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Abstract

Background: The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of
maize that causes substantial losses annually throughout the Western Hemisphere. Despite its
impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis
at the molecular level. The objectives of this study were to generate a collection of expressed
sequence tags (ESTs) from C. zeae-maydis and evaluate their expression during vegetative,
infectious, and reproductive growth.

Results: A total of 27,551 ESTs was obtained from five cDNA libraries constructed from
vegetative and sporulating cultures of C. zeae-maydis. The ESTs, grouped into 4088 clusters and 53 |
singlets, represented 4619 putative unique genes. Of these, 36% encoded proteins similar (E value
< 1095) to characterized or annotated proteins from the NCBI non-redundant database
representing diverse molecular functions and biological processes based on Gene Ontology (GO)
classification. We identified numerous, previously undescribed genes with potential roles in
photoreception, pathogenesis, and the regulation of development as well as Zephyr, a novel, actively
transcribed transposable element. Differential expression of selected genes was demonstrated by
real-time PCR, supporting their proposed roles in vegetative, infectious, and reproductive growth.

Conclusion: Novel genes that are potentially involved in regulating growth, development, and
pathogenesis were identified in C. zeae-maydis, providing specific targets for characterization by
molecular genetics and functional genomics. The EST data establish a foundation for future studies
in evolutionary and comparative genomics among species of Cercospora and other groups of plant
pathogenic fungi.
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Background

The fungal genus Cercospora represents a large and diverse
group of plant pathogens that are distributed worldwide
and infect numerous host species. Individual species of
Cercospora are usually host specific, but collectively they
infect remarkably diverse hosts. More than 3,000 species
of Cercospora have been named [1], and they often are
classified according to host association, e.g., C. beticola
infects sugar beet (Beta vulgaris), C. oryzae infects rice
(Oryza sativa), and C. sorghi infects sorghum (Sorghum
bicolor). Most plant-pathogenic species of Cercospora enter
host leaves through stomata, a process facilitated in part
by the ability of elongating germ tubes to sense nearby
stomata and reorient their direction of growth accordingly
[2]. Upon reaching stomata, germ tubes differentiate into
multilobed infection structures similar to appressoria,
from which infectious hyphae penetrate mesophyll tis-
sues. After a period of colonization, the fungus presuma-
bly adopts a necrotrophic growth habit, leading to the
formation of expanding, necrotic lesions that coalesce in
severe outbreaks, leading to a significant reduction in
photosynthetic tissue, defoliation, and potentially prema-
ture death of the host plant. Reproduction and formation
of secondary inocula occur in colonized tissue through
the production of asexual spores (conidia) that infect
neighboring plants after dispersal by wind and/or rain
splash. Many diseases caused by Cercospora species occur
periodically throughout the world as epidemics singly or
as components of disease complexes [e.g., [3-5]], and for
crops such as sugar beet, are major limitations for produc-
tion [6]. Additionally, the possibility that Cercospora path-
ogens influence the distribution of plant species in natural
ecosystems is a plausible but largely unexplored hypothe-
sis.

Cercospora zeae-maydis is a foliar pathogen causing gray
leaf spot of maize. Substantial economic losses from this
disease occur annually throughout the Western Hemi-
sphere. First discovered in 1924 in Illinois [7], C. zeae-
maydis did not become an important pathogen of maize
until the 1980s; by the mid-1990s, the fungus caused sig-
nificant losses throughout the corn belt of the U.S. and it
is now the most devastating foliar pathogen of maize in
much of the world [8]. Colonization of leaves by the fun-
gus causes distinctive rectangular lesions delineated by the
major veins. When the incidence of infection is high
before grain filling, the impaired photosynthetic capabil-
ity of diseased leaves results in severe reductions in yield
[8]. Management of C. zeae-maydis is especially difficult
because commercial hybrids of maize lack effective resist-
ance to gray leaf spot [8] and the fungus can survive
between growing seasons in plant debris [9]. Exactly why
C. zeae-maydis has ascended so rapidly as a pathogen of
maize during the past two decades is not known, but spec-
ulation has linked the phenomenon to global climate
change, the emergence of more virulent strains, and the
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increased practice of conservation tillage in maize produc-
tion [8,10,11].

