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Abstract
A mathematical model is presented for growth and remodeling of arteries. The model is a thick-
walled tube composed of a constrained mixture of smooth muscle cells, elastin and collagen. Material
properties and radial and axial distributions of each constituent are prescribed according to previously
published data. The analysis includes stress-dependent growth and contractility of the muscle and
turnover of collagen fibers. Simulations were conducted for homeostatic conditions and for the
temporal response following sudden hypertension. Numerical pressure-radius relations and opening
angles (residual stress) show reasonable agreement with published experimental results. In particular,
for realistic material and structural properties, the model predicts measured variations in opening
angles along the length of the aorta with reasonable accuracy. These results provide a better
understanding of the determinants of residual stress in arteries and could lend insight into the
importance of constituent distributions in both natural and tissue-engineered blood vessels.

1 Introduction
One of the primary goals of tissue engineering is to develop methods to construct tissues and
organs in vitro. To do this, one must not only understand the biochemical environment in which
these organs develop, but the biomechanical environment as well. The vasculature is a
convenient system for studying the response of tissues to changing mechanical loads. In
response to acute changes in blood flow rate, for example, many arteries actively contract or
dilate to maintain a constant fluid shear stress on the endothelium (Johnson, 1981; Holtz et al.,
1984). Due to a chronic increase in systemic blood pressure, arteries thicken (Matsumoto and
Hayashi, 1996; Fung and Liu, 1991) and their residual stress patterns change (Fung and Liu,
1989), presumably to restore homeostatic wall stress distributions. Knowledge of the behavior
of blood vessels could be extended to more complex organs such as the heart.

Long-term changes in arterial structure are achieved via two main processes: smooth muscle
growth and collagen remodeling. Olivetti et al. (1980) showed that hypertension induced by
aortic coarctation causes an increase in smooth muscle cell volume. Nissen et al. (1978) found
that the half-life of collagen decreases almost four fold in response to chronic hypertension.

Mathematical models are important tools in studies of the biomechanics of growth and
remodeling. Several mathematical models for growth and remodeling of arteries have been
published during the last decade. These include thick-walled models for growth (Taber and
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Eggers, 1996; Taber, 1998; Rachev et al., 1998; Taber and Humphrey, 2001) and a thin-walled
model that includes collagen turnover but does not account for residual stress (Gleason et al.,
2004; Gleason and Humphrey, 2005). Here, we present a thick-walled constrained mixture
model that includes smooth muscle growth and contraction, collagen remodeling, and residual
stress. In developing this model, we have used experimental data to minimize the number of
free parameters and to independently test model predictions. In general, the results given by
the model agree well with measured variations in geometry, pressure-radius relations, and
residual stress (opening angles) under normal and perturbed loading conditions.

2 Model
The artery model is a pressurized tube composed of a mixture of smooth muscle cells, elastin,
and collagen, each with a separate set of material properties. The relative distributions of the
constituents vary radially and axially along the length of the artery. The analysis of the model
is based on the following assumptions:

1. The wall constituents are pseudoelastic and incompressible. Elastin and collagen are
one-dimensional passive fibers, while smooth muscle is a transversely isotropic
material that undergoes active contraction in the circumferential direction.

2. The growth rate of smooth muscle depends on its local state of stress and on the fluid
shear stress on the endothelium (Taber, 1998). At the homeostatic state, the
circumferential stress of smooth muscle is uniform.

3. Collagen turns over in the manner described by Gleason et al. (2004), where old
collagen decays exponentially in time and the initial stretch of each new collagen fiber
is a specified constant value.

4. Shortly after birth, elastin remodeling ceases (Davis, 1993; Lefevre and Rucker,
1980). Any subsequent artery growth only stretches elastin further from its zero-stress
state.

5. The growth and remodeling laws for each constituent are the same regardless of the
artery, or the position of the material within the artery. Mechanical variations between
arteries depend only on spatial distributions of the constituents.

Material properties for collagen and elastin are based on previously published data, and
properties for smooth muscle are determined using experimental pressure-radius curves for a
central location along the aorta. Parameters in the growth and remodeling laws are found using
data from a similar aortic location. Distributions of the constituents are determined from
published histology data (Bunce, 1974). Details are given below.

3 Analysis
The present model essentially extends the arterial growth model of Taber (1998) to include
remodeling of individual wall constituents, as in the membrane model of Gleason et al.
(2004). The artery wall is treated as a constrained mixture, in which all constituents in the
mixture are assumed to deform and move together.

This paper presents two separate but related models. The first (homeostatic) model is used to
study the behavior of an artery at mechanical, growth, and remodeling equilibrium. For this
model, it is not important how the artery arrives at its equilibrium state. Collagen turnover is
assumed to be at steady state, and smooth muscle growth must satisfy the assumption of
uniform muscle stress. The second (time-dependent) model is used to study the evolving stress
state of the artery due to changes in loading conditions. For this model, the stress state is path
dependent due to time-dependent growth and remodeling. The governing equations are the
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same for both models, but growth and remodeling in the time-dependent model are determined
through specified growth and remodeling laws.

3.1 Theory for Growth and Remodeling
We combine the theory for volumetric growth of Rodriguez et al. (1994) and the theory for
matrix remodeling of Humphrey and Rajagopal (2002), with smooth muscle contraction
included by the method of Taber (2000). The formulation is based on the concept of evolving
natural (zero-stress) configurations for each tissue component. Tissue is treated as a mixture
of cells, water and solid ECM constituents (collagen and elastin), with the cells being a scaffold
on which ECM constituents are synthesized. The cells grow and change shape as the ECM
remodels via turnover of individual constituents. As the tissue develops, old constituents
(which were produced at a uniform assumed initial stress) deform with the cells and gradually
degrade. With time, new constituents appear, we assume, with the same initial stress as the old
ones.

The loaded homeostatic state is chosen as the reference configuration, denoted as the body b
(0) at time t = 0 (Fig. 1).1 It is convenient to treat the wall constituents separately, but they are
assumed (i.e., constrained) to undergo the same deformation during loading.

