
Statistical and computational models of the visual world
paradigm: Growth curves and individual differences

Daniel Mirman*, James A. Dixon, and James S. Magnuson
Department of Psychology, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT,
06269-1020, USA and Haskins Laboratories, New Haven, CT, 06511, USA

Abstract
Time course estimates from eye tracking during spoken language processing (the “visual world
paradigm”, or VWP) have enabled progress on debates regarding fine-grained details of activation
and competition over time. There are, however, three gaps in current analyses of VWP data:
consideration of time in a statistically rigorous manner, quantification of individual differences, and
distinguishing linguistic effects from non-linguistic effects. To address these gaps, we have
developed an approach combining statistical and computational modeling. The statistical approach
(growth curve analysis, a technique explicitly designed to assess change over time at group and
individual levels) provides a rigorous means of analyzing time course data. We introduce the method
and its application to VWP data. We also demonstrate the potential for assessing whether differences
in group or individual data are best explained by linguistic processing or decisional aspects of VWP
tasks through comparison of growth curve analyses and computational modeling, and discuss the
potential benefits for studying typical and atypical language processing.
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Introduction
In the decade since the (re)discovery that eye movements provide an exquisitely sensitive
online measure of spoken language processing (Tanenhaus, Spivey-Knowlton, Eberhard, &
Sedivy, 1995; cf. Cooper, 1974), the “visual world paradigm” (VWP) has been applied to time
course questions at the level of sentences (Altmann & Kamide, 1999; Tanenhaus et al.,
1995), phonologically based lexical competition (Allopenna, Magnuson, & Tanenhaus,
1998), semantically based lexical competition (Huettig & Altmann, 2005; Yee & Sedivy,
2006), and even subphonemic details of word recognition (Dahan, Magnuson, Tanenhaus, &
Hogan, 2001b; McMurray, Tanenhaus, & Aslin, 2002; Salverda, Dahan, & McQueen, 2003).
1 Typically, participants are presented with a set of objects (on a tabletop or computer display)
and they follow spoken instructions to interact with the display (touching, clicking, or moving
objects) or answer spoken questions about the display. In contrast to conventional
psycholinguistic techniques like lexical decision or naming, one typically obtains multiple data
points during processing for each trial.

* Corresponding author. E-mail address: daniel.mirman@uconn.edu (D. Mirman).
1The VWP has been applied to many more aspects of language processing; for a sense of the range, see the examples collected in
Trueswell and Tanenhaus (2005) and Henderson and Ferreira (2004).
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For example, in a display containing beaker, beetle, speaker, and carriage, as a participant
hears an instruction like click on the beaker, he might generate an eye movement to beetle
when only the first two segments have been heard, and then look to the beaker 100 ms later.
This leads to trial-level data schematized in the upper row of Fig. 1. At any moment on a single
trial, a participant can either fixate an object or not, so trial level proportions are 0 or 1 for each
item of interest at any point in time. Trial data are averaged over items and participants in order
to arrive at a time course estimate like that shown in the bottom of Fig. 1. From the data of
Allopenna et al. (1998), for example, we learn that fixation proportions map onto phonetic
similarity over time; by the time listeners are hearing the/i/in a word like beaker, they are
equally likely to be fixating the target or a cohort (like beetle), while rhymes (like speaker) are
fixated less and later (but more than unrelated items, like carriage). VWP data stand in stark
contrast to data from tasks like lexical decision, where the data points represent single, post-
perceptual measures. As a result, the VWP provides fine-grained data in the context of a natural
task. However, there are three important gaps in current analyses of this paradigm. We describe
each briefly, and then describe our approach to filling these gaps.

First gap: appropriate analysis of time
Although the paradigm’s most powerful contribution is the ability to estimate the fine-grained
time course of activation and competition among linguistic representations, when the data are
analyzed statistically, time is usually ignored or treated inappropriately. Figs. 2–4 illustrate
typical approaches. In the simplest strategy, standard general linear model (GLM) analyses,
such as analysis of variance or t-tests, are applied to a greatly compressed representation of the
time course data. Fig. 2 and the left columns of Figs. 3 and 4 schematize this approach; mean
fixation proportion to each item is computed for a single window of analysis on the time course
data (top in each figure), resulting in data like that schematized in the lower panels of each
figure. While this approach minimizes the number of GLM assumptions violated (cf.
Chambers, Tanenhaus, & Magnuson, 2004;Magnuson, Tanenhaus, Aslin, & Dahan, 2003), it
expressly discards the precious fine-grained detail the VWP provides. The data are presented
graphically in continuous time course form, but statistical analyses are applied to the radically
reduced mean proportions. Aside from the loss of grain, this approach works well for data
where relations among items of interest are stable across the analysis window (as in Fig. 3).
For cases where, however, there is a change in the rank order of fixation proportions over time
(e.g., where one competitor type dominates early in the time course, but another does later, or,
as in Fig. 4, there is an interaction with time in a comparison of targets from different
conditions), this approach is obviously inappropriate, as it does not retain any detail about time
course.

Another common approach is to calculate mean fixation proportions in successive windows
of analysis (right columns of Figs. 3 and 4), and to perform a repeated measures analysis on
mean fixation proportions across windows (Allopenna et al., 1998). This preserves more of the
time course, but there are typically no independent principles for determining the “correct”
time windows and different size windows can produce very different results. More importantly,
this approach treats time as a factor with levels corresponding to individual time windows.
This analysis naturally focuses on whether the patterns of data in some time windows differ
from patterns in other windows, not on the trajectory of change over time (i.e., the estimate of
the time course of cognitive processing), which is the unique insight provided by the VWP.

We describe a statistical approach, growth curve analysis (GCA), which builds on techniques
explicitly designed to assess change over time (Singer & Willett, 2003). These techniques have
been applied primarily to longitudinal behavioral data in the developmental literature. To apply
it to VWP data, eye tracking data are treated as longitudinal data collected on a fast time scale.
The approach provides a formal model of the impact of differences between conditions and/
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or individuals on parameters (such as intercept and slope) of individual × condition curves of
fixation proportions over time. We will introduce the method in detail and then by example
after discussing the other gaps in current approaches to VWP data.

Second gap: characterizing individual differences
Researchers who have examined trial-by-trial data from the VWP know that there is substantial
between-participant variability; to the best of our knowledge there have been no attempts to
assess this variability, and so its implications are unknown. Simply describing these differences
is an important step—how well do measures of central tendency describe the range of
performance observed, and how is performance distributed over that range? Under growth
curve analysis, parameters are estimated that characterize individual differences. The mere
characterization of variability across individuals provides a starting point for analyzing
individual differences. Our approach goes further, with the aim of unpacking whether
individual differences stem from differences in language processing or other processes, such
as motor-decision processes controlling eye movements.