During pathogenesis, C. zeae-maydis and many other spe-
cies of Cercospora produce the host non-specific phyto-
toxin cercosporin, a photosensitizing perylenequinone
that causes lipid peroxidation and alters membrane per-
meability through the action of reactive oxygen species
[12]. Cercospora pathogens protect themselves against the
toxic effects of cercosporin through the functions of CFP1,
which encodes an ABC transporter required for secretion
[13], and PDX1 (formerly SOR1), a gene involved in the
biosynthesis of pyridoxine (vitamin B6), which quenches
singlet oxygen produced during the interaction of cer-
cosporin with membranes [14]. Consistent with the pro-
duction of many fungal secondary metabolites,
cercosporin biosynthesis was recently demonstrated to
result from the expression of genes organized in a cluster
[15]. However, a molecular understanding is lacking to
explain how Cercospora species integrate diverse environ-
mental inputs to regulate cercosporin biosynthesis and
the extent to which regulation is conserved throughout
the genus. Typically, cultures of C. zeae-maydis producing
asexual spores (conidia) do not produce cercosporin, sug-
gesting that fungal development and secondary metabo-
lism are antagonistic at some level. In culture, cercosporin
biosynthesis is repressed by the presence of preferred
nitrogen sources [16]; presumably, this regulation is a
component of global changes in gene expression during
nitrogen metabolite repression resulting from the actions
of a homolog of the nitrogen-responsive transcription fac-
tor areA [17]. Additionally, the biosynthesis and activa-
tion of cercosporin require light [18], thus establishing an
intriguing link between light and pathogenesis among
Cercospora species.

The initial infection of maize leaves by C. zeae-maydis
occurs in spring or early summer when propagules of the
fungus that survived the winter in plant debris give rise to
conidia that are dispersed onto leaves of young plants [8].
During colonization of leaf tissue, the fungus produces
stromata that give rise to erumpent conidiophores bearing
conidia that serve as secondary inocula [8]. Multiple
cycles of secondary infection can occur when environ-
mental conditions are favorable, leading to epidemic lev-
els of infection. Somewhat surprisingly, C. zeae-maydis has
not been demonstrated to reproduce sexually in labora-
tory conditions, and field populations appear to be largely
clonal [19], although recent analyses of the distribution of
mating type loci suggest the possibility of cryptic sex [20].

Despite the impact of C. zeae-maydis and other Cercospora
species on global agriculture, very little information is
available at the molecular level regarding how members
of this genus regulate growth, development, and patho-
genesis. The focus of this research was to generate a collec-
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tion of expressed sequence tags (ESTs) from C. zeae-
maydis, and to analyze their expression during defined
stages of growth and development. To this end, we gener-
ated distinct cDNA libraries from vegetative cultures of C.
zeae-maydis (vegetative libraries) as well as cultures pro-
ducing conidia (sporulation libraries). Among 27,551
ESTs sequenced from both conditions, we identified 4619
unique sequences representing a broad range of molecular
functions and biological processes. Of 4088 clusters con-
taining two or more ESTs, 1436 were comprised of ESTs
found exclusively in the sporulation libraries, whereas
1744 were unique to vegetative libraries. At least eight
clusters encode putative photoreceptors and light-respon-
sive genes, six are similar to genes regulating morphogen-
esis in other fungi, and 20 are implicated in host/
pathogen interactions. The expression profiles of 15 clus-
ters were characterized by real-time quantitative PCR,
which largely confirmed their proposed roles in photore-
ception, conidiation, and pathogenesis. Furthermore, we
identified Zephyr, a novel, highly transcribed member of
the Ty3/Gypsy family of transposable elements. This
research represents the first comprehensive EST sequenc-
ing project for C. zeae-maydis, and provides specific targets
for subsequent studies in molecular genetics as well as a
framework for future investigations into the evolution of
pathogenesis among species of Cercospora and closely
related genera.