For smooth muscle, imagine that b(0) is unloaded into bυ and then dissociated into
infinitesimally small pieces, or individual cells, giving configuration B, which is assumed to
be approximately stress free (Fig. 1). The cells then grow and actively contract through the
muscle growth and activation stretch ratios (  and ; i = r, θ, z), establishing the passive
and active zero-stress states (BP and BA). Next, the cells are reassembled into the body bR,
which usually contains residual stress. Finally, a pressure load is added to produce the body
bL.

Collagen and elastin are taken as one-dimensional fibers attached to the cells. In this model,
elastin turnover is neglected and the initial stretch  of elastin fibers is specified at the
homeostatic state (t = 0), relative to the elastin zero-stress state BE (Fig. 1). Old collagen is
continually degrading while new collagen is being added at each intermediate time τ, where 0
< τ ≤ t (Fig. 1). The initial stretch of new collagen  is also specified, relative to the collagen
zero-stress state BC. After initial production, elastin and collagen fibers undergo the additional
stretch ratios λ and λt/τ, respectively, due to loading and cell growth (Fig. 1).

3.2 Deformation and Mechanical Equilibrium
3.2.1 Loaded Artery—The deformation of the loaded artery b(t) in the current state, relative
to the homeostatic state b(0), is described by the mapping

(1)

for uniform inflation of a cylinder, where (R, Θ, Z) and (r, θ, z) are the cylindrical polar
coordinates of a point in b(0) and b(t), respectively. Associated stretch ratios are

(2)

The equation of radial equilibrium is

1In this paper, zero-stress configurations are denoted by upper-case B's, whereas stressed configurations are denoted by lower-case b's.
Time t = 0 is in maturity, thus avoiding complexities of development.
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(3)

where σi are Cauchy stresses. The boundary conditions are σr(r1, t) = −Pi(t) and σr(r2, t) = 0,
where Pi is the internal blood pressure, and r1 and r2 are the inner and outer radii of the loaded
artery. Unless specified otherwise, the internal pressure is taken as Pi = 16 kPa, and the
volumetric blood flow rate is Q = 1400 mm3/s. To a first approximation, Poiseuille flow gives
the average endothelial fluid shear stress

(4)

where μ is the viscosity of blood (3 cP).

3.2.2 Unloaded Artery—The deformation of the unloaded configuration bu(t) relative to b
(t) is described by the coordinate mapping (Fig. 2)

(5)

The corresponding stretch ratios are given by

(6)

which satisfy the incompressibility condition λrλθλz = 1. In bu, the internal pressure and axial
load are zero. The equations of radial and axial equilibrium are

(7)

(8)

where ru1 and ru2 are the inner and outer radii of the unloaded artery, respectively. The
boundary conditions are σru (ru1) = σru (ru2) = 0.

3.2.3 Cut Artery—When a single radial cut is made in an unloaded artery bu(t), the cross
section opens into an approximately circular sector with an opening angle φ (Fig. 2). Let β(t)
be the configuration of the cut artery. Then, the deformation of β(t) relative to the loaded
configuration b(t) is defined by

(9)

where (ρ, ϑ, ζ) are the coordinates in β(t), and φo = π − φ (Taber and Humphrey 2001). The
stretch ratios of the cut state relative to the loaded state at t are

(10)

which satisfy the incompressibility condition λρλϑλζ = 1. The equations of radial force, axial
force, and moment equilibrium are, respectively,

(11)
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(12)

where ρ1 and ρ2 are the respective inner and outer radii of the cut artery. The boundary
conditions are σρ(ρ1) = σρ(ρ2) = 0.

3.3 Material Constitutive Laws

Let  be the stretch ratio of constituent j in the direction i relative to its zero-stress state (Fig.
1). For an incompressible pseudoelastic material, the constitutive equations for the partial
Cauchy stresses are

(13)

where j represents elastin (e), collagen (c), or smooth muscle (m). In addition,  is the
strain-energy density function for the constituent j, and p is a Lagrange multiplier, which
includes the contribution of water to the stress. The total stress of the mixture is given by

(14)

where φj is the volume fraction of constituent j.

The strain-energy density function for elastin is taken in the form

(15)

where Cel is a material constant. Here, λe∗ is the stretch ratio along an elastin fiber, computed
relative to its zero-stress state BE (Fig. 1). The strain-energy density function for collagen is
taken as

(16)

where μc and ac are material constants and λc∗ is the stretch ratio along a collagen fiber, relative
to the zero-stress state BC (Fig. 1). Note that the strain-energy density functions for elastin and
collagen are based on the exact solution for a three-dimensional fiber, rather than a one-
dimensional fiber.

Vascular smooth muscle is taken as transversely isotropic relative to the circumferential
direction. The partial stress of the muscle includes passive ( ) and active ( ) components,
i.e. . As suggested by Holzapfel (2000), the passive strain-energy density function
is

(17)

where Cm, k1, and k2 are material constants, and  is the first strain
invariant, with  computed relative to the passive zero-stress state BP (Fig. 1).
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For circumferentially oriented smooth muscle fibers, the active stress is given by σra = σza =
0 and

(18)

Here,  (see Fig. 1) and  is the maximum passive stretch at which contraction is
still possible. The active modulus Ca increases from zero for passive muscle ( ) to a
maximum value Ca max for maximum contraction ( ). Accordingly, we take

(19)

Equation (18) gives the characteristic parabolic active stress seen experimentally by Cox
(1975) (Fig. 3). Contractile homeostasis (normal muscle tone) is defined by .

3.4 Growth and Remodeling Laws
3.4.1 Elastin—Under normal conditions, elastin turns over relatively little after birth (Davis,
1993; Davidson et al., 1986; Lefevre and Rucker, 1980). As the animal grows, the artery grows
longer axially and, as blood pressure and flow rate increase, the circumference grows. We
assume that, with these changes, the elastin is simply stretched further from its zero-stress state.
We treat elastin as a matrix of fibers in the z – θ plane and the strain energy density function
is given by Eq. (15), with . Here,  represents the stretch ratio of the elastin in the
homeostatic state (t = 0) relative to its zero-stress state BE, and λ is the additional stretch from
the homeostatic value (see Fig. 1). We assume that state BE occurs during the initial production
of elastin.