Third gap: interpreting individual differences
Going beyond description and unpacking individual differences requires that we grapple with
some vexing methodological questions about the VWP. There are compelling arguments that
fixation probabilities over time provide an exquisitely sensitive estimate of linguistic
processing (given, for example, that fixations map onto phonetic similarity over time down to
a subphonemic level; Dahan et al., 2001b). However, eye movement behavior in the VWP is
influenced by the contents of the display (Dahan, Magnuson, & Tanenhaus, 2001a), and we
expect individual differences in motor-decisional thresholds for saccades. We will present a
strategy for grappling with these issues by comparing growth curve analysis with simulations
of the TRACE model of speech perception (McClelland & Elman, 1986) coupled with a simple
decision model that converts TRACE activations to predicted fixation proportions over time
(Allopenna et al., 1998; Dahan et al., 2001a). Specifically, we test combinations of TRACE
and decision parameters for simulating individual and individual × condition data. It may be
possible to fit the same data by changing TRACE parameters or decision model parameters.
To the degree that individual data can be fit by TRACE but cannot be fit by the decision model,
we can provisionally attribute individual differences to variation in linguistic processing. With
a model like TRACE, we can further explore the range of model parameters that provide good
individual × condition fits to generate causal hypotheses regarding differences in linguistic
processing. When applied at the individual or group level, this approach has promise for
illuminating characteristics of language impairments.

In the next section, we provide a brief, fairly informal introduction to growth curve analysis.
Then we turn to practical examples, analyzing some recent VWP spoken word recognition
results. We begin with examples at the group level, and then demonstrate assessment of
individual differences using growth curve and TRACE models. We close with a brief
discussion of implications and alternative approaches. Readers interested in applying growth
curve modeling should see Singer and Willett (2003). The book is refreshingly accessible, and
there is an accompanying web site with sample code for SAS, SPSS, and S+/R. In addition,
we provide general step-by-step instructions for GCA in the Appendix A, and SAS and R code
and raw data for the analyses presented here are available at
http://magnuson.psy.uconn.edu/GCA (we have run the analyses in SAS and R, though many
statistical packages have multi-level modeling capabilities and any of them should be able to
conduct growth curve analyses).
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Growth curve analysis
The growth curve modeling approach to analyzing data from the VWP rests on the assumption
that the properties of the task (the characteristics of the selected words, the visual display, etc.)
create an underlying probability distribution of fixation locations (i.e., targets, competitors,
distractors, etc.) over time. The observed fixation proportions reflect this underlying
distribution. The goal of the analytic approach is to describe the functional form of the
probability distribution. It is not a model of the underlying processes (just as ANOVA would
not be). Rather, the method quantifies the major aspects of the distribution that result from the
underlying processes. This statistical approach provides appropriate and rigorous
quantification of observed data, including significance tests.

Growth curve modeling was developed for classical longitudinal designs, in which data
collection is typically done over months or years. However, the key structural issues are the
same whether measurements are made over a few seconds or over multiple years. We will
outline the basic architecture of the model and then show how it can be easily adapted to the
VWP.

Growth curve modeling, and its close cousin, hierarchical linear modeling (Raudenbush &
Bryk, 2002), are part of a family of techniques that represent a generalization of standard
regression approaches, such as ordinary-least-squares (OLS). The major innovation is that,
conceptually, growth curve models contain two (or more) hierarchically related submodels,
rather than a single model that applies to the entire sample. The first submodel, usually called
level-1, captures the effect of time. To introduce this concept, consider an experiment in which
each individual participated in only one condition. This makes individuals the smallest grain
of analysis in the model hierarchy and the following model gives a value for the dependent
measure, Y, for an individual participant, i, at a particular measurement occasion, j.

(1)

The i subscript here indexes individuals and j indexes measurement occasions. As in OLS
regression models, we have an intercept, α0i, a slope, β1i, and an error term, εij. However, unlike
standard models, the intercept and the slope are allowed to vary across individuals, hence the
i subscripts. This variation is captured in the second set of models, called level-2 models. That
is, there is potentially a level-2 model for each parameter of the level-1 model, which describes
that level-1 parameter in terms of population means, fixed effects, and random effects.

When we move to the level-2 models, the equations become a bit more complex. In particular,
as we break the intercept and slope down into structural and stochastic components, we will
refer to them using one variable to represent structural components (gamma: γ) and another to
represent stochastic components (zeta: ζ). Subscripts will indicate whether we are referring to
intercept or slope. For example, terms at level-2 where the first subscript is 0 refer to intercept
components and a first subscript of 1 indexes slope components (as will become clear shortly).
This notational complexity has two benefits. First, it is consistent with the conventions of
Singer and Willett (2003). Second, this notation facilitates working with the polynomials. As
we move to fitting more complex curves, we will add further polynomial terms. These terms
will continue to be referred to by the same variables (γ, ζ) with the first index indicating the
polynomial order (0 = intercept, 1 = slope [linear], 2 = quadratic, 3 = cubic, etc.).

The level-2 model for the intercept is: α0i = γ00 + ζ0i, where γ00 is the population average value
for the intercept and ζ0i is the deviation of an individual’s intercept from the average intercept.
The residual term, ζ0i, allows each individual’s intercept in the first model, α0i, to vary around
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the population average intercept, γ00. The analogous model for the slope is: β1i = γ10 + ζ1i,
where γ10 is the population average value for the slope and ζ1i is the deviation of an individual’s
slope from the average slope. The residual term, ζ1i, allows the slope parameter in the first
model, β1i, to vary around the population average slope, γ10.

If we substitute the models just specified for the intercept and slope into the first equation, we
get:

(2)

To facilitate an analogy to standard OLS regression, it is useful to reorganize the model into
its structural and stochastic portions:

(3)

Considered this way, the current model is closely analogous to an OLS regression model
(γ00 is analogous to the intercept, γ10 to the slope), but the error term is now the sum of three
components. The terms in the parentheses (i.e., εij + ζ0i + ζ1i * Timeij) collectively represent
error in this model. For current purposes, we adopt this standard error covariance structure, but
we note that many other structures can also be specified within this framework.

The residual term, εij, retains its usual meaning and assumptions; it is drawn from a normal
distribution with a mean of zero and its values are independent across persons and measurement
occasions. Each individual also has a constant added to each measurement occasion, the
residual term ζ0i, and another residual, ζ1i, that interacts with Time. These latter two terms
allow error to be correlated across measurement occasions, as one might expect when
measurements are repeated for each individual. The product term, ζ1i * Timeij, allows error to
be heteroscedastic within each individual. That is, the effect of this residual depends on the
magnitude of Timeij. These latter two residual terms, ζ0i and ζ1i, are also assumed to have
means of zero and to be drawn from a bivariate normal distribution, with unknown variances
and covariance. These terms are homoscedastic across individuals and constant across an
individual’s measurement occasions (see Singer & Willett, 2003, pp. 243–265, for a more
complete discussion of the composite error term).

