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Abstract

One strategy to identify neurochemical pathways of addiction is to map the relevant genes. In the
present study we used 43 B6.C and 35 B6.1 inbred RQI mouse strains, carrying <3% donor genome
on C57BL/6ByJ background, for gene mapping. The strains were phenotyped for consumption of
alcohol (12% v/v) in a two-bottle-choice paradigm, and genotyped for 396 microsatellite markers.
The current mapping study extends our earlier experiment scanning five mouse chromosomes (1) to
a whole-genome study, and discusses the differences and limitations. Data were analyzed with
composite interval (CIM) and multiple interval (MIM) QTL mapping methods. CIM of B6.C strains
detected significant QTLs on chrs. 6 and 12. A suggestive, but not significant, locus was detected in
the B6.1 strains on chr. 12. The best MIM model for B6.C strains confirmed one QTL on chr. 6 and
one QTL on chr. 12., while the MIM model for the B6.1 strains confirmed the suggestive locus on
chr. 12. Some of the QTLs for alcohol consumption are new, while others confirm previously reported
QTLs for alcohol preference, and alcohol acceptance.

Keywords

QTL mapping; Quasi-Congenic Mouse; Recombinant QTL Introgression; Ethanol Consumption;
Addiction

INTRODUCTION

The basic neurochemical processes underlying alcoholism and drug addiction are not well
understood. One strategy to identify neurochemical pathways of addiction is to map the relevant
genes. Accumulated evidence in quantitative genetics suggests that most complex traits and
diseases (including alcoholism) are substantially affected by genetic factors. Genetic variation
in alcohol drinking was first described by McClearn and Rodgers nearly half a century ago by
comparing well established inbred mouse strains (2). However, in spite of intensive research

*Corresponding author, Tel.: +1-845-398-5536; fax: +1-845-398-5531., E-mail address: vadasz@nki.rfmh.org (Csaba Vadasz).
Present address: Department of Biochemistry, Debrecen University School of Medicine, Debrecen, Hungary

2present address: Animal Health, Bayer Hungaria Kft., Alkotas u.50, Budapest, Hungary

3present address: Neurobiology Research Laboratory, VA Medical Center, 4801 E Linwood Blvd., Kansas City, MO 64128-2226, U.S.A.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Vadasz et al.

Page 2

in the past decades, the biological basis of oral alcohol self-administration is not well
understood. Recent availability of new genetic tools, such as high throughput SNP genotyping
and gene expression microarrays, raise hope that many of the genes responsible for alcoholism
can be identified in the near future. This is particularly important because individually effective
therapy can only be expected if the molecular interaction between the genetic basis and the
affected biochemical pathways are well understood.

Alcohol preference in rodents is accepted as an important animal model for hedonic aspects
of alcoholism. Since the early 1990s, a large number of Quantitative Trait Loci (QTLS) have
been mapped in genetic studies on alcohol preference, consumption, and acceptance. After
many years of intensive work and detection of numerous QTLs by several laboratories using
C57BL/6J and DBA/2J based genetic designs, only very few QTLs have been considered as
consistently confirmed on chrs. 2, 3, 4, and 9 (3). Recently, retinaldehyde binding protein 1
(Rlbpl) and syntaxin 12 (Stx12) (4,5), and syntaxin binding protein 1 (Stxbp1) (6) were found
to be strong candidate genes for alcohol preference drinking. All the above studies relied on
the “gene pool” of two inbred strains, C57BL/6J and DBA/2J. Because in the species many
gene variants may segregate which are not represented by these two strains, a tendency to carry
out most studies only on two strains and their descendants will limit our understanding at the
species level, and we will be able to identify fewer genes in animal models for testing in human
alcoholism. Accordingly, there is a need to identify the most representative genes at species
level. To this end, only a few laboratories devoted efforts to use strains other than C57BL/6J
and DBA/2J in mapping QTLs for alcohol consumption and preference [e.g., A/J (7,8) and
129P3/J (9)]. Recently, HAP/LAP selection lines were developed (10) from HS/Ibg mice and
used in mapping QTLs for alcohol preference (11). The HS/Ibg mice were derived from eight
inbred strains, including A, BALB/c, C57BL/6, DBA/2 (12).