Methods

Fungal strain and culture conditions

Wild-type C. zeae-maydis strain SCOH1-5, isolated from
infected maize plants near South Charleston, Ohio in
1999, was used in all experiments. Cultures were main-
tained on V8 agar in constant darkness to provide conidia
for inoculations. For library construction, the fungus was
grown at 24°C on V8 agar, 0.2x potato dextrose agar
(PDA; BD Biosciences, Sparks, MD), or 0.2x PDA supple-
mented with 10 mM ammonium phosphate. Cultures
grown in constant light received 8-10 pE m-2s-! of illumi-
nation. To facilitate collection of fungal tissue from agar
plates, conidial suspensions were inoculated onto cello-
phane membranes placed on the surface of the medium.
Maize inbred line B73, which is highly susceptible to
infection by C. zeae-maydis, was grown in a greenhouse
and inoculated with conidia (105/ml) with a fine-mist
atomizer.

RNA isolation, cDNA library construction and sequencing
RNA was extracted with Trizol reagent (Invitrogen;
Carlsbad, CA) followed by purification with RNeasy Max-
iprep columns (Qiagen; Valencia, CA). RNA quantity and
quality were assessed with a Nano-Drop ND-1000 spec-
trophotometer (NanoDrop Technologies; Wilmington
DE) and by gel electrophoresis following standard proto-
cols [21]. Poly A+ RNA was isolated from total RNA for
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two C. zeae-maydis samples, sporulating or vegetative,
using the Absolutely mRNA Purification kit (Stratagene;
La Jolla, CA) and the manufacturer's instructions. cDNA
synthesis and cloning were modified based on the "Super-
Script plasmid system with Gateway technology for cDNA
synthesis and cloning" (Invitrogen). Poly A+ RNA (1-2
ug), reverse transcriptase (SuperScript II; Invitrogen) and
oligo dT-Notl primer (5'-
GACTAGTTCTAGATCGCGAGCG-
GCCGCCCITTTTITITITTTTIT -3') were used to synthe-
size first-strand cDNA. Second-strand synthesis was
performed with E. coli DNA ligase, polymerase I, and
RNaseH followed by end repair with T4 DNA polymerase.
The Sall adaptor (5'- TCGACCCACGCGTCCG and 5'-
CGGACGCGTGGG) was ligated to the cDNA, digested
with restriction enzyme Notl (New England Biolabs;
Ipswitch MA), and subsequently size selected by gel elec-
trophoresis (1.1% agarose). Two size ranges of cDNA were
excised from the gel for each sample: 0.6 - 2 kb (vegetative
library CBYB, sporulation library CBYG) and > 2 kb (veg-
etative library CBYC, sporulation library CBYF) (Table 1).
The cDNA inserts were directionally ligated into the vector
pCMVsport6 (Invitrogen) digested with Sall and Notl. The
ligated vectors were transformed into ElectroMAX T1
DH10B cells (Invitrogen).

Library quality was assessed first by randomly selecting 24
clones and amplifying the cDNA inserts by PCR with the
primers M13-F (5'-GTAAAACGACGGCCAGT) andM13-R
(5'-AGGAAACAGCTATGACCAT). The number of clones
without inserts was determined and 384 clones for each
library were picked, inoculated into 384-well plates
(Nunc; Nalge Nunc International, Rochester, NY) and
grown for 18 hrat 37°C. After amplification by rolling-cir-
cle amplification (RCA), the 5' and 3' ends of each insert
were sequenced using vector-specific primers (FW: 5'-
ATTTAGGTGACACTA TAGAA and RV 5' - TAATACGACT-
CACTATAGGG) and Big Dye chemistry (Applied Biosys-
tems; Foster City, CA). For each insert, the clone
identification information was retained for the 3' and 5'
sequence reads. An additional sporulation library was
generated from the cultures producing conidia (library
CCAW) although the inserts were not size selected, and
they were directionally ligated into the SfilA/B sites of the
vector pDNR-Lib (BD Biosciences). In total, bidirectional
sequencing of each library generated 9888 ESTs from
CBYB, 3072 from CBYC, 3072 from CBYF, 2304 from
CBYG and 9216 from CCAW. All sequences were depos-
ited into the GenBank dbEST database; accession num-
bers are provided for each EST in the Additional Materials.