3.4.2 Collagen—Unlike elastin, collagen is continually turning over. If the stretch ratio of a
collagen fiber at the time of production is , then the stress of an individual collagen fiber
produced at time τ is a function of , where λt/τ = λ(t)/λ(τ) with λ(τ) = λτ/0 (see Fig.
1).

In the homeostatic model, it is assumed that the artery has been at equilibrium (in the loaded
state) for a “long” time. Therefore, all new collagen fibers have the same stretch ratio as the
old fibers they replace, i.e. λ(t) = λ(τ), so .

In the time-dependent model, as the size and shape of the artery change, collagen fibers
produced at different times bear different stresses. The total stress of the collagen matrix is a
function of the evolving geometric shape, as well as the rates of production (mc) and
degradation (kc) of collagen. Both mc and kc may be functions of either the collagen stress or
the stress born by the cells producing the collagen. However, in this model, we assume that
the rates of production and degradation are constant. The total collagen stress at time t is given
by (Humphrey and Rajagopal, 2002)

(20)

3.4.3 Smooth Muscle Cells—In both the homeostatic model and the time-dependent
model, we assume that the smooth muscle cells, via a combination of growth and active
contraction, tend to maintain circumferential muscle stress and endothelial fluid shear stress
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at homeostatic values. In the homeostatic model, all cells are at their homeostatic stresses. In
the time-dependent model, growth and contraction respond to changes in loading.

Under homeostatic conditions, vascular smooth muscle maintains a state of partial contraction,
i.e., basal tone. This allows muscular arteries to respond rapidly to changes in flow by relaxing
or contracting further to alter diameter. For example, in response to increased flow (and τw),
the muscle relaxes to increase vessel radius and, by Eq. (4), restore the normal value of τw
(Kamiya and Togawa, 1980). However, if the altered flow condition persists for days or weeks,
the artery wall grows circumferentially to “permanently” increase the radius, until normal
vascular tone is restored. The opposite occurs when blood flow rate drops.

Active contraction is assumed to respond quickly to changes in fluid shear stress on the
endothelium (τw) and more slowly to changes in tone ( ), to bring each back to their
homeostatic values (τo and  respectively). Accordingly, we assume that muscle activation
is governed by the relation

(21)

where the dot denotes the time derivative and Taτ and Taλ are time constants (Taτ ≪ Taλ). In
addition,  is restricted to values between λa min (maximum activation) and 1 (passive).

As discussed above, the arterial wall grows in response to chronic changes in flow. It also
grows in response to changes in blood pressure, which primarily affects circumferential wall
stress. For example, hypertension induces wall thickening that tends to restore normal wall
stress (Fung and Liu, 1991). Consistent with our assumption that the smooth muscle stress

 is the critical regulatory parameter, we assume that the muscle follows the growth laws

(22)

(23)

where  is the homeostatic muscle stress and Trσ, Tθσ, Tτ, and Tga are time constants. In this
work, axial growth is ignored ( ). The last term in Eq. (23) represents the coupling between
muscle contraction and growth. This allows the artery to maintain its nominal fluid shear stress
and wall stress while growing to return to a homeostatic contractile state ( ).

3.5 Parameter Values
In this section, we give parameter values for a baseline (first-approximation) model for an
artery. Refinements and perturbations of this model are examined later.

Arteries consist primarily of three constituents: smooth muscle cells, collagen, and elastin. The
primary assumption of the model is that the wide variation in mechanical properties and
response of various arteries to applied loads depends mainly on differences in the relative
distributions of these three constituents.

The wall constituents are organized into three layers: the intima, media, and adventitia (Rhodin,
1979). The intima is primarily a single layer of endothelial cells, except in aging and disease.
Though these cells clearly send signals to the rest of the artery when changes in flow rate occur
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(Langille, 1993; Furchgott and Zawadzki, 1980) they contribute little to the mechanics of the
artery as a whole. As a result, the intima is not considered in this model of normalcy. The media
is a mixture of all three constituents, with volume fractions depending on the particular artery.
In elastic arteries (e.g., the aorta), the medial smooth muscle is organized into concentric layers
separated by fenestrated sheets of elastin with interspersed collagen. In muscular arteries,
smooth muscle cells dominate the media with an elastic lamina located near the media/
adventitia boundary. The adventitia consists predominantly of collagen. The relative sizes of
the media and adventitia vary depending on the artery. In the aorta, for example, the ratio of
media to adventitia thickness varies from approximately nine in the aortic arch, near the heart,
to less than one in the abdominal aorta (Bunce, 1974).

In the following, we let rb be defined as the radial location of the boundary between the media
and the adventitia. The normalized boundary location is defined as

(24)

where r1 and r2 are the inner and outer radii of the loaded artery, respectively. The value of γ
varies between 0 (all adventitia) and 1 (all media). Note that γ is enforced in the loaded
homeostatic state and would not have the same value in the unloaded configuration.

The media and adventitia are separate layers. However, to improve model convergence, a
smooth transition between layers is assumed. In the model, the volume fraction of constituent
i has a radial distribution given by

(25)

so that

(26)

For the baseline model, the volume fractions of collagen and elastin in the media are uniform
and equal (Stergiopulos et al., 2001), with cells making up the remainder. The adventitia is
also considered uniform, with collagen constituting most of the volume. The volume fractions
for muscle, collagen, and elastin are taken as

(27)

For α = 500 [in Eq. (25)], the distributions for γ = 0.8 are shown in Fig. 5A. The average volume
fractions for the entire wall depend on the value of γ. For realistic values of γ, the model gives
good correlation with experimentally determined whole artery dry mass fractions (Fischer and
Llaurado, 1966), as well as those used by Gleason et al. (2004). For example, if γ is taken to
be equal to 0.6, which is a realistic value for the carotid artery (Bunce, 1974), then the total
volume fractions of the model (φm = 0.32, φc = 0.51, φe = 0.17) are reasonable.

In addition, the material parameters for Eqs. (15)–(23) are the following:
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(28)

Note that contractility is not included in the baseline model (Ca = 0). In addition, collagen and
elastin fibers are included in both the circumferential and axial directions. Collagen fibers are
assumed to have the same initial stretch ( ) regardless of orientation, but for elastin fibers,
the initial stretches (  and ) are determined by their orientation.

