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Abstract
Purpose—Auto-propagation of anatomical region-of-interests (ROIs) from the planning CT to
daily CT is an essential step in image-guided adaptive radiotherapy. The goal of this study was to
quantitatively evaluate the performance of the algorithm in typical clinical applications.

Method and Materials—We previously adopted an image intensity-based deformable registration
algorithm to find the correspondence between two images. In this study, the ROIs delineated on the
planning CT image were mapped onto daily CT or four-dimentional (4D) CT images using the same
transformation. Post-processing methods, such as boundary smoothing and modification, were used
to enhance the robustness of the algorithm. Auto-propagated contours for eight head-and-neck
patients with a total of 100 repeat CTs, one prostate patient with 24 repeat CTs, and nine lung cancer
patients with a total of 90 4D-CT images were evaluated against physician-drawn contours and
physician-modified deformed contours using the volume-overlap-index (VOI) and mean absolute
surface-to-surface distance (ASSD).

Results—The deformed contours were reasonably well matched with daily anatomy on repeat CT
images. The VOI and mean ASSD were 83% and 1.3 mm when compared to the independently drawn
contours. A better agreement (greater than 97% and less than 0.4 mm) was achieved if the physician
was only asked to correct the deformed contours. The algorithm was robust in the presence of random
noise in the image.

Conclusion—The deformable algorithm may be an effective method to propagate the planning
ROIs to subsequent CT images of changed anatomy, although a final review by physicians is highly
recommended.
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INTRODUCTION
Precise tumor targeting and normal tissue sparing are important clinical goals of modern
radiation therapy. Recent advances in three-dimensional (3D) conformal radiotherapy and
intensity-modulated radiotherapy (IMRT) provide a prospect to approach these goals (1,2). A
large planning target margin that accounts for setup uncertainties and internal organ motion
has been reduced by the use of image-guidance (2–5) and motion management techniques (6,
7). However, daily internal anatomy variations including tumor shrinkage and shape
deformation may still be significant and result in suboptimal treatment for some patients,
especially when highly conformal treatment techniques, such as IMRT or proton therapy, are
used (8–10).

With recent advances in in-room CT imaging technology (2,11,12), one effective way of
reducing target margin and improve treatment outcome is to apply image-guided adaptive
treatment strategy (13,14) or four-dimensional (4D) radiotherapy to manage respiration-
induced organ or target motion (15). Rapid plan adaptation methods have been proposed to
improve tumor dose coverage and spare normal tissue based on the changes of projected daily
anatomy (16,17). The benefits of plan re-optimization based on 3D information of daily CT
images are still under investigation since the online re-optimization procedure is subject to the
speed of the planning process (17,18) as well as the availability of daily contours of the
treatment target and critical structures.

Auto-propagation of anatomical regions-of-interest (ROIs) from the original planning CT
image to the repeat CT image is an important step for adaptive treatment planning because it
is not practical for radiation oncologists to delineate all necessary ROIs for the same patient
repeatedly. Daily contouring may be necessary for tracking anatomical changes and evaluating
daily treatments(10). Investigation into automatic and semi-automatic contouring strategies
attracts more attentions recently in the field of radiotherapy (19,20). However, the speed and
reliability of auto-contouring methods are still challenges for routine clinical implementations.

We previously implemented and validated a fast deformable image registration algorithm to
map daily CT images with a reference CT image (21,22). The purpose of the research reported
in this paper was to apply this algorithm for a number of clinical cases and evaluate the
performance of the algorithm against physician’s judgment. The algorithm is evaluated both
qualitatively and quantitatively for its ability to auto-segment contours, and for its robustness
in the presence of image noise and its application at several anatomical sites.

METHODS AND MATERIALS
Deformable image registration and contour transformation

A voxel-to-voxel 3D displacement map is usually obtained from the deformable image
registration when transforming a source image to match a target image. Since the ROIs are
normally represented as ordered points on CT slices, the displacement map can also be used
to transform the ROIs from source image to the target image. For contour transformation
purpose, we define the planning CT images as source images, and the subsequent daily CT
images as target images.