Differences in alcohol drinking behavioral phenotypes between C57BL/6ByJ, BALB/cJ,
CXBI/ByJ, progenitors and RQI strains have been reported previously (1,13,14). We developed
a complex trait gene mapping strategy, Recombinant QTL Introgression, (15-19), which was
applied to map QTLs on five chromosomes for alcohol preference and consumption in 80 RQI
strains of the bsi7 series (1). In this study we scanned five mouse chromosomes (1,2,3,9, and
15) with polymorphic microsatellite markers for Quantitative Trait Loci (QTLs) for alcohol
consumption. We used 44 B6.C and 36 B6.1 inbred congenic Recombinant QTL Introgression
(RQI) mouse strains of the bgi; series carrying genes of BALB/cJ or CXBI origin on C57BL/
6BYyJ genetic background. In the B6.C set of strains, multiple regression analysis yielded a
model with three microsatellite markers, which explained 32% of the genetic variance. The
two markers with the highest significance levels in the model, D1Mit167 and D2Mit74, have
been mapped to chromosome regions close to the gene opioid receptor kappa 1 (chr. 1) and
opioid receptor kappa 3 (chr. 2), respectively. The results of this gene-mapping study suggested
that genetic polymorphisms in kappa opioid receptors may contribute to genetic predisposition
to voluntary alcohol-drinking behavior. Our follow-up studies on opioid receptor kappa 1
knock-out mice indicated that complete constitutional dysfunction of the Oprk1 gene can
reduce alcohol consumption (20), however chromosome position of microsatellite marker “
D1Mit167” in the MIT database was assigned incorrectly, and the proposed chr. 1 region was
not associated with genetic variation in alcohol consumption(21).

Here we present results of a study, in which we (1) expanded genome scanning to include all
autosomal chromosomes, and (2) increased sample sizes in alcohol preference tests of bsiz RQI
strains. The combined data were analyzed by composite interval mapping (CIM) which shows
a better performance than interval mapping in the case of multiple linked QTLs (22), and by
multiple interval mapping (MIM).
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METHODS

Animals

The care and use of animals met the standards and recommendations of the IACUC of the
Nathan S. Kline Institute for Psychiatric Research in accordance with US Department of
Agriculture and US Public Health Service guidelines.

Nomenclature

B6, C57BL/6ByJ (background strain); C, BALB/cJ (donor strain), I, CXBI/By (donor strain);
B6.C introgression type, strain set in which BALB/cJ donor segments are distributed on B6
background; B6.1, strain set in which CXBI donor segments are distributed on B6 background,
bsiz, strain developed by 5 backcrosses and 7 intercrosses; bgis, strain developed by 4
backcrosses and 5 intercrosses. We use abbreviated RQI strain names. For example, the full
name of one of the RQI strains is B6.Cbsi;-p3/Vad, and it is abbreviated as C5B3. The first
letter, C (or 1), stands for the donor strain name; 5 (or 4) designates the backcross-intercross
series bgi7 (or byis); B (or A) indicates the replicate line § (or a); and the last character, 3, is
the identification number of the strain (the numbers range from 1 to 34 in each replicate line).

Recombinant QTL Introgression Strains

B6.C and B6.1 inbred quasi-congenic RQI mouse strains were constructed as described
previously (1,15,16,23). Recombinant QTL Introgression is a method, which was developed
for the genetic analysis of complex quantitative traits by combining short-term phenotypic
selection, congenicity, recombination and inbreeding (18). The method can collect separately
the inheritable increaser or decreaser factors which control the phenotype, and preserve them
in recombinant form in numerous quasi-congenic (near-isogenic) highly inbred strains. For
phenotype a mesotelencephalic dopamine-system related trait was chosen because of its
critically important role in the control of motor activity, motivation, emotion, addiction, and
learning. Briefly, QTLs that are responsible for the continuous variation of mesencephalic
tyrosine hydroxylase (TH/MES) activity were introgressed onto B6 background strain from
BALB/cJand CXBI donor strains. CXBl is arecombinant inbred strain carrying B6 and BALB/
cBy genes (24). Two types of F2s, (B6XC and B6XI), were produced, and, in each type,
replicate lines (o and ) were created by equal division of each F2 litter. In each of the four
lines, at least 45 F2 males were tested for the phenotype, and 15 were selected for the first
backcross to B6 females. Then, at least 45 backcross; (b1ig) male offspring were tested, and
15 males were selected and intercrossed with nonlittermate females, resulting in bqiq
generation. The QTL transfer was carried out in two directions by backcross-intercross cycles
with concomitant selection for the extreme high and low expressions of TH/MES activity in
replicates, resulting in four QTL introgression lines. In these lines, the top and bottom one third
of each generation in the expression of TH/MES activity was selected. These steps were
repeated for four (byis series) or five (bsi; series) cycles. The QTL introgression phase was
followed by initiation of brother sister (bxs) mating for at least 30 generations in closed lines.
RQI strains of the byis and bsi; series carry <5% and <3% of the donor BALB/cJ genome,
respectively, on the background B6 genome.