3.6 Solution Method
The governing equations were solved using the method previously detailed in Taber and Eggers
(1996), Taber and Humphrey (2001), and Taber (2004). As described in these papers, the
equations were reduced to a set of integral equations, which were solved using a Nelder-Mead
minimization and the trapezoidal rule for integration. For the homeostatic model, the solution
procedure begins with P = 0, Q = 0, and . The variables P, Q, ,

, and  are then incrementally stepped toward their respective homeostatic values [Eq.
(28)]. Muscle growth is calculated by integrating the growth laws [Eq. (22), (23)] until τw =
τ0 and  for all integration points. This process is repeated until all variables reach their
homeostatic values, producing the homeostatic configuration b(0).

Without changing the growth state (  and ) of the artery, the unloaded state bu(0) was
determined by solving the integral equations with P = 0 and with the artery free to deform
axially, as in Taber (1998). The cut state was determined in a similar fashion, as in Taber and
Humphrey (2001).

In the time-dependent model, the computation starts at the equilibrium state b(0) established
by the homeostatic model. With time, the muscle grows and contracts or relaxes [Eqs. (21)-
(23)], the collagen remodels [Eq. (20)], and the elastin stretches. The growth and remodeling
laws were integrated using finite differences. The loaded, unloaded and cut states were
calculated in the same manner as in the homeostatic model.

4 Results for Baseline Homeostatic Model
4.1 Pressure-Radius Relations

For an inflation test, the passive and active pressure-radius curves have the characteristic
sigmoidal shape of the rat aorta and carotid artery (Berry et al., 1975; Fridez et al., 2002) (Fig.
4). To illustrate the effects of muscle tone, active pressure-radius curves are shown for normal
tone (λa = 0.9) and maximum contraction (λa = 0.6). For γ = 0.8 and Ca = Ca max = 15 kPa,
numerical results are compared with experimental pressure-radius curves for the active and
passive carotid artery of the rat (Fridez et al., 2002) and the passive thoracic aorta of the rat
(Berry et al., 1975). For both arteries, the agreement between the theoretical and experimental
results is reasonably good.
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4.2 Wall Stress Distributions
Transmural distributions of wall stress and smooth muscle growth depend on the relative
constituent distributions. For the baseline model, distributions are defined by the location of
the boundary between the media and the adventitia (0 ≤ γ ≤ 1). To illustrate these variations,
stress distributions in the loaded and unloaded artery are shown for the constituent distributions
of Figure 5A.

Due to the heterogeneous transmural distributions of the constituents, the total homeostatic
stress state in the pressurized artery is very different in the media and adventitia (Fig. 5B).
Because the collagen is fully remodeled, and the smooth muscle is fully grown, each collagen
fiber and each muscle cell bears the same load, respectively, regardless of location. The total
stress born by a constituent, however, depends on this homeostatic stress and the volume
fraction φ of the constituent. For example, due to the differences in the distributions in each
layer, the cells bear a greater portion of the total load in the media than in the adventitia.

Note that the collagen stress in the homeostatic artery is quite small (Fig. 5B). This is a
consequence of the material properties defined by Eq. (16) and the homeostatic collagen stretch

. However, if the blood pressure is increased by 50%, the collagen takes considerably
more load before significant remodeling occurs (see Fig. 16B, to be discussed later).

For a homogeneous artery, the residual circumferential stress varies monotonically across the
wall from compressive at the inner radius to tensile at the outer radius (Chuong and Fung 1986).
In contrast, the present model yields a rapid drop in residual stress at the boundary between
the media and the adventitia (Fig. 5C). Results are shown here for two locations of the media-
adventitia boundary (γ = 0.4 and γ = 0.8). The basic pattern is similar to that computed by
Taber and Humphrey (2001) for a two-layer cylinder.

4.3 Opening Angles
In the model, the opening angle depends strongly on the location of the boundary between the
media and the adventitia (Fig. 6). For γ → 1 (artery predominantly made up of media) or γ →
0 (artery predominantly made up of adventitia) a radial cut gives a positive opening angle.
When the artery has similarly sized inner and outer layers (γ ≈ 0.5), however, the opening angle
is negative.

To a first approximation, the opening angle is a measure of the residual bending moment in
the unloaded artery (Taber and Humphrey, 2001). When the artery is predominantly made up
of one layer, the residual stress distribution resembles the monotonic pattern that is seen in a
growing cylinder made up of a single homogeneous material (see Fig. 5C, γ = 0.8). This gives
a positive net moment, which is relieved via a positive opening angle (for γ large or γ small).
When the boundary is near the central part of the wall, the more complex stress pattern causes
a negative net moment (Fig. 5C, γ = 0.4), resulting in a negative opening angle.

Changing the values of the homeostatic stresses and stretch ratios ( , , , and ) affects
the magnitude of the opening angle, shifting the curve in Fig. 6 by increasing or decreasing the
opening angle for all values of γ. However, the basic shape and concavity of the curve remain
approximately the same (results not shown). Varying the flow rate or the target shear stress
has little effect on the opening angle (results not shown).

5 Homeostatic Model for Entire Aorta
Few data are available on how biomechanical characteristics vary along the length of the aorta.
One notable exception is the study of Liu and Fung (1988), who measured longitudinal
variations in opening angle of the rat aorta. To examine the ability of our model to predict their
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results, we used the model as a first-approximation for a local section of the aorta. For a given
section, the parameters of the baseline model were altered to reflect the actual geometry,
transmural distributions of collagen and elastin, and axial stretch. In this section, the variations
in these properties and their effects on the residual stress state of the aorta are examined.

5.1 Effects of Media-Adventitia Boundary Location
We used the data of Bunce (1974) to establish the longitudinal variation in location of the
media-adventitia boundary (γ). In the aortic arch, the media is much thicker than the adventitia;
in the thoracic and abdominal aorta, the adventitia becomes relatively thicker. Figure 7A shows
the specified location of the boundary in the loaded artery as a function of distance from the
heart. For this distribution of γ, the general trend in opening angles given by the model agrees
qualitatively with the data of Liu and Fung (1988) (Fig. 7B).