Wang et al. Page 2

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Two methods can be used to transform ROIs: a point-based method and a volume-based
method. In the point-based method, the ordered points of each original contour are transformed.
A transformed contour surface may not stay in a single plane because of the 3D nature of the
deformable transformation. Further interpolation is necessary to reorganize the new contour
points on slices of the daily CT image. The new structure represented by these new contour
points then must be re-sampled on each CT slice to form a set of new contours. Conversely,
in the volume-based method, the entire volume of a structure is transformed and a deformed
volume in the same coordinate of the daily CT image can be generated. Extraction of the
boundaries of the new volume is required.

We chose to use the volume deformation method to avoid the re-sampling of new contour
surfaces. Fig.1 is a flow chart describing the auto-contouring process we used. The original
contours were drawn using a commercial treatment planning software (Pinnacle, Philips
Medical System, Andover, MA). For each structure contoured, the consecutive boundary points
on each CT slice are connected to create contiguous contours. The inner volume enclosed by
these slice-by-slice contours is then marked by a binary value of “1”, which represents a 3D
volume of the structure. This 3D volume is then transformed to a daily CT image using the
one-to-one displacement vector (or the mapping transformation) from the deformable image
registration.

The deformed volumes are smoothed and post-processed to remove unrealistic holes and
islands (see below). The boundaries are extracted and re-sampled at each CT slice location of
the daily CT image to obtain the deformed (or the auto-propagated) ROIs.

Contour smoothing and modification
The intensity-based deformable registration algorithm may induce abrupt or irregular
boundaries in this auto-mapping procedure. This is usually caused by the handling of
deformable image registration algorithm in the presence of low contrast CT images, which
may not sufficiently define the spatial transformation. Multiple solutions (degeneracy) may
exist due to insufficient grayscale information in the regions of CT images with low contrast
contents. Image noise, lack of shape information, and poorly defined original contours on the
source images can also contribute to the formation of irregularities. Normally, these cannot be
fully compensated by regularization or smoothing of the displacement map during deformable
image registration (22,23). In addition, because of the 3D nature of the deformable image
registration, small islands and holes can appear when the deformed volume is re-sampled onto
the two-dimentional (2D) CT slices. Smoothing and shape processing of the deformed contours
are useful.

We used morphological operators “opening” and “closing” (24) on the deformed contours to
smooth irregular or abrupt surfaces as well as to remove or merge some small islands separated
from a nearby larger volume.

Evaluation of automated contours
Robustness test—A pair of head-and-neck CT images from the same patient was used to
test the robustness of the auto-contouring algorithm against image noise. The reference CT
was acquired on a helical CT scanner (Philips Medical System, Shelton, CT), the repeat CT
was acquired 3 weeks later using an CT-on-rails scanner (EXaCT, Varian Oncology Systems,
Palo Alto, CA). Different imaging quality from different CT scanners can be observed. Then,
different levels of white (Gaussian) noise and pepper-and-salt noises were artificially added to
the repeat CT image. The auto-contouring procedure was repeated between the reference CT
image and the repeat CT image at different noise levels. The deformed contours then were
compared to those obtained without the added noise.
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Volume overlap index (VOI)—A VOI metric is designed to quantitatively evaluate two
sets of contours (25). The VOI was defined as

where Vd is the deformed volume, and Vs the reference volume of the same structure. The
reference volume Vs can be obtained from either manually physician-drawn contours or
physician-modified deformed contours. A VOI value of 0% indicated no spatial overlap, and
a value of 100% indicated perfect agreement between the two contoured volumes.

Mean absolute surface-to-surface distance (ASSD) of two volumes—The ASSD
is defined for a point on one surface as the shortest absolute Euclidean distance to the other
surface. The mean ASSD was calculated to compare the deformed contours to the reference
contours.

Head-and-neck cases—Eight head-and-neck cancer patients who received 3 CT scans per
week using CT-on-rails were evaluated for automatic propagated contours from the planning
CT image. Each of these 8 patients received 11 to 14 daily CT scans; and a total of 100 CTs
were evaluated. For each patient, the deformed contours were compared to both physician
independently drawn contours and physician-modified deformed contours. VOI were
calculated for the high risk CTV (Clinical Target Volume) and both parotids.