Eight sublines of the bgi; series (C5A26, C5A32A, C5A3A, C5B19A, C5B5A, I5A16at,
ISB1A, 15B25) have been excluded from the analysis for ensuring independent derivation of
strains from the population of the last backcross-intercross cycle (cf. (1)).

Average of donor genome contribution in carrier strains was calculated as Q%= N¢c/(Ncc +
Ngg)*100 £ SD, where Ncc=number of markers with CC (donor) genotype; Ngg= number of
markers with BB (background) genotype. Estimates of donor genome contribution were based
on RQlgbase, release November 20, 2004 (http://rgigenetics.org/).
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Behavioral tests

Adult (11+2-week-old) male mice of C57BL/6By, BALB/cJ, CXBI, and RQI strains were used
and had been in the study room for at least one week prior to the behavioral tests (1). The
capacity of the testing system allowed us to carry out ethanol-preference tests in batches of 70
subjects. Depending on the availability and total number of animals tested, in each batch 3
littermate males of available RQI strains were tested, along with 3 males of each of the
progenitor strains. The latter served as standard reference throughout the phenotyping to assess
inter-assay variability. We used a “two-bottle choice” paradigm with escalating ethanol
concentration. The test consisted of five 3-day trials, in which mice were allowed to choose
between ethanol solution and tap water. To acclimate the animals to the taste of ethanol, the
ethanol solution was offered in escalating concentrations: a 3% solution for trial 1 (day 1-3)
was increased to 6% in trial 2 (day 3-6), and further increased to 12% for trials 3 (day 6-9), 4
(day 9-12), and 5 (day 12-15) This arrangement provided triplicate measures of ethanol
preference at 12% concentration (v/v).

Because offering ethanol solutions of 3% and 6% served the purpose of acclimation of animals
to 12% solution, we did not wish to carry out experiments in duplicate for 3% and 6% ethanol
consumption. Our data analysis focused on consumption of 12% ethanol solution, measured
in triplicate (i.e., three subsequent 3-day trial periods), the values used for analysis were 3-day
access values. The liquids were offered in custom-made drinking tubes composed of centrifuge
tubes fitted with single-hole rubber stoppers into which stainless steel sippers were inserted.
Stainless-steel washers were glued to the bottom part of the rubber stoppers, which faced the
cage-covers, to prevent chewing and playing with the drinking tubes. We also used stainless-
steel springs to fasten the tubes firmly to the top of the cage covers. Two empty cages with
alcohol and tap water drinking tubes were put on the racks to obtain control weights of leakage
and evaporation. The position of the water and alcohol drinking tubes on the cage cover was
alternated in each 3-day preference trial to avoid a position effect. The weights of the drinking
tubes were measured before and after a 3-day trial by an A&D electronic analytical balance
connected to an IBM AT computer. Data were entered automatically using A&D COLLECT
software and QUATTRO spreadsheets. Alcohol consumption data previously collected for
RQI strains (1) and new data collected in this study using the same methods were co-analyzed.

Alcohol Consumption (AC) phenotype definition

AC34GKD represents alcohol consumption g-BWkg‘l'day'l. Consumption of 12% alcohol was
averaged over trials 3 and 4 for an individual, then mean value for a strain was obtained across
individuals. For the byis series of B6.C RQI strains only trials 3 and 4 were tested
systematically, the AC34GKD phenotype does not include trial 5 data. For the bsi; series of
B6.C and B6.1 RQI strains data for trials 3, 4, and 5 were available. Accordingly, for
AC345GKD consumption of 12% alcohol was averaged over trials 3, 4 and 5 for an individual,
then mean for a strain was obtained across individuals, and expressed as g'BWkg'l-day'l.
AC34GKD and AC345GKD data are shown in Tables 1-2.