EST analyses and clustering

To trim vector sequences, common sequence patterns at
the ends of ESTs were identified and removed. Clones
were determined to lack inserts if > 200 bases from the 5'
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Table I: EST libraries constructed for this study
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Growth Library Insertsize  Unique Total Insertless  Failed Passingto  Small insert Total Average
Conditions Name  selection clones  unique ESTs clones quality!  cluster (100-700 bp)  number with  diversity
BLAST hits2  (passing clones)

Vegetative =~ CBYB  2-8kb 4,992 9,888 2082 806 7000 789 299 58.8%

CBYC 0.6-2kb 1536 3071 164 523 2384 194 260 72.6%
Sporulation  CBYF 2-8 kb 1536 3072 1314 173 1585 305 123 82.3%

CBYG 0.6-2kb 1152 2304 834 186 1284 335 139 76.8%

CCAW None 4608 9216 340 1327 7549 3291 744 43.4%

I'Comprised of ESTs of low quality sequence, low complexity, and presumptive contaminants.

2 Evaluated with BLASTn against the non-redundant database

end of the EST were identified as vector or if the insert was
comprised of fewer than 100 bases of non-vector masked
sequence. ESTs were then trimmed for quality with a slid-
ing window trimmer (window = 11 bases). Once the aver-
age quality score in the window was below the quality
threshold (Q15), the EST was split and the longest
remaining sequence segment was retained as the trimmed
EST. EST sequences with fewer than 100 bases of high-
quality sequence were removed. ESTs were screened for
the presence of polyA- or polyT-tails (which, if present,
were deleted) and re-evaluated for length; ESTs with fewer
than 100 bases were removed. ESTs consisting of more
than 50% low-complexity sequence were removed from
the final set of usable ESTs. If an EST required re-sequenc-
ing, the longest high-quality EST was retained. Sister ESTs
or end-pair reads were categorized as follows: if one EST
was insertless or a contaminant, then, by default, the sister
EST was categorized as the same. However, each sister EST
was treated separately for complexity and quality scores.
Finally, EST sequences were compared against the Gen-
Bank nucleotide database by BLAST [22] to identify con-
taminants; undesirable ESTs such as those matching non-
cellular sequences were removed.

For clustering, ESTs were evaluated with MALIGN [23], a
kmer-based alignment tool that clusters ESTs based on
sequence overlap (kmer = 16, seed length requirement =
32, alignment ID >= 98%). Clusters of ESTs were further
merged based on sister reads using double linkage, which
requires that two or more matching sister ESTs are in each
cluster to be merged. EST clusters were then assembled
using CAP3 to form consensus sequences. Clusters may
contain more than one consensus sequence for various
reasons (e.g., clone has long insert, clones are splice vari-
ants, consensus sequences are erroneously assembled).
Cluster singlets are clusters of one EST, whereas CAP3 sin-
glets are single ESTs that had joined a cluster but during
cluster assembly were isolated into a separate consensus
sequence. ESTs from each separate cDNA library were
clustered and assembled separately, and subsequently the
entire set of ESTs from all five cDNA libraries was clus-

tered and assembled together with an external cDNA
library (designated EXTA) obtained in an earlier study
[16]. A file containing all clusters, cluster singlets, and
CAP3 singlets is available in the Additional Materials.