Thoracic cases—Nine lung cancer patients underwent 4 dimensional computed tomography
(4D CT) scanning during simulation. The images were scanned on a PET/CT scanner
(Discovery ST; GE Medical Systems, Waukesha, WI). The 4D CT images were divided into
10 equal time phases within a complete respiratory cycle, named CT0, CT1, …, CT9. The
contours were drawn on the end expiration phase (CT5). Using the automatic contour
propagation algorithm described in this work, contours were automatically mapped from CT5
to nine other phases. The VOIs for the contoured structures (i.e., lung, gross tumor volume
[GTV], heart and esophagus) were calculated for each of these patients.

Prostate case—One prostate cancer patient underwent 25 CT scans, including one
simulation CT scan done with the Philip CT scanner and 24 daily CT scans done with the CT-
on-rails. The planning contours for the prostate, rectum, bladder, seminal vesicles, and femoral
heads were manually drawn on the simulation CT image. These contours were propagated to
the daily CT images using the auto-contouring algorithm.

The CT image resolutions was 0.068 × 0.068 × 0.3 cm3 for head-and-neck cases, 0.098 × 0.098
× 0.25 cm3 for lung cases, and 0.098 × 0.098 × 0.3 cm3 for the prostate case.

RESULTS
Fig. 2 shows an example of the smoothing and modification of deformed contours. The
deformed contours that had not undergone modification and smoothing (Fig.2b) were irregular
relative to the original contours on the planning CT image (Fig. 2a). After being smoothed and
modified, however, the deformed contours were more visually acceptable (Fig.2c). In
particular, the small islands that had separated from the large contour were removed.

Robustness test
Fig.3c and 3d show the results for the degraded repeat CT image with additive Gaussian noise
and pepper-and-salt noise, respectively. The auto-contouring process was not affected by either
type of noise, although the noises are relatively strong.
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Contour evaluation
The general experience of radiation oncologists showed that the majority of deformed contours
matched new anatomy reasonably well. Fig. 4 shows examples of contours drawn or modified
by radiation oncologists to compare with the auto-propagated contours. Most of differences
were seen at the most superior or inferior ends of a structure. This was partly due to the poor
spatial resolution of the CT slice thickness (range, 2.5 to 3 mm). Fig.4a shows a small island
that had separated from the left parotid. Fig. 4b shows that two ending slices were removed by
a radiation oncologist. Fig.4c shows the tumor boundary in the low contrast soft tissue region
can be different from physician’s judgment. Figure 4d–f show images from a lung cancer case
in which the deformed contours were propagated to another phase from the end of expiration
phase of the 4D CT image set. As shown, these deformed contours agree well with the
physician-drawn contours in general. Again, the largest disagreement was observed near the
two ends of the structure.

Head-and-neck cases
Table 1 shows the mean VOI for each of the 8 head-and-neck cancer patients. Comparing to
the physician-drawn contours from scratch without referencing the deformed contours, the
mean VOI for each patient ranged from 72.8% to 86.5% (average: 83.0%) for left and right
parotids. Comparing to the physician-modified deformed contours, the mean VOI for each
patient ranged from 98.5% to 100% (average: 99.4%) for the parotids, and ranged from 94.1%
to 98.6% (average: 97.3%) for the CTVs. The high VOI value indicates that the auto-propagated
contours matched the physician’s judgment very well. Higher VOIs were observed when the
evaluation was based on the physician-modified deformed contours than on the physician
independently drawn contours (p<0.001, Wilcoxon’s test). Apparently, both sets of contours
(independently drawn from scratch or corrected from the deformed contours) were accepted
by physicians. Table 2 shows the mean ASSD for these patients. The mean ASSD for each
patient ranged from 0.8 mm to 2.0 mm (average: 1.3 mm) for parotids when comparing to the
physician-drawn contours. When comparing to physician-modified contours, the mean ASSD
ranged from 0.0 mm to 0.2 mm (average: 0.1 mm) for parotids and ranged from 0.1 mm to 0.8
mm (average: 0.4 mm) for all CTVs.