The level-2 models can also include structural terms that capture the effects of different
experimental conditions. For example, the model for the intercept (α0i in Eq. (1)) can be
expanded to include an effect of some condition, C:

(4)

The potential effect of condition that could be captured here would be on the intercept itself,
the value at which all other level-1 predictors are zero. A similar model would be used to
capture the effect of condition on the slope (β1i in Eq. (1)):

(5)

Here condition affects the rate of change over time. Much of the power of the growth curve
approach lies in its ability to describe these over-time curves using simple linear equations at
level-1 and model the effects of different conditions through the parameters within those
equations at level-2. A level-2 model can be specified for each of the polynomial terms. The
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first term in each level-2 model can be considered the population average for the polynomial
term, γn0, where n indicates the order of the level-1 term (i.e., γ00, γ10, γ20, γ30, γ40, for the
intercept, linear, quadratic, cubic, and quartic, respectively). This parameter estimates the value
of the polynomial term when all other terms in its particular level-2 model are zero. The second
term, γnc, indexes the effect of condition, C, on the polynomial term. If there are more than
two conditions and they are categorically distinct (e.g., three or more word types or three or
more training types), it may be necessary to include multiple condition terms. That is, the model
would set one of the conditions as a baseline and estimate parameters for each of the other
conditions relative to the baseline.

The final term, ζni, is an error term that allows for individual (or individual × condition)
variation around these effects. In theory, all level-2 models can have error terms. However, in
practice, it would be unusual to include all of them in the model. The error terms, also called
random effects, are quite “expensive” in terms of the amount of data needed to estimate them.
A hidden cost is that the model must estimate not only the variance of the random effect, but
also a covariance parameter with all other random effects in the model. Thus, the number of
variance/covariance parameters required grows geometrically with the addition of random
effects. These random effect error terms capture the structure in the data not explained by the
fixed effects, thus, they play two important related roles: statistically, they make the model
describe the data more accurately; theoretically, they describe relationships in the data not
captured by fixed effects. Which random effects should be included in a particular analysis
depends on the expected error structure and the research questions under investigation. In
typical VWP data, participants are likely to differ in the rate of activation of lexical
representations; thus, linear and quadratic random effects are likely to be the most important
both for capturing the error structure and for quantifying individual differences for further
analysis, as we shall see later.

Thus far, we have considered the level-1 model as representing the trajectory of an individual’s
performance over time. However, in many experiments, we have individuals in more than one
condition, thus making the combination of individual and condition the smallest grain of
analysis. The model is completely indifferent to whether the level-1 trajectories come from
individuals or individuals × conditions. Likewise, the effect of being in a condition and the
effect of being a particular person can both be represented in the level-2 models. That is, the
model can tease apart differences in curve parameters (intercept, slope, etc.) that are attributable
to conditions from those that are attributable to individuals. To make this point more concrete,
the following model includes both an effect of condition, C, and of person, P, on the slope:

(6)

where k indexes individuals × conditions (in practice, P would naturally be a set of dummy-
coded variables, rather than a single scalar). This is an extension of Eq. (5), which only had an
effect of condition.

Fig. 5 schematically demonstrates the relationship between level-1 and level-2 models. In the
top left panel a level-1 linear model is represented. In the bottom left panel the intercept term
is replaced by a level-2 model that includes an effect of the difference between two conditions
(as in Eq. (4)), where the solid line is the data from one condition and the dashed line is the
data from the other condition; in the top right panel a similar substitution is made for a level-2
model that includes an effect of the difference between two participants, where the circles are
data from one participant and the triangles are data from the other participant. In the bottom
right panel the intercept term is replaced by the full level-2 model including effects of condition
and participant (analogous to Eq. (6)). The condition term captures the effect of condition C
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on the intercept and the participant term captures the effect of individual participant P on the
intercept. A separate parameter estimated for each participant and variation across these
parameters characterizes the variation in intercepts between participants. By extending this
approach to the other terms in the level-1 model, we can evaluate the effect of condition and
participant on other terms (slope, quadratic, etc.).2

In introducing the level-1 model, we have initially included only two terms, the intercept and
slope, to describe the curve. This would limit the model to representing straight lines. However,
the model is easily expanded to capture more complex forms. One way to accomplish this is
through the use of power polynomials (an alternative approach is to use other non-linear
functions, such as the logistic; while this approach is very much in the same spirit, we believe
power polynomials afford important advantages for many research applications, as we discuss
in more detail below). Power polynomials are capable of representing the curvilinear
relationship between fixation proportion and time. A standard way to create the power
polynomials is to simply raise Time to a particular power. For example, a quadratic curve (i.e.,
a curve with a single inflection) can be represented by introducing Time2; a cubic curve (two
inflections) by further including Time3. One issue with creating the polynomials in this way
is that the terms (e.g., Time, Time2, Time3) are highly collinear. Therefore, introducing a higher
order term (e.g., Time3) changes the estimated effects of lower order terms (e.g., Time2). This
is particularly problematic when one wishes to model effects on those lower order terms. For
example, one might wish to test an effect of condition on the first-order (linear) time term, but
also wish to capture the curvilinear nature of the relationship by adding the squared term,
Time2. In this circumstance, it is inconvenient for the squared term to influence the linear term,
as the experimental effect is hypothesized to be on the linear term.

One strategy to avoid this issue is to employ orthogonal power polynomials. The orthogonal
polynomials are linear transformations of the non-orthogonal polynomial terms just described,
but they are uncorrelated with one another. Specifically, they are the orthonormal basis vectors
for the space defined by natural polynomials of a given order and given number of time steps
(many statistical software packages, including R and SAS, have built-in functions for
computing orthogonal polynomials). Because the time vectors are orthogonal, they are
mutually independent (perpendicular); thus, including a higher-order term does not change the
value of the estimated lower-order terms. Higher-order models could also contain higher-order
residual error terms (i.e., ζ2i, ζ3i, etc.), which would capture heteroscedasticity of residuals over
time. The second-order term (ζ2i * Time2) is of particular importance because variance in VWP
data tends to be low at the tails (the asymptotic portions of the curve) and high in the middle.

To illustrate the ability of power polynomials to represent fairly complex functional form, we
generated a data set using a fourth-order polynomial. This allows us to demonstrate how the
terms (intercept, linear, quadratic, cubic, and quartic) independently affect the form of the
curve. Each panel of Fig. 6 shows data from the fourth-order model with three different values
for one of the terms, with remaining terms held constant. The top row shows hypothetical target
fixation curves (roughly monotonically increasing functions) and the bottom row shows

2In order to test the robustness of experimental effects, researchers may be interested in testing items effects. Since visual world paradigm
studies typically involve a single trial per item per participant and data from a single VWP trial consist of a sequence of categorical
fixations rather than a smooth fixation probability curve, it is not possible to use GCA on participant ·× item data. However, analysis of
items effects can be conducted by averaging over participants for each item in the experiment (i.e., the standard approach for items effects
ANOVAs). In terms of the model, the only change is that item effects are entered rather than participant effects and, depending on
experiment design, the analysis may change from within-participants to between-items or vice versa (with the standard consequences for
statistical power). Interpretation of the terms and item effects on those terms follows the same logic as interpretation of participant and
condition effects. We discuss below the advantages of GCA for analysis of differences between individual participants, and the same
advantages apply to the analysis of differences between items; that is, by-items GCA determines whether an effect is statistically reliable
across items (the typical goal of by-items ANOVA) and can quantify the differences between items for subsequent analysis.
3Mean curve height is equivalent to the mean fixation proportion measure used in several VWP studies (e.g., Magnuson et al., 2003).
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hypothetical competitor fixation curves (rise and fall trajectories indicating transient
activation). Fig. 6 shows how the various terms contribute to creating the curvilinear form: the
intercept term reflects an overall vertical shift in the curve (note that the orthogonal polynomials
change the interpretation of the intercept: the intercept term now indexes the average height
of the curve, making it analogous to area under the curve), the slope term reflects the overall
angle of the curve, the quadratic term reflects the symmetric rise and fall rate around a central
inflection point, and the cubic and quartic terms similarly reffect the steepness of the curve
around inflection points. To emphasize the effects of 3rd and 4th order terms (which are usually
low) the solid lines in Fig. 6 reflect changes of sign (positive vs. negative) for these parameters.

