black diamonds) and Yucca (grey squares). Both groups
show significant declines in speciation rates over time. Values
for Pybus’s gamma are —4.56 and —3.23, respectively.

been recovered in previous studies that relied on
chloroplast data (Hanson 1993). Together, these
results suggest that introgression may not be uncommon
within Yucca.

Lastly, the identity and phylogenetic affinities of
Y. queretaroensis remain enigmatic. The sequence generated
for this project is nested deep within Yucca in the section
Sarcocarpa, whereas the sequence obtained from GenBank
falls as sister to all other yuccas. There is reason for
scepticism about both of these placements. The former may
be the result of introgression, as this sequence is strongly
supported (96% posterior probability) as sister to two
samples of Yucca filifera, including one collected at the same
site as our sample of Y queretaroensis. The latter result—
placing Y. queretaroensis as sister to all other yuccas—is
consistent with the previously published AFLP phylogeny
(Pellmyr et al. 2007), but this relationship received only
weak support (59% posterior probability) and was extremely
unstable throughout the analysis. Minority topologies from
the post-burn-in trees place this sample as sister to Agave s.
latissimus, or sister to Hesperoyucca or sister to the clade
containing Yucca and Agave. s. latissimus.

(a) Age estimates
Overall, the results suggest a surprisingly recent origin of
Yucca. Whereas previous work on yucca moths suggested
that the plant-moth mutualism may be of Eocene age
(Pellmyr & Leebens-Mack 1999), these results suggest
that the genus is 9-16 Myr old, with the Yucca crown
group (i.e. excluding Y. queretaroensis) having diversified
6—-10 Myr ago. Although these estimates are quite low,
they are in line with the results from other recent studies:
Good-Avila et al. (2006) estimated the age of Yucca to be
13-17 Myr and Eguiarte er al. (2000) estimated the
common ancestor of the Sarcocarpa and Chaenocarpa to
be ca 6 Myr old. The oldest fossil from the lineage is
estimated to be 14 Myr old (Tidwell & Parker 1990),
although it is unclear whether this specimen belongs
within Yucca or it may represent an extinct stem group.
The sections within the Yucca crown group differentiated
rapidly 4-6 Myr ago, with the highest rates of lineage
formation occurring 3—4 Myr ago (figure 4). This radiation
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appears to have occurred more recently and somewhat more
rapidly than in Agave s. latissimus, but there was no
statistically significant difference in mean speciation rates
between the genera under any analytical approach (see §4c¢).

(b) Rates of evolution in the chloroplast genome
The mutation rate estimates showed that rates of evolution
in the chloroplast genome are generally slow, with all
regions showing a substitution rate of less than 0.005
substitutions per site per Myr. Rates of evolution may be
particularly slow within the yuccas; substitution rates in
the trnLL gene and the trnL—trnF intergenic spacer within
Yicca were roughly half of the average rate found here for
the Asparagales as a whole. However, these low mutation
and substitution rates may not be unusual for the
chloroplast genome generally; whereas we found sequence
variation at approximately 5% of sites in the cpDNA
dataset, a recent survey of these same gene regions found
that sequence variation within genera averages approxi-
mately 3% (Shaw er al. 2005).

There was considerable variation in substitution rates
between loci. Consistent with the findings of Shaw er al.
(2005), the trnT-trnl. intergenic spacer showed sub-
stitution rates roughly an order of magnitude greater than
in the more commonly studied trnL-trnF region, but
indels proved to be a surprisingly useful source of
phylogenetically informative data, with considerably
higher overall mutation rates. Indels and substitutions in
the trnT-trnL intergenic spacer may therefore have greater
usefulness in future phylogenetic work.

(¢) Diversification of the yucca-yucca moth
pollination mutualism

Two long-standing hypotheses about the evolution
of obligate pollination mutualism are that they may
spur rapid diversification and that the plants and their
specialist pollinators may tend to speciate in parallel
(Grant 1949; Kiester et al. 1984; Hodges & Arnold 1995;
Sargent 2004). Our results provide evidence against
elevated rates of diversification in Yucca and do
not support strict-sense cospeciation in terms of the
contemporaneity of diversification.