Annotation of ESTs with GO terms was done with
Blast2Go [24]. First, sequences were evaluated with
BLASTx against the NCBI nr (non-redundant) database
with an E-value threshold of 10-5. From a total of 7120
clusters, cluster singlets, and CAP3 singlets, 2526
sequences had no blast hits. Out of the remaining 4594
sequences, 2208 (48.1%) were categorized into different
gene ontology (GO) classes at level three organization.
For most clusters containing multiple consensus
sequences or cluster singlets, a single Blast hit was selected
for annotation. For a few clusters, some consensus
sequences and/or cluster singlets corresponded to dis-
tinctly different genes, possibly due to overclustering, and
thus were included in the final analysis. A file containing
the annotation data for each cluster is provided in the
Additional Materials.

Real-time quantitative PCR (qPCR)

Expression profiles of 16 selected ESTs (Table 2) were
determined by real-time PCR. Reactions were performed
in an MXP-3000 real-time PCR system (Stratagene). Each
reaction (20 pl) contained 10 pl of QuantiTect SYBR®-
green PCR Master mix (Qiagen), forward and reverse
primers (500 nM of each), cDNA template, and nuclease-
free water. PCR cycling conditions were 10 min at 95°C (1
cycle), 15 s at 95°C followed by 1 min at 60°C (40
cycles), and a melting curve of 1 min at 95°C followed by
30 s at 55°C and a final ramp to 95°C with continuous
data collection (1 cycle) to test for primer dimers and non-
specific amplification. Expression of genes was measured
in triplicate and expression levels were calculated by the
comparative Ct method (Applied Biosystems). The 18S
rRNA  sequence for C. =zeae-maydis (GenBank
#EU399178), obtained from a small number of ribos-
omal contaminants in the EXTA library that were excluded
from clustering analyses, was used as the endogenous ref-
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Table 2: Sequences examined by qPCR
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Putative function or identity

Cluster or singlet ID

Primers for qPCR (5' to 3')

Forward

Reverse

Glycine-rich cell wall protein 1302 ACAAGTACACGTTCCTCCAGCTT
Unknown 4016 CCAGGCAAATCAGACGGACTCT
Unknown 2170 GGTCGGTGGCATTGTCGATTT
Unknown 101 CAGGTCTCGCCGGTGTTAGA
Trihydrophobin precursor 2189 GGCCTAGAAGCCACTACGCTAA
Conserved hypothetical protein 13 ATGGACACTGGTGCCGGTTT

Blue light-induced gene 3 (bli-3) 2277 GAGAGCACTATTCTCCTGCTCTCAAG
Polyketide synthase (CTB/) 834 GTCGGTATCACCTGCAGATGGA
Opsin (nop-1) 839 CCAGTCAATGTAGCGGGCAAAGTAG
Cryptochrome/photolyase CBYB4938 AGTTCTGGGATTGCTGGACCGAAA
Phytochrome 217 GGAGGTAGAAATCAGTATCGCAGACT
Cutinase 2054 TTCAGCTGGGAGAGCAGGATCTT
Catalase 908 CTTCGGCGGCAAGTTCGACTA
Regulator of xylanase activity (xInR) 740 GCCTTGCAGCAGATAGATTCCGAAA
Regulator of cutinase activity (cfla) 661 GCTGGCGAGACAGGTCTTGATC
Transposable element (Zephyr) 17 GACGCTCTCCGTAAAGGCAAGAAC

B-tubulin (TUB2)
18S ribosomal

n/a!
n/a

GGCTGGTGAGTGGTGCGAAA
CAGGCCTTTGCTCGAATACATTAGCAT

CAGCTCCAGCTCCAGCATCAT
TTTCAGCGCGCCAATGACACATTC
AAGGCCAAGAACGCCGTGAA
ATGACTTTCTCGCGTTGGCATGAATG
CTGCTGCCTCATCCCACTTCT
CCCTGAGCAGCATCCATGAAGT
TTGATGAGGCCAATTCTCGGATCCT
CCTGGCCACAAGACGAAAGTC
TCTGTCCTACTTCGCCATGGCTA
TCTCGCCACCTTTATGAGGCGAA
CCGGTGATGACGGGTTCTGT
CGCAGAAGGCATGATTGAAGTACTTG
CAGTCTTGCGAGTCCGTCATCAAG
CTCCTCACAGTCCTTCATCTCTGCTA
GATGCCGCAGAGGCTCAAAAG
GGGATATATAGGCGGTTCCGGTAGA
GCTCAACAGCGATCTGCGCA
GGATGCCCCCGACTATCCCTATTA