Interpreting the lower-order terms is fairly straightforward, but significant effects on terms
higher than the quadratic can be dificult to interpret. A general rule-of-thumb is that the order
of the terms reflects the number of changes of focus of fixation: the intercept (0th order) is a
constant difference, the linear (1st order) term is a single change of focus (i.e., from neutral
start to target), the quadratic (2nd order) term is two changes in focus (i.e., from neutral start
to competitor, from competitor to target), the cubic (3rd order) term is three changes in focus
(i.e., from neutral start to target, to competitor, back to target), etc. However, in the context of
typical VWP studies, 3rd and 4th order terms may also reflect asymmetries around curvature
captured primarily by the quadratic term and tend to be very sensitive to the asymptotic tails
of fixation proportion curves. As a result 3rd and 4th order terms may not have clear cognitive
interpretations. Typical VWP experiment design and fixation pre-processing assumes
activation of a particular target lexical representation or activation and then decay or
deactivation of a competitor lexical representation. In the target case, there is a monotonic
increase in fixation proportion, so only intercept and linear terms will relate meaningfully to
cognitive processing. In the competitor case, there is a single peak of fixation proportion with
roughly symmetric activation and deactivation time course, thus the intercept, linear, and
quadratic terms will relate meaningfully to cognitive processing. Note that for target fixation
data, if fixations that occur after target selection are included in the analyses (e.g., returns from
the target to the central fixation cross), the data will contain a second change of fixation focus,
thus, the quadratic term will capture important aspects of the time course of target fixation.
This approach to handling target fixation data provides more time course data for analysis,
making possible differences in time course easier to detect statistically using GCA (see
discussion below). The cubic term would gain a meaningful cognitive interpretation in a VWP
design that would lead participants to tend to look to an object, then away, and then come back
to it.

Fig. 6 also assists in understanding the effects of the level-2 models. As we discuss below, the
level-2 models affect the curves through the polynomial terms themselves. Therefore, the figure
provides a graphical representation of what an effect on each polynomial term means for the
curve. That is, the variations shown in Fig. 6 can be thought of as level-2 effects (such as effects
of experimental condition or individual) on level-1 parameters that determine the shape of the
curve.

Practical examples of growth curve analysis
Analysis of target fixations

As an example of the growth curve approach applied to the visual world paradigm, we present
results from a VWP investigation of effects of frequency, cohort density (sum of frequencies
of words overlapping with a target at onset), and lexical neighborhood density (sum of
frequencies of words differing from the target by no more than one phoneme) on spoken word
recognition (see Magnuson, Dixon, Tanenhaus, & Aslin, 2007, for details). As in typical VWP
experiments, on each trial, four simple pictures were presented on a computer screen and
participants were given a spoken instruction to click on one of the four presented pictures (e.g.,
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“Click on the bed”). The frequency of occurrence, cohort density, and neighborhood density
of the target words were manipulated (high vs. low) in a fully crossed design yielding 8 cells
with 16 words in each cell (128 total trials). The level-1 model contained 4 terms (intercept,
linear, quadratic, and cubic) and described the over-time fixation proportion at the individual
× condition level; the quartic term was unnecessary here, because the curve only had two bends
(the curve shape is consistent in this regard across participants and conditions). The analysis
requires a discrete representation of time, but the time scale resolution can be as fine as the
experimenter chooses. Indeed, unlike separate time bin analyses, which increase the likelihood
of false positives due to multiple comparisons, greater temporal resolution generally improves
GCA performance. The effect of each of the independent variables (frequency, neighborhood
density, and cohort density) was introduced in the level-2 model for the intercept and linear
terms. The model also included a dummy-coded effect for each individual at level-2.

The target fixation model fits (lines) are shown in Fig. 7 along with the data (symbols). As can
be seen in the figure, the model reproduces the major aspects of the average over-time
distribution quite well. The analysis also provides tests of the parameters. One standard
significance test for adding a parameter to a model involves the deviance statistic, often called
–2LL (minus 2 times the log-likelihood). Change in deviance, ΔD, is distributed as chi-square,
with degrees of freedom equal to the number of parameters added. The change in deviance
allows us to test whether including the parameter increases the fit of the model, much as a
change in R2 does in OLS regression. Table 1 shows the model parameters, deviance statistics,
and significance levels.

Frequency and cohort both had significant effects on the intercept (α0i in Eqs. (1) and (4)), but
not the slope (β1i in Eqs. (1) and (5)). These effects reflect constant advantages for items with
high frequency (due to greater familiarity) and for items with low cohort density (due to fewer
competitors) across the window of analysis. Neighborhood density did not affect the intercept,
but did have a reliable effect on the slope; items with a lower neighborhood density had a
steeper slope. Magnuson et al. (2007) explain the cross-over in the neighborhood time course
from a high- to a low-density advantage as a result of differences in the proportion of neighbors
that are also cohorts. The model predictions match the average data quite well, recreating the
major form of the curves and the condition effects on the curves.

The model also has individual-level parameters that allow it to represent differences between
individuals. These individual differences reside within the level-2 models in two different types
of parameters. In the previous section we described level-2 fixed effect parameters that allow
each individual to have a different average trajectory. The model also captures individual
differences through the random effects. The model, as we have specified it here, estimates two
residual terms for each individual × condition trajectory, one for the intercept and one for the
slope. These residuals capture the individual- level differences in the condition effects. That
is, they are estimates of how much adjustment should be made to the intercept and slope terms
to fit the individual × condition trajectory, given the effects of condition and individual already
in the model. Thus, the residuals are akin to an individual × condition interaction term.

In summary, the model captures both individual differences in average performance, via the
structural or fixed terms in the level-2 model, and individual differences in the effect of
conditions via the level-2 residuals. We consider individual differences in more detail after
presenting a second example.

Analysis of competitor fixations
The growth curve analysis method can capture both “target”-type and “competitor”-type curve
shapes (typical differences are illustrated in the bottom of Fig. 1 and in Fig. 6). In this section
we apply GCA to data from a word learning (artificial lexicon) study in order to examine cohort
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and rhyme competition in spoken word recognition and the development of these effects (see
Magnuson et al., 2003, for full description of the behavioral methods; similar results were
found by Allopenna et al., 1998, using real words and no training). The behavioral data were
collected from participants learning novel names for novel geometric objects. The set of names
contained onset cohort competitors (e.g., pibo–pibu), rhyme competitors (e.g., pibo–dibo), and
unrelated pairs (e.g., pibo–tupa). Participants were trained in two 2-h sessions on consecutive
days. Each session concluded with a set of test trials. On each test trial, a target item appeared
with three distractor items; the distractors contained either one cohort competitor and two
unrelated items (“cohort” condition), one rhyme competitor and two unrelated items (“rhyme”
condition), or three items unrelated to the target (“unrelated” condition).