We found that most unmodified head & neck contours were quite acceptable. Fig.5 shows an
example of the contour auto-propagation results for one of the head-and-neck cancer patients.
The image labeled “Plan” is the reference CT image showing the most important planning
ROIs, including the primary targets (the primary GTV and lymph node GTV), parotids, CTVs
of three different risk levels, and the spinal cord. The other images show the corresponding
slices for all the available repeat CT images with auto-propagated ROIs overlaid on them. The
missed numbers represent skipped CT scans (CT scans were not acquired due to various reasons
in the treatment schedule). Because of setup uncertainties and out-of-plane rotations, these CT
slices may not be exactly at the same transverse plane as in the “Plan” CT slice.

Thoracic cases
Table 3 shows the mean VOI for the 9 lung cancer patients. The reference volumes were
obtained from the physician-modified deformed contours. The mean VOIs for these patients
ranged from 98.2% to 99.7% (average: 99.3%) for the lung volume, from 96.1% to 99.3%
(average: 98.3%) for the GTV, from 96.3% to 99.2% (average: 98.1%) for the heart, and from
96.1% to 99.1% (average: 98.1%) for the esophagus. Fig.6 shows an example of all anatomical
structures (ROIs) represented in color-filled volumes. The original ROIs, which were drawn
on CT5, were completely mapped to the rest of the phases automatically.
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Prostate case
In Fig.7, the image labeled “CT0” shows an axial slice of the simulation CT image with
physician-drawn contours for bladder, prostate, rectum, and femoral heads. The following
images, CT1-CT24, show the corresponding slices for all repeat CT images overlaid with auto-
propagated contours. These contours, although unmodified by physician, they matched well
with the daily CT images. Most of the deformed rectums were acceptable, with the exceptions
of CT1, CT4, CT13, and CT21, in which the contents inside the rectum were changed
significantly.

Speed of contour-propagation
The computational complexity of the deformable registration normally depends on the size of
the image matrix to be registered. The computational time used in the auto-contour propagation
depends on the number of the ROIs and their volumes. The typical time used for head-and-
neck and prostate cases was 2 min per case, including 1 min for deformable image registration
and 1 min for contour mapping and post-processing (which included the export of individual
contours for up to 10 structures). The average time for the thoracic cases was approximately
3 min per pair of images undergoing registration. A slightly longer time was required for lung
cancer cases because of the large volumes involved (1 min for deformable registration and 2
min for contour propagation). Overall, it took 27 min to map all contours from the CT5 phase
to the rest of the phases automatically.

DISCUSSION
Although many image segmentation techniques have been investigated (26–28) and some
convenient 2D contouring tools exist in some radiation treatment planning systems, organ or
target delineation is still a time-consuming task. However, if a set of reference contours already
exists for a patient, it is not surprising that an automatic contour-propagation method can be
developed to aid in the contouring process on repeat CT images. To this end, we have designed
a reliable automatic contour-propagation method based on our deformable image registration
method. For practical reasons, auto-contouring of patient’s anatomy on repeat CT images is
essential for image-guided adaptive radiotherapy.

In our implementation, we chose to use the volume deformation method, which is similar to
that described by Zhang et al. (20). This method can avoid the need to handle ordered control
points or re-sample surfaces using sparse points. It can also reduce the effect of imaging noise
and artifacts or irregular distribution of control points. Alternatively, meshing or re-meshing
of contours was described by Lu et al. (29) and Shekhar et al. (23).

Our auto-contouring algorithm on head-and-neck cases showed results similar to those reported
by Zhang and colleagues, who compared their auto-segmentation method to physician-drawn
reference ROIs in 32 daily CT images from 7 head-and-neck patients (20). They reported that
the VOIs were approximately 80% for most ROIs; and the distances between the manually and
automatically delineated ROI surfaces were mostly within 3 mm with a mean of 1 mm and
standard deviation of <2 mm for most ROIs. Our study in 100 repeat CT images from 8 head-
and-neck patients showed a mean VOI of 83% and a mean ASSD of 1.3 mm with a standard
deviation of 0.4 mm when compared our deformed contours to physician-drawn contours from
scratch.