DNA extraction, polymerase chain reaction, capillary gel electrophoresis

DNA was isolated from tail tips of mice of each RQI strain by the method described by Miller
et al. (25). Markers polymorphic for B6 and C strains were chosen as PCR primers with
information from the Mouse Genome Database (Mouse Genome Informatics, The Jackson
Laboratory). For QTL mapping 396 microsatellite markers were used. In order to analyze PCR
products with our ABI Prism 310 Genetic Analyzer, dye (FAM, TET or HEX)-labeled
microsatellite markers were custom-synthesized, fluorescently labeled, and purified by
Integrated DNA Technologies, Inc., Coralville, IA. Using a 310 Genetic Analyzer one base
size difference could be be detected. The reproducibility of the size identification was good.

Neurochem Res. Author manuscript; available in PMC 2008 December 4.
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However, because there are fluctuations, standard DNA products (in our case, PCR products
derived from C57BL/6 and BALB/c DNA) were included.

Because in backcrosses B6 females were used, RQI strains contain the X chromosome of the
background strain, therefore no markers need to be tested for this chromosome.

Data analysis

Descriptive statistics, eta-squared, Post Hoc Test LSD 0.05 (least significant difference at 0.05
probability level) for alcohol consumption data in RQI strains were analyzed using GLM
Univariate ANOVA procedure of SPSS software ver.13. (Table 2).

QTL Mapping

For mapping, we used M-estimators, robust alternatives to the sample mean and median for
estimating the center of location. The original phenotypic data were processed in the Explore
function of SPSS ver.13 to obtain Tukey’s biweight M-Estimator.

Jansen (26) and Zeng (27) proposed similar strategies called composite interval mapping (C1M)
by combining interval mapping with multiple regression analysis. If there is no epistasis, the
partial regression coefficient of a trait on a marker depends only on those QTLs that are in the
interval bracketed by the two neighboring markers and is independent of QTLs located in other
intervals (22). QTL position and effect size was estimated by CIM using Windows QTL
Cartographer version 2.5 (28). We used the standard model Zmapqtl 6 in the CIM procedure
with a 10 cM window size and a 2 cM walking speed, forward and backward method of
regression with probability of into or out of 0.1. Threshold values of significance for QTLs
was established by permutation analysis (29). This involved reassigning the phenotypic data
to RQI lines at random and redoing the Likelihood Ratio Test Statistic analysis. This procedure
was repeated 1000 times, for each repetition the global maximum was recorded. Values were
ranked in increasing order of significance. The 950t", 900t and 800t LRS values gave the
LRS values for the p=0.05, p=0.1, and p=0.2 levels of significance. Tests were performed for
AC345GKD in each population of bsi; RQI strains. Significant QTLs exceeded the 0.05
genomewide adjusted threshold. QTLs exceeding the 0.2 threshold were considered
suggestive.

Strain sets were also analyzed by the MIM option of QTL Cartographer version 2.5 (28). The
MIM method combines QTL mapping analysis with the analysis of genetic architecture of
quantitative traits. It utilizes multiple marker intervals simultaneously to construct multiple
putative QTLSs (30). The MIM model is based on Cockerham’s model for interpreting genetic
parameters and the method of maximum likelihood for estimating genetic parameters. This
method fits all QTLs into the model altogether and has the ability for analyzing QTL epistasis
and the associated statistical issues. Through a search algorithm, the method can obtain
information about the QTLs simultaneously such as humber, positions, effects and interaction
of the significant QTLs. The search strategy of MIM method is to select the “best” genetic
model in the parameter space. Model selection is critically important in data analysis and
interpretation. It is well known that the appropriate criteria or stopping rules used for model
selection are difficult to decide. In the Windows QTL Cartographer program we used Bayesian
Information Criteria (BIC) to control the type | and type Il errors at a reasonable level for QTL
mapping situation (31). BIC was defined as: BIC=n*In(Q*Q)+p*c(n), where n=sample size,
Q*Q=residual variance of model, p=regressor (marker) number, c(n) is a penalty function,
which can take different forms. Criteria of MIM model selection was based on BIC-MO, where
c(n)=In(n). MIM search walk speed was 1 cM. The model was created by MIM forward search
method.
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Bioinformatics

Chromosome segments carrying significant or suggestive QTL peaks were investigated for
relevant QTLs and genes using http://www.informatics.jax.org and http://omicspace.riken.jp
(32). Range of QTL peak was approximated by inspecting marker genotype patterns in all
strains, identifying all donor segments which contained the peak position (cM), and recording
the positions of the most proximal and most distal markers on any of the donor segments. This
rough approximation gives an estimate of minimum range of donor segments because positions
of segment-limiting donor-type markers were used.