Magnuson et al. (2003) used the single average proportion approach and ANOVA to address
three critical questions, which we revisit here using growth curve models: (1) does phonological
similarity influence lexical activation (measured by fixation behavior)? To answer this question
we compare fixation proportions to phonological competitors (cohort and rhyme) and unrelated
items. (2) Does the time course of phonological similarity (onset vs. offset) influence the time
course of lexical activation? To answer this question we compare fixation of onset (cohort)
and offset (rhyme) competitors. (3) Do the patterns of lexical activation change over the course
of learning? To answer this question we compare results from the first test session (after 1 day
of training) to results from the second test session (after 2 days of training).

The data were fit using the same approach as the target fixation data (a 4th-order term was
added because there are now three bends in the curve). The effects of condition were evaluated
in the level-2 models. The symmetric rise-and-fall shape of competitor-type fixation proportion
curves suggests that differences in amount of competition should primarily impact the intercept
and quadratic terms, since orthogonal polynomial intercept effects correspond to differences
in average height of the curve3 and quadratic effects correspond to differences in rise/fall rate
(note that the quadratic term captures symmetric differences in rise and fall rate and asymmetric
differences would be captured by linear and/or cubic terms). For the three-condition
comparison, the unrelated condition was used as a baseline (via dummy-coding) and separate
parameters were estimated for the cohort and rhyme conditions for each time term.

Table 2 shows the results of this analysis for day 1 and day 2 data and the behavioral data and
model fits are plotted in Fig. 8.4 The model fit data reflect the impact of adding both cohort
and rhyme effects on each time term. Except for the cubic term, condition effects on all time
terms improved model fit and, as predicted, the largest effect was on the quadratic term. That
is, the difference between phonological competitors (cohort and rhyme) and unrelated controls
was primarily in the rise and fall of the fixation probability curves.

We can further examine whether each parameter estimate was reliably different from the
baseline condition (dummy-coding requires a baseline for comparison), which in this case was
the unrelated distractor condition. Table 2 shows the level-2 parameter estimates for cohort
and rhyme relative to the unrelated baseline—the effects were highly consistent, showing very
strong effects on intercept and quadratic terms and weaker effects on slope for both conditions.
These results indicate that both cohort and rhyme competitor fixation were reliably different
from unrelated fixation on both days of testing.

To compare cohort and rhyme competitors directly we restricted the analysis to just those two
conditions. With only two conditions, the ΔD significance directly indexes the difference

4There are slight differences in rhyme proportions in the left panel of Fig. 8 compared to the top panel of Fig. 2 in Magnuson et al.
(2003). The proportions displayed in the latter graph were averaged over trials rather than participants. Since accuracy was not 1.0,
participants contributed different numbers of trials, and it is more conventional to show averaged participant averages. Note that the
differences are very small, and that Magnuson et al. used participant-averaged data for their statistical analyses.
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between the two conditions, so tests of significance on parameter estimates are generally
redundant. The results (Table 3) indicate that on day 1 there was no difference between cohort
and rhyme competition (only the 4th order term marginally improved model fit), but on day 2
there was a significant effect of condition (cohort vs. rhyme) on intercept and quadratic terms.
That is, differences in the time course of phonological similarity produced differences in mean
fixation proportion and in rise/fall rates of fixation probability. These results are completely
consistent with the analyses used by Magnuson et al. (2003), but stem from an analysis
paradigm expressly designed to characterize change over time and provide the opportunity for
analysis of individual differences, which is the focus of the next section.

Individual differences in VWP data
The previous sections demonstrate that growth curve analysis provides a robust and powerful
statistical tool for understanding the time course of effects of experimenter- manipulated
variables such as word frequency and phonological similarity. In addition, this analytic method
can quantify individual participant effects for a variety of within-participant designs. For
within-participant designs, the level-2 models carry information about individual differences
averaged over conditions (i.e., does a particular individual tend to look more quickly to the
target?) and individual × condition effects (i.e., is the effect of this factor different for this
individual relative to the effect of this factor for other individuals?). Thus, the analyses reveal
quite a bit about individual differences, in addition to the usual information about the effects
of experimental manipulations.

To demonstrate how GCA allows us to address individual differences, we return to the data
from Magnuson et al. (2007). Recall that the level-1 model described the over-time trajectory
using a third-order polynomial. We allowed individual effects to enter the model through each
of the four terms (i.e., intercept, linear, quadratic, and cubic). This allows individual
participants to have level-1 models with different values for each of these terms. The model
estimates these individual-level parameters. Table 4 shows the correlations among these
estimated individual effects. Individual differences in how participants look to the target
(averaged over conditions) are interrelated. A theory of looking behavior should be able to
account for such individual differences, in addition to manipulated effects.

The Magnuson et al. (2007) experiment compared three key lexical characteristics (frequency,
cohort, and neighborhood), and so individual differences in the effects of the manipulations
are of particular interest. We can ask, for example, whether the effects of each manipulation
are stable across participants, or whether there are individual differences in the relation of each
manipulation to the others. To simplify the exposition, we focus on the frequency and cohort
effects. In this case, GCA tells us how participants differ from each other in their response to
the frequency and cohort manipulations. Recall that there was an effect of frequency on the
intercept, such that the curve for higher frequency words was shifted up relative to lower
frequency words. There was also an effect of cohort density on the intercept; the curve was
shifted upwards for words with low cohort density compared to those with high cohort density.
The level-2 models include a residual term for each individual × condition combination. The
residual terms carry information about the degree to which this individual × condition trajectory
differs from the average trajectories for both this condition and this individual.

To obtain the estimated individual × condition effects for the frequency and cohort density
manipulations, we averaged the residuals over the levels of the other variable. This gives us
four residual values for each individual for both the intercept and the slope (see Appendix A
for a more detailed explanation of how these residual values are computed). The bivariate
correlations among these individual × condition effects are shown in Table 5. The individual
× condition effects on the intercept are moderately related to one another. This means that, in
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terms of the height of the curve, individual differences in the effect of frequency are related to
individual differences in the effect of cohort density. Consider the implications of this
relationship for the condition effects presented in Fig. 7. Note that the effects are in opposite
directions, and hence have parameter estimates with opposite sign. Positive residuals amplify
the positively signed effects, but reduce negatively signed ones, and vice versa. Therefore, the
positive relationship between the residuals implies that participants with strong cohort density
effects have weak frequency effects. That is, a positive relationship between residuals is a
negative relationship between frequency and cohort effect sizes because the effects are in
opposite directions.