Realizing that inter- and intra-observer variations in contouring may have led to uncertainties
in the data, we asked radiation oncologists to directly modify the deformed contours to generate
another set of comparisons. These modified contours reflect the accepted status of the deformed
contours, similar to the process whereby a senior attending physician corrects contouring done
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by a resident in-training. Not surprisingly, because there was no inter-observer variation, these
modified contours agree with the auto-segmented contours much better than the contours
independently drawn from scratch (Table 1 and 2).

Our observations also indicate that the quality of the manual contours on the original CT image
affects the results. Ideally, for the deformable registration to track changes in shape, contours
should be drawn to follow exactly the edge of an organ or tumor that undergoes the largest
change in image intensity. However, this is not practical because of the complex nature of
human anatomy, the quality of the CT image, or the physician’s contouring skills. Inter-
observer (30–32) and intra-observer (33,34) variations have been reported by many
investigators. These imperfect original contours can be propagated faithfully to daily CT
images by the deformable registration algorithm, which introduce additional disagreement
between automatically deformed contours and physician’s judgments.

Although deformable model based automated delineation may work well on images with higher
contrast, such as thoracic CT images (35,36) and MR images (37,38), zigzag or irregular-
shaped contours may still exist at low-contrast regions because of image noise and artifacts.
Thus, contour smoothing and manual editing may still be necessary.

Imaging or motion artifacts are also a challenge for deformable image registration. For one
thoracic patient, the tumor and surrounding tissues had distorted shapes and volumes for the
mid-inspiration and the mid-expiration phases due to irregular breathing during 4DCT
acquisition. Dental artifacts can also cause unexpected contour distortions, but fortunately,
dental artifacts only affect a few axial slices. Our smoothing parameters built in the algorithm
(22) effectively reduced large deviations from the original shape. The overall impact is still
small.

In our experiments, we felt that images for prostate cancer patients were more difficult to
deform correctly than those for head-and-neck and lung cancer patient, mostly because of the
low soft tissue contrast at the boundaries of prostate, bladder and rectum. In addition,
differences in rectal filling on different days may cause correspondence ambiguity. Strategies
to solve this problem were proposed (39,40). Studies on shape model may be also useful (19,
41).

Mapping planning contours to daily CT image would facilitate adaptive re-planning. If the
contours are available on daily CT images, dose-volume histograms can be calculated to
evaluate the necessity of replanning, or the contours can be used directly for IMRT
optimization. In addition, the daily dose distribution can be transformed back to the planning
CT using the same deformable image registration method to compare with the original plan
and to estimate the cumulative doses delivered to the patient (9,42).

Our current algorithm takes 1–2 min to complete the contour propagation process, which may
be satisfactory for online adaptive replanning. Additional computational techniques, such as
parallel processing, would further reduce the computing time. Recently, parallel computing
using a graphics processing unit (GPU) was implemented for deformable image registration
(43). A factor of 70 speedups was achieved by Sharp and his colleagues (43) using a data
parallel design when compared to the CPU-based implementation. We believe new
technologies such as these may soon be applicable in real-time contour propagation for clinical
adaptive radiotherapy.