RESULTS

The quasi-congenic nature of the B6.C and B6.l RQI strains

Genome-wide genotyping allowed us to obtain a more precise estimate of the donor genome
content of each strain. As expected, the average donor genome content in RQI strains varied
as a function of the number of backcross-intercross cycles, and the BALB/cJ genome content
of the donor strain. On the average (+standard deviation), the B6.Chyis, B6.Cbsi-a,
B6.Cbsiz-B, B6.1bsi7-a, and B6.Clsb7-f strains contained 4.4+1.3%, 2.3+1.6%, 2.4+1.5%, 1.4
+1.4%, and 0.99+0.86% of the BALB/cJ genome, respectively. The B6.Chgis (13 strains),
B6.Cbsiy (47 strains), and B6.1bsi (39 strains) mice cover 32.5%, 43.12%, and 20.11% of the
BALB/cJ genome, respectively (RQIgbase, release November 20, 2004,
www.RQlgenetics.org). Collectively, the 107 RQI strains of RQIgbase cover more than half
of the BALB/cJ genome (65.34% of all microsatellite markers have been detected as BALB/
cJ-type alleles). B6.1bsi; mice carry about half as many CC markers in comparison with
B6.Cisb7 mice because the CXBI donor strain, being a recombinant inbred (RI) strain with
C57BL/6ByJ and BALB/cByJ progenitors, is expected to carry only 50% of the BALB/cByJ
genome. In comparison, the present study indicated that in the CXBI strain 39.95% of the
microsatellite markers showed BALB/cJ genotype. Potentially, the small genomic difference
between BALB/cJ and its subline BALB/cByJ could also contribute to the lower proportion
of CC markers in CXBI and its B6.I-type descendants.

Genetic variation in oral alcohol self-administration in quasi-congenic B6.Cbsiy and
B6.Ibsiy RQI strain sets and their progenitors

Table 1 shows the published (1), new, and combined alcohol consumption data for RQI strains
and for the progenitors. Descriptive statistics for strain sets is shown in Table 2. New data
(strain means for 59 strains) showed highly significant correlation with old data (Pearson r=0.73
p<0.001, two-tailed).

Differences in alcohol consumption among the progenitors were highly significant
(F2,312=369.65, p<0.001). Pairwise comparisons with Bonferroni adjustments showed highly
significant differences (B6 vs. BALB/cJ, p<0.001; B6 vs. CXBI (aka CXB-5/ByJ), p<0.001;
BALB/cJvs. CXBI, p=0.001). Our results are consistent with previous reports in demonstrating
that BALB/cJ and CXBI are alcohol avoiding strains, while C57BL/6ByJ expresses substantial
oral alcohol self-administration (1,2,33). Univariate ANOVA across RQI strains indicated that
genetic (between-strain) variation of alcohol consumption was highly significant for both the
B6.Cbsi; (Fa2,060=5.59, p<0.001) and B6.1bsi7 (F34,720=7.37, p<0.001) inbred strain sets.
Originally, two-bottle choice test data for B6.Ch,is mice were analyzed as alcohol preference
phenotype (14). For better comparability, these data were recalculated and are shown in Tables
1-2 as alcohol consumption (g-BWyg41-day ™).
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QTL mapping

Results of Composite Interval Mapping are shown in Table 3. QTLs are designated as
Eac1-6 (ethyl alcohol consumption1-6). CIM with 43 B6.Cbsiy RQI strains yielded significant
peaks on chr.6 at 36.5 cM (p<0.001), 42.5 cM (p<0.001) 62.2 cM (p<0.01), and 73.5 cM
(p<0.001), and on chr.12 at 51 cM (p<0.01). Peaks were also detected on chrs. 1, 5, and 15,
however these peaks did not reach the significance threshold. Only data on the chr. 15 peak
are shown, because this QTL was included in the MIM model.