These individual difference patterns (negative relationship between individual participant
frequency and cohort effects and lack of relationship between condition effects and overall
curve shape) provide relatively strong constraints on cognitive theories of individual variation
among healthy college-age adults. As a first step towards understanding these patterns in
cognitive terms we examined whether changes in the dynamics of processing in the TRACE
model would produce the behaviorally observed pattern. In the case of spoken word
recognition, the TRACE model (McClelland & Elman, 1986) has proved a particularly fruitful
means of modeling VWP data, providing a concrete testbed for mechanistic hypotheses
regarding the time course of word recognition (e.g., Allopenna et al., 1998; Dahan et al.,
2001a, 2001b). The TRACE model is composed of three processing levels (features, phonemes,
and words) with bidirectional information flow between levels, and several parameters
governing processing within and between levels (e.g., feedforward and feedback gain, decay
rates, etc.). Hypotheses regarding individual differences can be tested by examining whether
manipulation of the corresponding parameters produces the behaviorally observed pattern of
variability across individuals. Of particular interest were the following two questions: (1) is
the observed variability more likely to be due to decision-level differences or linguistic
processing differences? (2) Is the observed variability more likely to be due to lexical
processing differences or phonological processing differences?

Simulations were carried out using jTRACE (Strauss, Harris, & Magnuson, 2007). We began
with the standard TRACE parameter values, and then modified a small subset to model
individual differences, as we describe below. jTRACE includes the three frequency
implementations (resting level, post-perceptual, and bottom- up connection strength) described
by Dahan et al. (2001a). We used the bottom-up connection strength implementation, in which
connections from phonemes to words are proportional to word frequency. A 270- word lexicon
was specially designed to manipulate cohort size and word frequency independently. To that
end, the lexicon contained cohorts that were large (more than 20 words) or small (less than 5
words). One to three words were selected from each cohort to be target words (1 for small
cohorts, 2–3 for large cohorts). Half of these target words were randomly assigned to the high
frequency condition by setting their frequency to 10, and all other word frequencies were set
to 1. This set of materials was designed to create a relatively simple context for testing the
effects of different parameters on cohort and word frequency effects. A natural lexicon would
be expected to produce the same results, though the limitations of the TRACE model’s phonetic
inventory make it difficult to create strong independent manipulations of cohort density and
frequency.

With the standard TRACE parameters, the target words showed robust frequency and cohort
size effects. We tested the effects of manipulating six parameters (described below). For each
parameter tested, 15 “individual” simulations were carried out holding all parameters constant
except the test parameter, which was manipulated in equal steps from very low to very high
(specific values depended on the parameter tested). Model fixation probabilities were
computed from activations using Luce (1959) choice rule and the four-alternative- forced-
choice linking hypothesis (the simpler version of Allopenna et al., 1998, method described by
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Dahan et al., 2001a). The decision model we used to convert TRACE activations to response
probabilities contains only one free parameter (k, in the Luce choice rule), which we
manipulated to test the hypothesis that the behavioral individual differences were due to
decision- level differences. Five other parameters governing lexical- and phoneme-level
dynamics were also tested. Only the phoneme-to-word frequency weight scaling parameter
(s; see Dahan et al., 2001a for details) produced the behaviorally observed pattern of a negative
relationship between individual participant frequency and cohort effects and a lack of
relationship between condition effects and overall curve shape (Table 6 summarizes the general
patterns of variability for each parameter tested).

Fig. 9 shows cohort and frequency effects for three values (low, medium/default, and high) of
k and s. Variation of the decision-level k parameter (top two rows of Fig. 9) produced large
variability in curve shape (smaller values of k produced much less sharp curves) and this
difference was related to both cohort (top row) and frequency (second row) effect sizes, which
were highly positively correlated (i.e., as k varied, frequency and cohort effect sizes increased
and decreased together). This pattern is not consistent with the observed behavioral data,
suggesting that the behaviorally observed individual differences were not due to decision-level
differences (with the caveat that one might be able to model these differences with a different
decision model). positively correlated (i.e., as k varied, frequency and cohort effect sizes
increased and decreased together). This pattern is not consistent with the observed behavioral
data, suggesting that the behaviorally observed individual differences were not due to decision-
level differences (with the caveat that one might be able to model these differences with a
different decision model).

In contrast, variation of s (bottom two rows of Fig. 9) had very little impact on overall curve
shape and increasing values increased frequency effects (Fig. 9, bottom row) and decreased
cohort effects (Fig. 9, third row). It is trivial that increasing the frequency scaling parameter
would increase frequency effect size, but the decreasing of cohort effect size requires some
analysis. We found that the decrease in cohort effect size was driven by high frequency items
because their low frequency cohort competitors could not keep up with the high frequency
targets. That is, as frequency differences become exaggerated, the effect of competition from
low frequency cohort competitors was reduced for high frequency target words. There was
virtually no effect of s on the cohort effect for low frequency items because the difference
between average cohort competitor frequency and target frequency was much smaller for low
frequency targets than for high frequency targets. Although this pattern is not a necessity
(higher frequency words could have higher frequency cohorts), it is reasonable that high
frequency words would be more likely to “stand out” above their cohort more than low
frequency words. Indeed, even though cohort density (summed cohort frequencies) was
controlled, this pattern was true of the words used in the behavioral experiment (Magnuson et
al., 2007) as well: for low frequency items, mean target log frequency was 2.4 and mean cohort
log frequency was 1.7; for high frequency items, mean target log frequency was 4.7 and mean
cohort log frequency was 1.6.

This examination of the model makes a strong prediction for the behavioral data: the between-
participant variability in cohort effect size should be larger for high frequency items than for
low frequency. That is, the individual participant random effects for the cohort term should be
larger for high frequency words than low frequency words. A simple test of this prediction is
to examine the variance in the intercept term for low and high frequency conditions separately;
the high frequency conditions should have greater variability in the intercept term. The
behavioral data were consistent with this prediction: the estimated variance for low frequency
conditions was 3841.54, and for high conditions it was 5687.00, F(59, 59) = 1.48, p < .07. This
post-hoc analysis is consistent with the TRACE model prediction that individual differences
in cohort effect size occur more for high frequency words and lends further support to the claim
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that TRACE model frequency scaling parameter s captures differences among the college-age
adult participants. We leave for future research the additional behavioral testing required to
test this prediction fully. As our goal was simply to demonstrate the approach, we have not
attempted to address these patterns at a theoretical level by considering, for example, why there
should be individual differences in frequency gain; future research will address this question.

This section described how growth curve analyses can be used to quantify and investigate
patterns of individual differences. This is an important strength of the growth curve method:
condition, individual, and individual × condition effects can all be examined in a single set of
analyses and the technique is powerful enough to pull out patterns of variability in a relatively
small number of participants (15) drawn from a relatively homogenous group (healthy, college-
age adults). As a result, this statistical technique is a very promising tool for applying eye-
tracking methods to studying larger individual differences such as changes due to development
and aging and acquired and developmental language disorders. We have demonstrated some
first steps in using growth curve analyses and computational modeling to address individual
differences. We used growth curve analysis to quantify and describe individual differences.
We then examined whether variation in different parameters in the TRACE model would lead
to analogous differences, with a particular focus on distinguishing linguistic from decisional
bases of individual differences (e.g., the pattern of individual differences we just analyzed was
captured by manipulating a parameter governing phonological–lexical dynamics but not by
manipulating a decision-level parameter). At this point, we simply wish to emphasize the power
of the statistical and computational modeling approach: growth curve statistical modeling
revealed aspects of the behavioral data that were not accessible using previous approaches to
VWP data analysis, and computational modeling using the TRACE model helped to evaluate
possible cognitive interpretations of the results and made further predictions for behavioral
testing.5

General discussion
The visual world paradigm has proven to be a powerful technique for investigating spoken
language processing from subphonemic details to sentence processing, though the paradigm
lacks standard and appropriate statistical tools for analyzing time course data. In this report we
have described a statistical technique based on multilevel polynomial regression that is
specifically developed for analyzing change over time. We have shown how this technique can
be used to analyze typical visual world paradigm data and how it can be used to examine
individual differences. Combined with computational modeling using the TRACE model of
speech perception, we have taken a first step towards understanding individual differences in
spoken word recognition in cognitive terms.