I'n/a = not applicable

erence for normalization. The sequence of B-tubulin
(TUB2; GenBank #EU402967) was obtained by amplify-
ing genomic DNA from strain SCOH1-5 with primers
TubF (AACAACTGGCCAAGGGTCACTA) and TubR
(GTCGAAGATTTGCTGGGTGAGCTC).

Results and discussion

Construction and sequencing of cDNA libraries

During the interaction between C. zeae-maydis and maize,
two key aspects of the disease cycle are colonization of
host tissue and the production of conidia for secondary
inocula. Although we are especially interested in identify-
ing genes underlying host/pathogen interactions, a major
drawback of constructing cDNA libraries from inoculated
leaves is that a high percentage of ESTs are likely to corre-
spond to plant rather than fungal genes. To circumvent
this problem, we created cDNA libraries from sporulating
cultures in early and late stages of conidiation (sporula-
tion libraries) as well as vegetative cultures grown under a
variety of conditions that support or repress cercosporin
biosynthesis (vegetative libraries).

In C. zeae-maydis, conidia are produced on long, slender
conidiophores (Fig 1A) that give rise to solitary, hyaline
conidia containing 5-7 septa (Fig 1B). We determined
that, in constant darkness on V8 agar, cultures of C. zeae-
maydis initiated from conidial suspensions are highly syn-
chronous in conidiation, with conidiophores and nascent
conidia visible by three days after inoculation (Fig 1C),
and fully mature conidia visible five days after inoculation
(Fig 1D). In contrast, cultures grown in constant light on
V8 agar fail to produce conidiophores or conidia; instead,

growth is exclusively vegetative (Fig 1E). For the sporula-
tion libraries, we combined RNA from cultures harvested
three and five days after inoculation with the goal of iden-
tifying genes involved in the early and late stages of conid-
iation. From two size-selected libraries (Table 2), we
obtained 14,592 ESTs, of which 10,418 (71%) passed
quality standards for clustering. Of the passing ESTs, 1585
(15%) came from the large-insert library CBYF, and 7549
(72%) originated from library CCAW, a non-size selected
library having a relatively high proportion of small inserts
(44%) and somewhat lower average sequence diversity
(43.4%) than the other four libraries constructed for this
study (Table 1).

When grown on dilute (0.2x) PDA, C. zeae-maydis pro-
duces large amounts of cercosporin, which accumulates as
a dark red pigment in the culture medium (Fig 2A) begin-
ning after approximately three days of growth. Frequently,
cercosporin is produced in large enough quantities to
form crystals along hyphae of the fungus (Fig 2B). We
used the accumulation of cercosporin as a visible marker
to determine when to collect tissue for RNA extractions
based on the hypothesis that genes involved in pathogen-
esis are induced concomitantly with the induction of cer-
cosporin biosynthesis. We collected RNA from C. zede-
maydis growing on 0.2x PDA three and five days after
inoculation with the intention of identifying genes
expressed during the onset and after the accumulation of
cercosporin biosynthesis. Additionally, to increase EST
diversity, we collected RNA from cultures grown for five
days on media that repress cercosporin biosynthesis irre-
spective of exposure to light, including V8-agar and 0.2x
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Figure |
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Cercospora zeae-maydis grown on V8 agar for sporulation libraries. For library construction, cultures initiated from
conidial suspensions were grown in constant darkness and RNA was extracted (A) three days and (B) five days after initiation,
time points that correspond to early and late stages of conidiation, respectively. Conidiophores (red arrows) typically form
two to three days after inoculation (C) and conidia (blue arrows) develop and mature over the next 48 hours (D). In contrast,
cultures grown on the same medium in constant light produce few conidiophores or conidia (E).