In the B6.lisby set of 35 RQI strains two QTLs were found significant at LOD=2.0 (chr. 12:
21 cM, and chr. 19: 38 cM), but not at empirical threshold determined by 1000 permutations.
CIM detected several other nonsignificant peaks on chrs. 1, 3, 4, 12, 13, and 16 with LOD<2.
Only data for the chr. 12 peak are shown, because this QTL was included in the MIM model.
In all QTLs shown in Table 3 the B6 alleles increased alcohol consumption. CIM detected
several QTLs where the donor allele was associated with increaser effect, however, none of
these reached the p=0.05 level as determined empirically by 1000 permutations. Markers
closest to the QTL peak were identified, and the number of strains carrying the donor allele in
homozygous condition were counted. Also, for each carrier-strain donor genome contribution
(Q%) was calculated (Table 3).

Further analysis of B6.Cbgiy RQI strains with MIM, using the BIC-MO relative criterion of
QTL Cartographer, yielded a model of three QTLs on chrs. 6, 12, and 15 (genetic R2=0.47).
Tests for epistasis indicated no significant additive-additive interactions. MIM with the
B6.ligby set of strains resulted a model of three QTLs positioned on chrs. 8, 12, and 4 (genetic
R2=0.5). As with the B6.Cizby strains, no epistatic effect was detected in the B6.lisb; set.
Testing the MIM identified QTLs indicated that all QTLs were significant according to the
criterion. Results of MIM are summarized in Table 4.

Validity of CIM results (Table 3), and range of peaks were assessed by comparison of
microsatellite marker genotype patterns across quasi-congenic RQI strains. In the 43
B6.Chsi; RQI strains we assessed validity of QTLs on chrs. 1, 5, 6, 12, and 15. The
nonsignificant chr.1 QTL (7.5 cM) was excluded because it was associated with D1Mit167,
which also mapped to chr. 5 and chr. 14. As our earlier studies indicated, in the RQI strains
D1Mit167 does not co-segregate with chr. 1 markers, but it does with proximal markers of chr.
5 (Saito etal., 2003). The nonsignificant chr. 5 QTL (59.01 ¢cM) showed small negative additive
effect (-1.29) in the B6.Chsi7 population, it was also excluded from further consideration. QTLs
on chrs. 6, 15, and 12 were retained for bioinformatic analysis (Table 5). In the 35 B6.1bsiy;
RQI strains only QTLs on chrs. 12 and 19 were further investigated (p<0.2). The chr. 12 QTL
was retained for further consideration because the donor allele of the peak marker was
represented in several strains (N=4) and the average donor genome content of these strains was
low (1.86%), approaching congenic conditions (Table 5). The chr. 19 QTL was excluded from
further consideration because no donor allele was found near the peak position in any of the
strains, and the gap between the two markers flanking the peak was relatively large (7 cM).

DISCUSSION

Inspection of marker haplotypes of B6.Chsi- strains indicated that the possible minimum range
for Eacl and Eac2 across strains was identical, 33.5-48.2 cM. Because we used a limited
number of markers, and the range was defined by the position of the donor marker alleles at
the proximal and distal endings of the segments, the real sizes of the segments are not known.
In asearch of the MGl database (NCBI build 34) at http://www.informatics.jax.org for relevant
QTLs in this range we found Eila2, Rearl, Bits2, and Taste5 ((34-36); see Table 5).
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In a recent study on alcohol preference, using BcA Recombinant Congenic strains, Gill and
Boyle (8) reported significant correlation between D6Mit178 and alcohol preference inaregion
containing A/J donor alleles on B6 background between 26.35 and 38.5 cM. However, no chr.
6 QTLs were found for alcohol preference in AcB RC strains, and in the reciprocal AXB/BXA
RI strains (8). Interestingly, the region between the centromer and 33.5 cM contains
Neuropeptide Y (Npy, 26 cM) and Ethanol induced locomotion 3 (Etim3, 30 cM), which were
suggested as candidate gene and QTL by Gill and Boyle for their QTL region of 26.35-38.5
cM (8). In the RQI strains these candidates fell on a relatively large non-genotyped interval
between the proximal donor allele (33.5 cM) and the flanking proximal background allele (25.5
cM) of our candidate region, therefore their involvement cannot be excluded.