One possible criticism of using orthogonal polynomials is that they are not well-suited to
capturing the asymptotic details in both tails of VWP fixation probability curves and that an
alternative function would be a better starting point. Scheepers, Keller, and Lapata (2007), for
example, advocate using the logistic function. The logistic curve-fitting approach is very much
in the same spirit as our approach since it also aims to capture the full time course of fixation
probability. Both approaches have strengths and weaknesses. As with all statistical models,
researchers will need to make an informed decision about the appropriateness of the model for
their situation. One major advantage of the growth curve approach is that the model of the
average is the average of the individual participant models. Put differently, there are easily

5Note that the approach of comparing model and human data we have illustrated here is quite general, and could be used more simply
to compare candidate models to human data. For example, one could apply GCA to high and low frequency target trajectories in human
data, and to one or more sets of simulation data (from a single model with parameter variations, or more distinct models). Then one can
ask whether the GCA results from one model are qualitatively more similar to the human data, or perhaps specify how the model and
human data diverge (e.g., are effects observed in the same terms for the human and model GCA results?).
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defined mathematical relations between the average data pattern and the underlying probability
distribution from which individual data patterns are (presumed to be) drawn. This property
may seem unremarkable to researchers who work primarily with linear models; it is a core
property of linear models. But non-linear models, like the logistic, do not share this property.
Given a non-linear model, the average data pattern is not indicative of the underlying
probability distribution, regardless of whether one is averaging across participants or trials.
Paradoxically, this implies that to the degree that the average data pattern is fit by a logistic
curve, the greater the assurance that the individual data patterns were not logistic in form
themselves. Therefore, if one aggregates data by averaging, some deep and awkward questions
arise about what the estimated parameters mean—what are they estimating, if not the
underlying probability distribution that generated the individual data patterns? Of course, there
is no rule that mandates averaging, but the types of models at issue require aggregated data,
and averaging is a standard aggregation method. In general, one needs to be able to specify the
linkages among the underlying distribution, the individual (or finest grained data), and the
aggregated data.

The process of averaging, even in linear models, can raise some legitimate concerns: what
about a case where two different patterns of individual data that give rise to the same average
data (e.g., one dataset with several “slow” participants and several “fast” participants vs. one
with much less variability between participants)? GCA would distinguish these cases based on
distributional differences in the level-2 individual participant parameters. In contrast, on the
logistic approach, it is necessary to address individual and group levels separately (e.g.,
Scheepers et al., 2007, fit full and subset group average data, but not individual participant
data) because for logistic curves the model of the average data is typically not the average of
individual participant models (i.e., logistic curves are not dynamically consistent; Keats,
1983).

On the other hand, the logistic approach may provide better fits at the asymptotes of VWP data.
The polynomials in GCA do a good job of capturing the general form of the curve within the
analyzed time window, but may produce strange behavior outside of that range (e.g., an
extended period with fixation proportions at static levels). We suggest that the asymptotes in
these data are generally not where the action is: often the asymptotes are artifacts of the task.
For example, curves start flat because participants are not looking at any objects before the
trial begins and it takes about 200 ms to plan and execute an initial saccade. Since VWP trials
are self-terminating and last different durations, an asymptotic right tail can arise due to padding
short trials to be the same duration as long trials. In either case, since the experimental focus
is on time course bracketed by the asymptotic ends of fixation curves, the asymptotes
themselves are of comparatively less interest than the transitions.

Nonetheless, there may be cases where the tails are important. For example, consider the
schematic data patterns shown in Fig. 10: the left panel shows a constant advantage for one
condition (vertical shift), the right panel shows a faster time course of activation for one
condition (horizontal shift). Orthogonal polynomial GCA would describe both of these patterns
as differences in the intercept term and fail to distinguish between them (because the orthogonal
polynomial intercept corresponds to the average curve height). It is important to note that in
practice, such ambiguity would be rare, as it requires an equal shift at both ends of the curve
(asymmetric shifts would affect the linear term) of modest magnitude (due to the necessarily
asymptotic shape of the curves, large shifts change trajectory curvature and would affect the
quadratic term); nonetheless, this is a weakness of GCA using orthogonal polynomials. There
are a number of ways to overcome this weakness. Perhaps the simplest is to include fixations
after target selection (e.g., fixations back to a central cross), which would allow the quadratic
term to capture the crucial time course differences. In the resulting curves, a constant advantage
for one condition would still result in an effect on the intercept, but a faster activation and decay
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profile would be captured by the quadratic term. Another approach would be to use natural
polynomials, in which case the vertical shift would still predict an intercept difference and the
horizontal shift would predict effects on higher-order terms, though (as discussed above) at the
cost of losing independence of the coefficients. Another solution would be to use a logistic
function, as advocated by Scheepers et al. (2007), in which case the vertical shift would predict
an effect on the y-intercept term and the horizontal shift would predict an effect on the x-axis
location of the central infection point (see Scheepers et al. for model details and parameter
interpretation). However, the logistic approach also has weaknesses as described above (lack
of independence of terms and the need to model group average data and individual participant
data separately). In general, model selection should be informed by the hypotheses under
investigation. GCA using orthogonal polynomials is a robust and powerful statistical tool that
has many advantages, but it is not going to be perfect for every analysis and researchers should
consider the strengths and weaknesses of different models in planning analyses of their data.

In summary, our approach makes two contributions to understanding the time course of spoken
language processing tapped in the VWP. First, the statistical approach provides sorely needed
tools appropriate for evaluating changes in fixation proportions over time. Second, it provides
a foundation for evaluating between-participant variability in the visual world paradigm. By
combining a robust statistical approach to change over time with systematic computational
modeling, we provide an important step towards understanding individual differences in a
naturalistic task with low memory and task demands, which may provide a powerful means of
investigating theoretical questions and language impairments.
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Appendix

Appendix A

Step-by-step instructions for GCA
1. Read in data.