5.2 Effects of Elastin Distribution
The media of most elastic arteries consists of relatively uniform layers of smooth muscle cells,
collagen and elastin. Muscular arteries, in contrast, have less elastin in the inner media with a
dense layer of elastin at the boundary between the media and adventitia. Bunce (1974) showed
that the abdominal dog aorta, unlike more proximal regions, has a distribution more closely
resembling a muscular artery than an elastic artery. Furthermore, Feldman and Glagov
(1971) showed that, in humans, the total density of collagen plus elastin across the media is
relatively constant for a wide range of aorta collagen and elastin cross-media gradients (mass
fraction of muscle remains uniform across the media). In our model, these data are accounted
for by replacing the inner media elastin with collagen where appropriate (Fig. 8A-D). When
implemented, this variation increases the opening angle in the abdominal aorta, bringing the
model into better agreement with the data of Liu and Fung (1988) (Fig. 8E).

The reason for this effect is the following. In the baseline model, elastin bears a greater tensile
load than collagen (see Fig. 5B). Hence, replacing elastin with collagen in the inner media
results in a greater compression at the unloaded inner radius and a larger residual stress gradient
across the wall, relative to the baseline model. This yields an increased opening angle,
especially in the abdominal aorta.

This modification also helps explain other experimental data. For example, Feldman and
Glagov (1971) found that, in general, the older a human subject was at death, the more likely
they were to have a greater concentration of elastin in the outer part of the media than in the
inner part. They also found that the trends in collagen gradient were opposite those for elastin.
Combining these data with the observation of Saini et al. (1995) that the opening angles of
human aortas increase with age lends credence to the hypothesis that the opening angle depends
strongly on the radial distribution of its constituents. In particular, these data indicate that if
there is a positive elastin gradient across the media (higher volume fraction elastin in outer
media than in inner media), and a corresponding negative collagen gradient, then the opening
angle should be greater than if there were no gradient. Similarly, if the elastin gradient were
negative from inner to outer radius, the opening angle would be smaller than if there were no
gradient. For any value of γ, the model shows these same trends based on media constituent
gradients (results not shown).

5.3 Effects of Axial Stretch
Guo et al. (2002) showed that, in mice, the ratio of the in situ length of an aortic section to its
excised and unloaded length is significantly greater in the abdominal aorta (∼ 1.6) than in the
aortic arch (∼ 1.1). Elastin is considered to be responsible for the shortening of arteries upon
excision from the body (Dobrin, 1997). In our model, because elastin does not significantly
remodel after one month post-birth, we assume that the elastin stretches with the growing artery.
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It seems reasonable to assume, due to variations in the surrounding anatomical restrictions,
that the straight portion of the abdominal aorta lengthens axially more than the arch as the
animal grows. Figure 9A shows the model-predicted ratio of the in situ axial length of the aorta
to the unloaded excised length (1/Λu) when the assumed axial stretch ratio of the elastin due
to arterial growth ( ) is varied from 1.1 to 2.0 along the length of the aorta. These results
agree well with the experimental data of Guo et al. (2002), which are also shown.

Because the artery wall is incompressible, a greater in vivo stress leads to a smaller radius and
a thicker wall in the unloaded artery. This results in a longer “moment arm” for the residual
stresses across the wall, yielding a higher opening angle. Since the elastin stretch ratio is greater
in the abdominal aorta than near the arch, including this effect yields increased opening angles
in the abdominal aorta, bringing the numerical results into better agreement with the data of
Liu and Fung (1988) (Fig. 9B).

5.4 Opening Angles in a Realistic Model for the Aorta
When all of the above variations are included simultaneously to create a nominal model for
the aorta, the computed longitudinal variation in opening angle shows a reasonably good
qualitative match to the experimental results of Liu and Fung (1988) (Fig. 10). The aortic arch
and abdominal aorta have high positive opening angles, while the thoracic aorta has a negative
opening angle. However, the opening angles in the modeled aortic arch region are
approximately half of those measured experimentally. We speculate that this difference in the
opening angle could be due in part to the effects of longitudinal curvature in the arch. This
would cause circumferential variations in stress and growth, which are not accounted for in
the present model.

A nominal model for a contracting aorta, in which λa = 0.9 for the entire aorta was also run.
Smooth muscle tone during growth and remodeling had little effect on opening angles, which
were computed for the passive vessel (data not shown).

5.5 Two-Cut Opening Angles
Vossoughi et al. (1993) showed that a single radial cut does not relieve all residual stress in
the bovine aorta. They first divided the section into two rings with a circumferential cut and
then cut each of the resulting rings radially (see Fig. 2). After the second cut, the inner ring
opened more than the outer ring. Later, Greenwald et al. (1997) performed a series of related
experiments in which they removed inner or outer portions of the wall of bovine carotid arteries
and measured the opening angle after cutting the remaining inner or outer ring, respectively.
They found that the opening angle depends on the radial location of the circumferential cut
(Fig. 11). This experiment was simulated here by removing radial integration points and
calculating the opening angle for the remaining ring. The model was run at 12.5% aorta length,
because this is where the nominal aorta model has a similar one-cut opening angle to that of
the experiment (see Fig. 10).

For the inner ring, the numerical curve of opening angle versus cut location agrees well with
the data of Greenwald et al. (1997) (Fig. 11). In contrast, although showing a similar trend of
decreasing opening angle as the cut moves closer to the adventitia, the model predicts much
larger negative opening angles than those found experimentally for the outer ring.

As shown by Taber and Humphrey (2001), two-cut opening angles are sensitive to the
heterogeneity of the mechanical properties of the arterial wall. The sharpness of the boundary
between the media and adventitia is defined by the parameter α in Eq. (25). When the value of
α is decreased, the transition from media to adventitia becomes more gradual (Fig. 12A). This
results in a significant change in the two-cut opening angles (Fig. 12B), as well as the one-cut
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opening angle along the length of the aorta (Fig. 12C). While the two-cut opening angles are
brought into better agreement with experimental data (Fig. 12B), the predicted longitudinal
variation becomes worse (compare Figs. 10 and 12C).