CONCLUSION
We have developed an efficient contour propagation method based on a deformable image
registration technique. The current method uses the original contours defined on the planning
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CT as reference structures. We have demonstrated that the deformable image registration
method can produce high-quality contours on subsequent CT images during the course of
external beam radiotherapy or 4D-CT images of the same patient. It is important to note that
these auto-deformed contours still need physician’s review or corrections if necessary.
Incorrect original contours, image artifacts, or low contrast objects in the CT images can affect
the quality of the computer-generated contours. Nevertheless, tracking patient’s anatomy with
an automated, computer-assisted method is becoming necessary for practical applications of
image-guided adaptive radiotherapy to further improve the dose conformity and dose
optimality in these highly conformal radiation treatment strategies.
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Fig. 1.
A diagram demonstrating the auto-contouring process on repeat CT (or 4D CT images) using
a deformable image registration method. A grayscale deformable image registration will be
performed between the planning CT and the repeat CT images. The original planning ROI will
be filled to a binary volume, which will be transformed using the displacement vector from the
deformable registration. Then the deformed volume will be smoothed and shape-regulated.
The last step is to extract the boundary of the deformed volume for each structure at the CT
slice location of the repeat CT image.
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Fig. 2.
Smoothing and modification of deformed contours. (a) Reference contours on the planning CT
image; (b) deformed contours on the daily CT image without smoothing and modification; (c)
smoothed contours on the daily CT image modified to correct for holes and islands. Red:
planning tumor volume (PTV); green: right parotid; blue: left parotid; yellow: brainstem.
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Fig. 3.
Robustness of auto-contouring algorithm to image noise. (a) Simulation CT image with
physician-drawn reference contours; (b) a repeat CT image with contours transformed by
deformable image registration; (c) the repeat CT image in (b) with Gaussian noise added. The
noisy repeat CT image was re-registered with simulation CT image and the reference contours
were re-transformed; (d) the repeat CT image in (b) with pepper-and-salt noise added. The
noisy repeat CT image was re-registered with simulation CT image and the reference contours
were re-transformed.
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Fig. 4.
Examples of differences between the automatically propagated contours and physician-drawn
contours. (a) Deformed contour is separated from the left parotid; (b) the two ends disagree
with physician’s contours; (c) contours did not deform in the low contrast region; (d) and (f)
manually drawn contours did not agree at the two ends of a structure; (e) manually drawn
contours agreed at the middle of a structure. (a),(b),(c) Colorwash: physician’s manually drawn
contours; contour: deformed contours. (d),(e),(f) Red: manual contours; green: deformed
contours.
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Fig. 5.
Contours obtained for a head-and-neck patient. Original contours were drawn on the “Plan”
CT image. They were transformed automatically by the auto-contouring algorithm to repeat
CT images “CT 2”, “CT 3”,…, “CT 19”.
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Fig. 6.
4D CT images for a lung case. A breathing cycle was divided into 10 equal-time phases. The
reference contours were drawn on phase CT5, which is estimated to be the end expiration phase.
The contours were then transformed to the rest phases using auto-contouring algorithm.
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Fig. 7.
Auto-propagation of contours for a prostate case. Original contours were drawn on simulation
CT image (“CT0”). They were mapped automatically by the auto-contouring algorithm to daily
CT images CT1-CT24. The deformed contours were overlaid on each CT image.
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Table 3
Volume overlap index (VOI) ± one standard deviation (%) for lung cancer cases.

Patient number Lung GTV Heart Esophagus

1 99.5 ± 2.7 96.1 ± 2.9 98.4 ± 0.5 98.7 ± 0.9
2 99.6 ± 2.5 98.9 ± 0.9 98.6 ± 0.4 99.1 ± 0.7
3 99.2 ± 0.2 99.3 ± 0.1 96.3 ± 3.2 96.4 ± 2.9
4 99.3 ± 0.2 97.1 ± 1.5 98.2 ± 0.7 98.4 ± 1.1
5 99.0 ± 0.2 99.1 ± 0.7 97.6 ± 0.7 97.5 ± 1.9
6 98.2 ± 0.4 96.4 ± 1.9 98.4 ± 0.4 96.0 ± 1.1
7 99.5 ± 0.1 99.3 ± 0.5 99.2 ± 0.6 99.1 ± 0.9
8 99.2 ± 0.5 98.5 ± 0.9 97.2 ± 1.4 98.8 ± 1.3
9 99.7 ± 0.0 98.4 ± 0.4 99.1 ± 0.2 98.3 ± 1.2

Average 99.3 ± 0.7 98.3 ± 1.1 98.1 ± 0.9 98.1 ± 1.3

Abbreviations GTV = gross tumor volume.
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