2. Create orthogonal time vectors of appropriate size and add them to the data structure.

3. Fit base model that contains all effects except those under investigation.

4. Gradually (individually) add critical effects, noting the change in model fit (–2LL)
when each term is added.

5. Evaluate significance of changes in –2LL and differences in parameter estimates as
appropriate.

Table A1
Example condition coding and residual values for participant 1

Participant Condition Residual

Frequency Cohort density Neighborhood density Intercept (ζ01) Linear (ζ11)

1 1 1 1 Z01 Z11

1 1 1 0 Z02 Z12

1 1 0 1 Z03 Z13

1 1 0 0 Z04 Z14

1 0 1 1 Z05 Z15
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Participant Condition Residual

Frequency Cohort density Neighborhood density Intercept (ζ01) Linear (ζ11)

1 0 1 0 Z06 Z16

1 0 0 1 Z07 Z17

1 0 0 0 Z08 Z18

Each condition is represented as 1 (high) or 0 (low).

Averaging residuals for individual by condition effects
To illustrate how we calculated the average residuals for the individual by condition effects,
we present Table A1. The table shows the eight records [2 (Frequency) × 2 (Cohort density)
× 2 (Neighborhood density)] for a single hypothetical individual. Consider as an example of
the computations, the cohort density effects on the intercept. To obtain these values, we
averaged over the levels of frequency using neighborhood density as a repeating factor. The
four resulting terms were thus computed as: M(Z01, Z02), M(Z03, Z04), M(Z05, Z06), M(Z07,
Z08). The resulting means capture the magnitude of the residual terms for this individual for
high and low cohort density (separately for levels of frequency). The frequency residuals were
calculated analogously (i.e., by averaging over levels of cohort density): M(Z01, Z03), M(Z02,
Z04), M(Z05, Z07), M(Z06, Z08).
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Fig. 1.
Schematic of typical eye movement averaging for the visual world paradigm. For individual
trials (top), a participant can only fixate one object at a time, giving a time series of 0.0 and
1.0 proportions for each possible fixation target. Trials are averaged (typically across items
and participants) to yield continuous time-course estimates of, e.g., lexical activation and
competition.
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Fig. 2.
Schematic of “area” analyses. Proportions over time for a target, competitor, and unrelated
item (top) are converted to single numbers—average fixation proportion over the entire time
window (or some smaller window).
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Fig. 3.
Area analyses comparing target proportions in different conditions with a single time window
(left) and three successive time windows (right). A common approach is to define a series of
time windows (often many more than three) and to include “window” in a repeated measures
ANOVA (violating independence assumptions, since successive windows are strongly
related).
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Fig. 4.
An example of a case where multiple windows are required to capture change over time; in
this case, target proportion interacts with time. Two or more windows are required to capture
this interaction, but window selection is problematic (see text).
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Fig. 5.
Schematic of multilevel linear model approach. The top left panel shows the level-1 model.
The top right panel adds a level-2 model that includes an effect of participant P, triangles and
circles correspond to two different participants. The bottom left panel adds a level-2 model
that includes an effect of condition C, solid and dashed lines correspond to two different
conditions. The bottom right panel combines these level-2 models so that both condition and
participant effects are represented.]
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Fig. 6.
Effects of manipulating individual model parameters on the shape of VWP fixation proportion
curves. The top row shows schematic target fixation curves (roughly monotonic rising
indicating increasing activation), the bottom row shows schematic competitor fixation curves
(rise and fall trajectory indicating transient activation). Each panel shows three levels for a
single parameter, the middle value is shown as a dashed line for ease of interpretation.
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Fig. 7.
Observed data (symbols) and model fits (lines) for frequency (top panel), cohort density
(middle panel), and neighborhood density (bottom panel) effects. Reprinted with permission
from Magnuson et al. (2007).
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Fig. 8.
Observed (symbols) data for cohort competitors (squares), rhyme competitors (triangles) and
unrelated distractors (x’s) and model fits (lines). Error bars indicate ±1SE. On day 1, there is
equivalent cohort and rhyme competition (higher fixation proportion for competitors than
unrelated items); on day 2 the time course of cohort and rhyme competition is significantly
different (see text for details).
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Fig. 9.
TRACE “individual difference” plots of cohort (first and third row) and frequency (second and
fourth row) effects under manipulation of k (top two rows) and s (bottom two rows).
Manipulation of k primarily affects curve shape and cohort and frequency effects tend to
increase together. Manipulation of s has small impact on curve shape and opposite effects on
frequency and cohort effects.
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Fig. 10.
Schematic demonstration of data from two conditions that differ by a constant advantage
(vertical shift, left panel) or by time course of activation (horizontal shift, right panel).
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Table 1
Results of target fixation analyses of frequency, cohort density and neighborhood density effects

Model –2LL ΔD p<

Base 44481.99 — —

Frequency

 Intercept 44475.99 6.0 .05

 Linear 44474.01 1.99 n.s.

Cohort density

 Intercept 44474.69 7.30 .05

 Linear 44474.49 0.20 n.s.

Neighborhood density

 Intercept 44481.73 0.26 n.s.

 Linear 44467.40 14.33 .01
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Table 3
Results of cohort–rhyme competitor fixation analysis

Model –2LL ΔD p<

Day 1

 Base 2388.2 — —

 Intercept 2388.2 0.0 n.s.

 Linear 2388.3 0.1 n.s.

 Quadratic 2388.5 0.2 n.s.

 Cubic 2388.5 0.0 n.s.

 Quartic 2391.1 2.6 .1

Day 2

 Base 6215.0 — —

 Intercept 6221.3 6.3 .01

 Linear 6221.6 0.3 n.s.

 Quadratic 6264.2 42.6 .0001

 Cubic 6264.3 0.1 n.s.

 Quartic 6264.4 0.1 n.s.
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Table 4
Correlations among individual participant effects on intercept, linear, quadratic, and cubic parameters

Intercept Linear Quadratic Cubic

Intercept 1.0 0.66* −0.60 −0.32

Linear 0.66 1.0 −0.35 −0.58

Quadratic −0.60 −0.35 1.0 0.11

Cubic −0.32 −0.58 0.11 1.0

Bold = p < .05

*
p < .01.
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Table 5
Correlations among individual × condition intercept and linear term residuals

Intercept-Cohort Linear-Cohort Intercept-Frequency Linear-Frequency

Intercept-Cohort 1.0 −0.19 0.55* −0.15

Linear-Cohort −0.19 1.0 −0.28 0.14

Intercept-Frequency 0.55* −0.28 1.0 −0.094

Linear-Frequency −0.15 0.14 −0.094 1.0

Bold = p < .05

*
p < .01.
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Table 6
TRACE parameters with default (standard) values, value range tested in individual difference simulations, and the
general pattern of results

Parameter Computational function Default value Value range General pattern

k Response competition 7 2–12 Primary variability in curve
shape with positively correlated
cohort and frequency effects

αpw Phoneme-to-word weights 0.05 .01–.09 Positive correlation between
frequency and cohort effects
(frequency effects more
variable)

δp Phonological decay rate
(working memory)

0.03 .01–.05 Variability in cohort effects but
not in frequency effects

δw Lexical decay rate (working
memory)

0.05 .01–.09 Variability in cohort effects but
not in frequency effects

γw Lexical layer competition 0.03 .01–.05 Positive correlation between
frequency and cohort effects
(cohort effects more variable)

s Frequency sensitivity 0.13 .03–.23 Negative correlation between
frequency and cohort effects
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