5.6 Collagenase and Elastase Opening Angles
Zeller and Skalak (1998) treated portions of rat saphenous arteries with elastase and collagenase
and reported the resulting changes in opening angle and circumferential arc length. They found
that, for both drugs, the opening angle increased with time after treatment for at least thirty
minutes. Moreover, the arc length of the cut segment increased for elastase-treated arteries and
decreased for collagenase-treated arteries. Using the nominal model, this experiment was
simulated by setting the volume fraction of the digested constituent to zero and recalculating
the equilibrium state of the cut artery. (Growth and remodeling remained the same as in the
three-constituent model, and were not allowed to reequilibrate.) The model predicts the same
qualitative changes in the opening angle for the artery exposed to collagenase and similar
changes in arc length for both the collagenase-treated and elastase-treated arteries (Fig. 13).
However, contrary to the experimental result, the model-predicted opening angle of the
elastase-treated artery decreases.

6 Results for Time-Dependent Model
Arteries adapt to perturbed loading conditions by growing and remodeling. Here, we examine
the dynamic response of the time-dependent model following a step increase in pressure. The
model starts from the equilibrium state established using the nominal homeostatic model for
the aorta and calculates changes due to growth and remodeling.

Two time-dependent models are considered. The first neglects active contraction (λa = 1 for
all t), which is likely appropriate for modeling the arch of the aorta, because it exhibits little
contractility. The second model includes active contraction with normal tone (λa = 0.9)
specified at t = 0. With flow rate fixed, a pseudo-step increase in pressure was applied (Fig.
14A), and the artery was allowed to adapt. Growth, contraction, and remodeling were computed
using Eqs. (20)-(23), with the growth time constants and collagen production and degradation
rates given in Eq. (28). When contraction was ignored, we set λ̇a = 0.

The temporal response of the model was studied for a 50% jump in blood pressure from its
homeostatic value with flow rate held fixed. The model was run without contraction at 8% and
40% along the length of the aorta from the heart and with contraction included at 40% aorta
length. At 8% length, the aorta is predominantly composed of media; at 40%, it is
approximately half media and half adventitia (see Fig. 7A).

6.1 Wall Stress and Fluid Shear Stress

Immediately after the pressure jump, the vessel distends, causing the muscle stress  to
increase and the fluid shear stress τw to decrease (Fig. 14B,C) Here, the stresses are normalized
relative to the homeostatic values, i.e., . When contraction is included, the wall rapidly
contracts (λa decreases, Fig. 14F), reducing vessel radius. This response quickens the
adaptation of τw (see 40% aorta in Fig. 14C). However, due to the magnitude of the jump,
contraction alone cannot return the shear to its homeostatic value. This can be seen by noting
that λa reaches a minimum before τw returns to its homeostatic value (see Figs. 14C,F) Later,
circumferential growth slowly decreases the vessel radius further, returning the shear stress
and muscle tone to their respective homeostatic values (Figs. 14C,F). During this time, the wall
also thickens (Fig. 14E), returning  to its homeostatic value (Fig. 14B). All of these trends
are consistent with experimental observations.
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During remodeling, new collagen is produced at the specified stretch ratio . Then, as an
individual collagen fiber deforms further with the changing artery geometry, its stretch ratio
λc∗ relative to its zero-stress configuration changes. At any given time, therefore, collagen
fibers are stretched different amounts, depending on the time of production. Due to the step
increase in pressure, the increase in radius stretches the collagen from its homeostatic value

 (Fig. 14G). Then, as old collagen is replaced by new collagen at the new
homeostatic geometry, λc∗ returns to its homeostatic value. Because active contraction
regulates the geometry of the artery, the mean stretch ratio of collagen fibers λc∗ remains closer
to  when contraction is included. In addition, as the artery returns to homeostasis, the standard
deviation of the collagen mean fiber stretch in the wall decreases (Fig. 14H). When contraction
is included in the model, the standard deviations are smaller (results not shown).

6.2 Opening Angles
Fung and Liu (1989) found that the aortic opening angle (φ) due to a single radial cut varies
with time after induced hypertension. Time-dependent opening angles predicted by the model
following a 50% increase in pressure are shown for sections located at 8% and 40% of the
length of the aorta (Fig. 15). For both sections, the opening angle follows a similar trend to
that found by Fung and Liu (1989), as the angle jumps immediately and peaks around four
days after the pressure jump. It then decreases, and finally increases again after several weeks
(Fig. 15B,D). The corresponding partial stress distributions for the wall constituents are shown
during growth and remodeling at the 8% location (Fig. 16). The transmural growth stretch
ratios ( , ) are also shown (Fig. 17).

For the 8% and 40% locations without contraction, this complex opening angle pattern can be
described in four steps: (1) For the first few days after the pressure jump, the muscle grows
rapidly in the circumferential direction (Fig. 14D). Because  increases more near the inner
radius, this growth is initially greater there (Fig. 17A), causing greater compression in the inner
layers of the unloaded artery and an increase in opening angle (Fig. 15A,C). (2) For several
days after the peak in φ, circumferential growth changes relatively little, but collagen turnover
continues, lowering the tensile stress by replacing old collagen fibers that were stretched by
the pressure jump (Fig. 16B,C). As it occurs primarily in the collagen dominated adventitia,
this effect results in a decrease in adventitial residual stress and a drop in opening angle. (3)
After about 50 days,  and τw return toward their respective homeostatic values (Fig. 14B,C).
This response is brought about by an increase in wall thickness while the inner radius returns
to its original homeostatic value. Hence, though  is fairly uniform across the wall (Fig. 17B),
the change in thickness is caused solely by an increase in outer radius. Consequently, elastin
at the inner radius retains its initial homeostatic stretch, while elastin in the outer layers stretches
further, causing a second significant increase in opening angle (Fig. 15A,C). (4) Finally, as the
collagen remodels at the new equilibrium geometry, the opening angle equilibrates to a new
homeostatic value. It is important to note that, when the artery has attained this new equilibrium,
all of the cells and collagen fibers bear the same loaded stress as at time zero, but the elastin
stress is different (Fig. 16A,D,inset). According to our model, therefore, it is the lack of elastin
turnover that produces a new homeostatic state, similar to the sub-optimal adaptation described
by Gleason et al. (2004).