We find no support for the idea that speciation rates
have been accelerated in Yucca, as no analysis found
significant differences in speciation rates between Yucca
and its sister group. With more than seven times as many
species as in Yucca, the diversity of Agave s. latissimus alone
should argue against the hypothesis that yucca moth
pollination promotes accelerated speciation. Because we
find that Agave s. latissimus is the sister group to Yucca,
their relative diversity is a fair comparison of diversifica-
tion rates. Although the lineages-through-time plot
(figure 4) indicates that Yucca diversified more recently,
and although absolute speciation rates per lineage are
somewhat higher in Yucca than in its sister group, this
difference was not statistically significant.

Itis possible that incomplete sampling of species diversity
in Agave s. lanissimus could have biased our estimates of
speciation rates, or that the apparent difference in diversity
could be due to uneven taxonomic effort, but we found no
significant difference in raw number of species either, even
using a cautious lower estimate for Yucca. Indeed, these
considerations suggest that our tests of the key innovation
hypothesis are conservative.
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It is possible that both yuccas and their sister group
have experienced rapid radiations, as previously postu-
lated by Good-Avila ez al. (2006). However, the combined
Yucca+ Agave s. latissimus clade is not significantly more
diverse than its sister group (Camassia (six species)+
Chlorogalum (five species) + Hesperaloe (five species)+
Hesperoyucca (one species)) (p=0.12). Furthermore, the
speciation rates inferred here are not particularly high in
an absolute sense; whereas we estimated speciation rates
of 0.21 and 0.33 species per lineage per Myr in Agave s.
latissimus and Yucca, respectively, speciation rates in
recognized adaptive radiations such as the Hawaiian
silverswords or the South African Cape flora are as high
as 0.56 and 4.18, respectively (Baldwin & Sanderson
1998; Verboom er al. 2003). That said, Good-Avila ez al.
(2006) inferred much higher speciation rates (0.32 species
per lineage per Myr) within the more narrowly circum-
scribed Agave sensu lato (Agave+ Manfreda+ Polianthes+
Prochnyanthes), so it is possible that some lineages within
the Agavaceae have undergone adaptive radiations.

The age estimates also find no support for contempora-
neous diversification of the plants and their pollinators.
Whereas the diversification of the Yucca crown group began
6.41-10.19 Myr ago, previous estimates indicate that yucca
moths began to diversify ca 40+ 11.1 Myr (ago; Pellmyr &
Leebens-Mack 1999). Although the age estimates for the
pollinating moths have recently been revised downwards to
32 Myr (Gaunt & Miles 2002), these are still several million
years prior to our very oldest estimates for the common
ancestor yuccas and are tens of millions of years older than
the maximume-likelihood estimate.

Though one or both of the molecular clock estimates
could be in error, if we accept both of these results, we
must postulate at least one of two possible historical
scenarios: either the earliest pollinating moths fed on some
other group of plants or there have been multiple origins of
Yucca association within the Prodoxidae. Although it is
conceivable that yucca moths initially diversified on a
different group of plants—say, for example, an ancient
radiation of yuccas that is now largely extinct—this
scenario would require extensive host switching by the
moths and the concerted extinction of many former plant
species. The other alternative that there were multiple
origins of pollination behaviour within the Prodoxidae
would seem unparsimonious in the extreme; the two
genera that comprise the pollinating yucca moths
(Tegeticula and Parategeticula) form a monophyletic
group, and both partners in pollination mutualism show
remarkable adaptations associated with the interaction. A
complete cospeciation study, incorporating information
about ages, phylogenetic congruence and correlation in
branch lengths between the insects and their hosts, might
help to select among these alternatives.

Although such an analysis is beyond the scope of the
present paper, at the broadest level, the phylogeny estimated
here strongly suggests a history of host switching. Previous
work by Bogler er al. (1995) found that the anomalous
species Hesperoyucca whipplei (previously Yucca whippler) was
the sister group to the genus Hesperaloe, implying that
pollination by yucca moths might either have arisen
independently in Hesperoyucca or have been lost in
Hesperaloe. The new data presented here suggest that
Hesperoyucca is only distantly related to Yucca, and that the
common ancestor of these groups is therefore unlikely to
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have been pollinated by yucca moths. If so, then Hesperoyucca
would have been colonized by Tegeticula maculara, forming a
second origin of the yucca—yucca moth mutualism.

The phylogenetic relationships in both partners are
now well resolved and the next important step in
uncovering the evolution of host use and issues of
cospeciation will be a formal and comprehensive analysis
of codiversification, considering all of the Agavaceae-
feeding lineages within the Prodoxidae.
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