The 33.5-48.2 cM region is also rich in candidate genes. Using bioinformatic tools, such as the
Genome-Phenome Superbrain computational system (GPS;
http://omicspace.riken.jp/gps/full.jsp), genes located in the interval were evaluated. Syntenic
vomeronasal receptor genes are potential candidates because olfaction may influence alcohol
preference. Some other genes may affect neurotransmission (Table 5). In particular, the region
contains Grm?7, the metabotropic glutamate receptor type 7 gene. Since disturbances in
glutamate function have been implicated in the pathophysiology of behavioral disorders, which
may underlie some types of addiction (e.g., (37)), Grm7 is a promising candidate for further
research. Currently, for testing this hypothesis, we are in the process of deriving congenic
strains from quasi-congenic RQI strains which carry segments of the 33.5-48.2 cM region.

In the range of Eac3 (chr.6, 46-65.6 cM) additional relevant QTLs are located ((38-40); Table
5.). It appears that Qui coincides with the taste receptor, type 2 (Tas2r) on distal chromosome
6. Haplotypes at Tas2r locus vary with quinine taste sensitivity in inbred mice, C57BL/6 mice
were found quinine sensitive, while DBA/2J mice were quinine insensitive (41). Haplotype
variation suggests that BALB/cJ mice may carry Tas2r alleles associated with quinine
insensitivity. However, the specific effects of Tas2r haplotype variation on alcohol
consumption remain to be clarified. Taste8 and Taste9 were mapped to 49.5 ¢cM and 63 cM,
respectively, suggesting a common polygenic basis for quinine and PROP avoidance in mice
(42). Ethanol conditioned taste aversion 6 [Etohcta6 (63.6)] was mapped close to Taste9
(36). As Table 5 shows, within an approximately 1 cM region (63-64 cM) we can find three
bitterness related loci, Tas2r taste receptor gene members, and an ethanol conditioned taste
aversion locus. The accumulation of taste-related QTLs and taste receptor type 2 on a short
chromosome region is tempting to hypothesize that Eac3 detected effects of variations in
members of Tas2r, however, further evidence is required. Also, a coherent model for the
explanation of the complex genotype-alcohol related behavior relationships remains to be
developed.

Eac5 on chr. 12 spans an interval of minimum 12 cM (46-58 cM) and has a peak at 51.01 cM.
Recently, Gill and Boyle (8) reported a QTL for alcohol intake on chr. 12 at 1.0 cM (range:
1.0-5.0 cM) which does not overlap the range of Eacb. Interestingly, Marg4, the locomotor
stimulant effect of another psychostimulant (methamphetamine), was recently mapped to 47
cM on mouse Chromosome 12 which falls in the range of Eac5 (43).

Eac6, a suggestive QTL which did not reach the significance threshold (p<0.05) by
permutation, was mapped to 21 cM (6-29 cM) on chr. 12 in the B6.1 set of strains. It is unlikely
that the range of Eac6 overlaps the range of the alcohol consumption QTL detected by Gill
and Boyle (8) on chr. 12. Psychophysiological processes involved in exploratory behavior
[Rear2, (44)], cocaine induced activation [Cocia 1, (45)], dopamine receptor binding (Drb5,
(46), and alcohol acceptance [Aaqg2, (47)] may be relevant to choice-based alcohol consumption
(Table 5). Syntaxin binding protein 6 is involved in synaptic vesicle-mediated transport.
Similarly to Stxbpl, a candidate for an ethanol preference drinking locus on mouse
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chromosome 2 (6), Stxbp6 may be a candidate gene for Eac6. Interestingly, MIM identified a
locus on chr. 4 (64.2 cM), which was positioned near Stx12 (60 cM), a potential contributor to
ethanol preference in mice (4,5), and about 20 cM from Ap3q (9,48,49). However, this locus
is a weaker candidate for confirmation studies, because it was not significant in CIM after
permutation (p>0.2).

MIM results supported the CIM results, inasmuch the best model included chr. 6 and chr. 12
QTLs in addition to other QTLs. However, because for purposes of discussion we consider
only QTLs with genome-wide significance, QTLs on chromosomes other than chr. 6 and chr.
12 will not be discussed here.