Figure 15B,D shows the same results, along with the experimental data of Fung and Liu
(1989) at 8% and 40% of the aorta length for the first 40 days after the pressure jump. (The
experimental data end at 40 days post-surgury.) Here, the model results are scaled so that the
initial computed opening angle is the same as the initial experimental value. At the 8% location,
the match between the scaled numerical and the experimental results is quite good. At 40%,
however, the model fails to predict the increase after 10 days. However, if contraction is
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included in the model, the opening angle increases again after the initial jump, similar to the
experimental data (Fig. 15D). Notably, the aorta at 40% from the heart resembles a muscular
artery more than at 8%; hence, contractility may be more significant.

7 Discussion
In this paper, we presented a thick-walled model for an artery that accounts for the mechanical
response and functional adaptation of individual wall constituents. Every attempt was made to
minimize the number of free parameters. Hence, we used published data to determine the spatial
distributions and mechanical properties of smooth muscle cells, elastin and collagen. For
growth and remodeling, we assume that (1) arteries grow to maintain a uniform smooth muscle
stress; (2) elastin does not turn over and, therefore, stretches with the growing artery after birth;
and (3) collagen continually turns over, with new collagen fibers formed at a specified initial
stretch.

Several other models have been used to study growth and remodeling in arteries. In the model
of Taber and Eggers (1996), circumferential and radial growth depends on local wall stress.
The models of Taber (1998), Rachev et al. (1998), and Taber and Humphrey (2001) grow in
response to both wall stress and the fluid shear stress on the endothelium. Rachev and Hayashi
(1999) added a contractile term for more acute shear stress management. Gleason et al.
(2004) used constrained mixture theory to account for remodeling of multiple constituents in
a thin-walled model that does not account for residual stress. Each of these models has helped
to develop our understanding of the evolving stress states of arteries. Building on these previous
efforts, we used the present model to determine the relative contributions of smooth muscle
growth and contraction, as well as collagen remodeling, to the residual stress state of the artery.
Residual stresses, as characterized by opening angles, are important because they reflect
inhomogeneous growth and remodeling.

The behavior of our model depends strongly on the relative distributions of the wall
constituents, which vary along the length of the aorta. When realistic distributions are included,
the results given by the model agree quite well with the opening angle data of Liu and Fung
(1988) and Fung and Liu (1989) (see Figs. 10 and 15), as well as the pressure-radius data of
Berry et al. (1975) and Fridez et al. (2002) (see Fig. 4). Reasonable agreement also was found
with the two-cut opening angle data of Greenwald et al. (1997) and the elastase/collagenase
experiments of Zeller and Skalak (1998) (see Figs. 11–13). However, as found by Taber and
Humphrey (2001), the two-cut opening angle results for the outer ring agree only if there is a
gradual transition from media to adventitia (Fig. 12B), a characteristic that produces more error
in one-cut opening angle predictions (Fig. 12C). Clearly, this effect warrants further study.

7.1 Implications of This Study
It has been stated that small diameter arterial substitutes are the ‘Holy Grail’ of tissue
engineering (Conte, 1998). Such substitutes could be used, for example, to replace damaged
coronary arteries in coronary bypass surgery. Our model shows that the transmural distributions
of the wall constituents play a vital role in the mechanics of natural blood vessels, and likely
would need to be considered in any tissue-engineered implants that may be devised.

Though it is beyond the scope of this paper, our model could be used to explore species-to-
species variations in opening angles, which have been seen experimentally (Han and Fung,
1991, Guo et al., 2002). Guo et al. (2002), for example, have reproduced many of the
experiments done by Liu and Fung, but in C57bl/6 mice. They found variations in the opening
angle along the aorta, but the variations they found were quite different from those of Liu and
Fung (1988). In the mouse, the opening angle dips in the proximal thoracic aorta, but remains
positive, and climbs to a value in the abdominal aorta that is greater than that in the arch (similar
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to the result for α = 50 shown in Fig. 12C). It is possible that this difference can be attributed
to the differences in the microstructure of the aortas of mouse and rat.

7.2 Limitations
As with any model, we made several assumptions to mathematically simplify this problem.
First, we have neglected the pulsatile nature of the flow in the aorta. Some investigators suggest
that atherogenesis is triggered by certain characteristics of unsteady flow (Friedman et al.,
1975). Moreover, arterial growth and remodeling may depend on cyclic distension caused by
pulse pressure.

Further, some of our assumptions greatly simplify the architecture of the artery. For example,
we neglected the helical architecture of arterial smooth muscle (Rhodin, 1979). Also, we have
assumed that the artery behaves as a constrained mixture, which posits that each constituent
exists simultaneously (though in differing quantities) everywhere in the artery and deforms
equally under loading. The true construction of the aorta is considerably more complicated.
Cells, collagen and elastin form a network via both series and parallel connections. A model
that accounts for this arrangement could yield different results from those of the current model.

Relatively simple geometric and mechanical properties have been assigned to the wall
constituents. Some researchers, for example, assume that collagen buckles in compression,
while others treat collagen fibers as springs that uncoil when stretched (MacKenna et al.,
1997). Furthermore, we do not account for differences in constituent microstructure in different
layers of the artery. For example, the model does not account for the more prominent axial
alignment of collagen in the adventitia compared to that in the media (Humphrey, 2002). Fiber
alignment can have a large effect on wall stress (Sacks, 2003; Mirnajafi et al., 2005).

Finally, this is a phenomenological model that connects stress to growth without taking into
account the intermediate steps of gene and protein expression. These steps are clearly
important, but outside the scope of this paper.

In conclusion, a key role of mathematical models is to help determine what questions still need
to be answered experimentally. To our knowledge, while several studies have examined the
gross mechanical behavior of arteries, there has not yet been a comprehensive quantitative
study of remodeling of constituents along the length of the aorta. Our model suggests that such
a study, combined with numerical tools, could help determine the nature of residual stresses
in arteries and perhaps provide insight into why these stresses vary so much from artery to
artery or even within a single artery.
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Figure 1.
Configurations for growth and remodeling. Each constituent (smooth muscle, elastin, and
collagen) has its own natural (stress-free) configuration. Stress-free configurations are denoted
by capital B's; stressed configurations are denoted by lower case b's. Stretch ratios are denoted
by λ's. See text for details. In this figure, green denotes states at time = 0; red denotes states at
time = t; yellow states occur at time τ where 0 ≤ τ ≤ t; and blue denotes a state that occurred at
a time < 0.
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Figure 2.
Schematic of opening angle experiments. Growth and remodeling in the loaded state (b)
produce residual stress in the unloaded state (bu). When a transmural cut is made in the unloaded
artery, relief of residual stress results in the opening angle (φ). When a circumferential cut
(dashed line) is followed by a radial cut, the inner and outer rings open to different opening
angles.
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Figure 3.
Active stress as a function of stretch ratio relative to the passive zero-stress state, as given by
Eq. (18). Curves are shown for values of the activation stretch ratio λa ranging from 0.9 (normal
tone) to 0.6 (maximum contraction). Note that active stress is zero when  or

.

Alford et al. Page 21

Biomech Model Mechanobiol. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Pressure-radius relations with radius normalized to the passive radius at zero pressure. (A)
Numerical pressure-inner radius curve with experimental data of Berry et al. (1975) for rat
aorta. (B) Numerical pressure-outer radius curves. Curves for passive muscle, normal
contraction (λa = 0.9), and maximal contraction (λa = 0.6) are shown for γ = 0.8. Experimental
data are from Fridez et al. (2002) for the rat carotid artery.
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Figure 5.
Results for homeostatic baseline model. (A) Constituent volume fraction distributions for γ =
0.8. (B) Circumferential partial and total stresses in loaded artery (γ = 0.8). (C) Residual total
circumferential stress for γ = 0.8 and 0.4.
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Figure 6.
Opening angle vs media-adventitia boundary location (γ) for homeostatic baseline model.
When the artery geometry is primarily made up of either adventitia (γ → 0) or media (γ → 1),
the opening angle tends to be positive. When the media and adventitia are similar in size (γ ≈
0.5), the opening angle is negative. For the parameter values used in this model, the opening
angle is negative for γ ∈ [0.24, 0.63].
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Figure 7.
Opening angle based on realistic relative thickness of media and adventitia along entire aorta.
(A) Specified media-adventitia boundary location (γ) along the length of the loaded aorta [based
on Bunce (1974)]. (B) Opening angle along the length of the aorta, given by baseline model
(with γ variation of (A) included) and the experimental results of Liu and Fung (1988).
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Figure 8.
Opening angle based on realistic transmural constituent distributions along aorta. (A-D)
Modified transmural distribution of elastin for the four locations along the aorta defined in E.
(E) Effects of specified elastin variations on opening angle. Experimental results of Liu and
Fung (1988) are also shown.
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Figure 9.
Axial stretch and opening angle based on realistic axial elastin stretch ratio ( ) along aorta.
In modified aorta,  increases from the arch to the abdominal aorta. (A) Numerical and
experimental (Guo et al., 2001) axial stretch ratios of the loaded intact aorta relative to the
unloaded dissected aorta. (B) Effects of axial elastin stretch ( ) variation on opening angle.
Experimental data of Liu and Fung (1988) are also shown.
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Figure 10.
Opening angles along the length of the aorta given by the nominal model (including variations
highlighted in Sections 5.2 and 5.3), baseline model (with only media-adventitia boundary
varied as in Fig. 7A), and experimental results of Liu and Fung (1988).
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Figure 11.
Two-cut opening angles at 12.5% distance along the nominal aorta model and experimental
measurements of Greenwald et al. (1997) for bovine carotid artery. The cut position indicates
the normalized location of the circumferential cut from the inner radius (0) to the outer radius
(1).
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Figure 12.
Effects of sharpness of media-adventitia boundary on opening angles. (A) Transmural elastin
volume fractions for the three values of α. As α increases, the boundary becomes sharper. (B)
Two-cut opening angles for the three values of α at 12.5% aorta length in the nominal model.
As α decreases, the numerical results come into closer agreement with the experimental data
of Greenwald et al. (1997). (C) One-cut opening angles along the length of the aorta for the
three values of α.
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Figure 13.
Model predictions for arteries in which elastin or collagen has been digested. (A) Opening
angles for elastase and collagenase treated aorta. (B) Mean arc lengths of cut artery for elastase
and collagenase treated aorta.
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Figure 14.
Stresses and stretch ratios for time-dependent model following a 50% increase in pressure from
the homeostatic state. The stresses  and  are normalized relative to homeostatic values.
Legend in (B) applies also for (C-H). (A) Psuedo-step increase in pressure specified as a
function of time. (B) Circumferential muscle stress at inner radius. (C) Endothelial fluid shear
stress. (D,E) Circumferential and radial growth stretch ratios at inner radius. Note that 
returns to unity (no net growth) only at the inner radius. (F) Activation stretch ratio at inner
radius. (G) Mean collagen stretch ratio in artery wall. (H) Mean and standard deviation of
stretch ratio for collagen across the wall at 8% aorta length.
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Figure 15.
Time-dependent opening angles following a 50% increase in pressure from the homeostatic
state. Opening angles are shown at 8% (A,B) and 40% (C,D) of the aorta length. Normalized
model results (relative to value at t = 0) are compared with experimental data of Fung and Liu
(1989) in (B) and (D). The effects of smooth muscle contraction are shown for the model in
(D).
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Figure 16.
Transmural partial stresses of smooth muscle, collagen and elastin during growth and
remodeling before and after a 50% pressure jump. (A) Partial stresses immediately preceding
the pressure jump at 8% aorta length. (B) Partial stress distributions five days after the pressure
jump begins. (C) Partial stress distributions 45 days after the pressure jump. (D) Fully grown
and remodeled partial stresses, 200 days after the pressure jump. Stresses are similar to those
in A, but the elastin gradient is slightly altered, as shown in the expanded scale of the inset.
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Figure 17.
Cross-sectional circumferential and radial smooth muscle growth 0, 5, 45 and 200 days after
a 50% pressure jump at 8% aorta length. (A) Cirucmferential muscle growth ( ). (B) Radial
muscle growth ( ).
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