Composite and multiple interval mapping of the whole genome of B6.C and B6.1 sets of quasi-
congenic RQI strains detected different sets of QTLs for alcohol consumption. This not
surprising, because the donor strains were different. BALB/cJ and CXBI provided donor
material for B6.C and B6.1, respectively. BALB/cJ and CXBI strains are related because CXBI
is one of the CXB recombinant inbred strains. CXBI is expected to carry about 50% BALB/
cByJand 50% C57BL/6By genome on the average. Another differentiating factor is directional
selection, which was employed in the development of the B6.C and B6.I strain populations.
B6.C mice were developed by five backcross-intercross cycles with 13 generations of
concomitant selection for high expression of a brain dopamine-system related trait
(mesencephalic tyrosine hydroxylase activity), while B6.1 mice were subjected to the same
gene introgression manipulation, but selected for extreme low expression of the same
phenotype (15,19,23). Therefore, selection pressure in the opposite directions favored the
transfer of different sets of donor genes onto the B6 background. Transfer of alcohol
preference- and consumption-related genes could be expected either because the
mesotelencephalic dopamine system plays a critical role in addiction and alcohol self-
administration, or because both donor strains show very low alcohol preference in comparison
to the background strain (1,2,33), and passenger genes for alcohol-related behaviors could be
fixed in the RQI strains.

Several factors may explain the lack of confirmation of our earlier alcohol preference QTL
mapping study, which was limited to five chromosomes (1). First, public database information
for the most significant marker (D1Mit167) was insufficient at the time of the analysis because
a single proximal position on chr. 1 was assigned for D1Mit167 (chr. 1: 6.5 cM; (50);
http://www.genome.wi.mit.edu/cgi-bin/mouse/index). Our recent results suggested that
D1Mit167 in RQI strains cosegregated with markers located on chr. 5 (21), which is consistent
with positions for D1Mit167 given by current databases (cf. The T31 Radiation Hybrid Maps
Frameworked to TJL BSB / BSS Backcrosses;
http://www.jax.org/resources/documents/cmdata/rhmap/maps/). Based on NCBI m34 mouse
assembly, D1Mit167 is currently mapped to 3 different Ensemble locations (v.37 - Feb2006):
basepairs 3207990 - 3208105 on chromosome 5, basepairs 17728608 - 17728725 on
chromosome 14, and basepairs 7466556 - 7466667 on chromosome 1;
http://www.ensembl.org/Mus_musculus/markerview?marker=D1Mit173.1. The initial
insufficient information on D1Mit167 in public databases also explains why our candidate gene
hypothesis for Oprk1 as a gene for alcohol consumption (1), was not tenable, and it is not
supported by the current results either. Second, genotyping of additional 14 chromosomes
provided new genotype information, and affected mapping statistics. Third, a more advanced
mapping methods were applied (CIM, MIM). The increased sample size in some strains slightly
changed the phenotypic mean value, however, it is unlikely that sample size changes
substantially affected the mapping results.

The Genome-Phenome Superbrain computational system (http://omicspace.riken.jp/; as of
March 2006) in a search for alcohol or ethanol related QTLs yielded 40 hits in the MGI QTL
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database. None of the alcohol preference or consumption QTLs have been assigned to chr. 6,
only one related QTL [Aaqg2 (47)] was found on chr.12. However, Aaqg2 is female specific,
while Eac5 and Eac6 were detected in males. Our results, and data by others (7-9), indicate
that mapping with strains other than the often used C57BL/6J and DBA/2J progenitors can
lead to detection of novel QTLs for alcohol preference and consumption.

In conclusion, we identified new QTLs for alcohol consumption with genome-wide
significance on chrs. 6 and 12. Eacl and Eac6 overlap previously reported QTLs for alcohol
preference (8) and alcohol acceptance (47), respectively. Future confirmation studies can take
advantage of the quasi-congenic RQI strains by rapidly capturing candidate segments in
congenic strains, or by creating segregating populations with low genetic background noise.
QTG identification in B6.C RQI strains is now greatly aided by The Mouse Genetic Variation
Mapping (Vmap) Initiative by sequencing the genomes in 15 mouse strains, making DNA
sequence information available for both progenitors of the RQI strains
(http://lwww.niehs.nih.gov).
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