PDA supplemented with 10 mM ammonium phosphate,
a preferred nitrogen source (Fig 2A). We constructed two
distinct libraries from vegetative cultures (Table 2). From
these two libraries, a total of 12,959 ESTs was obtained,
9384 (72%) of which passed quality standards and were
clustered. The majority (75%) of the passing ESTs origi-
nated from the large-insert library CBYB.

ESTs from the five cDNA libraries described above were
combined for clustering analysis. Among the 4088 clus-
ters, we identified 7120 consensus identification
sequences that primarily reflected non-overlapping

sequencing reads due to a high percentage of large inserts
in the CBYB library (data not shown). Fifteen clusters
(0.4%) contained three consensus identification
sequences, and six (0.1%) contained four or more, reflect-
ing a combination of alternative transcript splicing as well
as erroneous grouping of sequences (overclustering). To
determine the distribution of cluster sequences between
the two sets of conditions, we performed a cluster overlap
analysis with the 4088 clusters containing two or more
ESTs. A total of 1744 clusters were comprised of ESTs
found exclusively in the vegetative libraries, whereas 1436
clusters were comprised of ESTs found exclusively in the
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Figure 2

Vegetative growth of Cercospora zeae-maydis. For con-
struction of vegetative libraries (A), RNA was extracted from
cultures grown in constant light on 0.2x PDA (left), on 0.2x
PDA supplemented with |0mM ammonium phosphate
(center), and on V8 agar (right). The red pigment visible in
the culture grown on 0.2x PDA is cercosporin. When grown
on 0.2x PDA (B), cercosporin frequently accumulates at high
levels in the growth medium and forms crystals.

sporulation libraries. Only 908 (18%) of the clusters were
comprised of ESTs found in both the vegetative and
sporulation libraries, thus indicating that the conditions
selected for library construction have a substantial impact
on the transcriptome of C. zeae-maydis.

Sequence annotation and analysis

Fungal tissue from which cDNA libraries were constructed
was obtained from cultures grown under a variety of con-
ditions representing multiple stages of fungal develop-
ment with the goal of obtaining a diverse collection of

http://www.biomedcentral.com/1471-2164/9/523

ESTs representing a range of molecular functions. ESTs
were annotated according to Gene Ontology (GO) [25]
guidelines with Blast2Go, a universal, web-based annota-
tion application [24]. To ensure the highest recovery of
GO terms, we submitted all 7120 consensus identification
sequences derived from the 4088 clusters and 531 single-
tons for Blast2Go analysis. In total, 2526 sequences had
no blast hits with an E value < 10-95. Out of these, 2515
sequences contained one or more predicted open reading
frames of at least 100 amino acids. The sequences that
have coding potential but do not share significant homol-
ogy to deposited sequences could represent conserved
genes that are not yet described in other fungi or genes
that are unique to C. zeae-maydis. Of the 4594 sequences
with BLAST hits, 2208 sequences (48.1%) were assigned
GO terms. To eliminate over-representation of GO terms,
a single BLAST hit was included in the final analysis for
each cluster unless multiple consensus sequences for a
given cluster corresponded to remarkably different pro-
teins. In total, 1471 clusters were assigned GO terms.

When analyzed by biological process, the majority of
annotations (69%) were involved in metabolism, fol-
lowed by transport (12%) (Fig. 3A). The remainder (19%)
was distributed among several processes, including
housekeeping functions, growth, and the regulation of
development. Remarkably, despite our attempts to con-
struct libraries enriched in genes regulating conidiation,
only one sequence annotation was directly involved in
asexual reproduction. We hypothesize that the apparent
under-representation of conidiation-related genes reflects
a general lack of knowledge of how fungi in general and
Cercospora species in particular regulate asexual develop-
ment, and that many conidiation-related genes in C. zeae-
maydis reside among the 4912 sequences that either had
no similarity to known sequences or could not be anno-
tated with the GO system.

Hydrolases and oxidoreductases comprised over 45% of
the total number of molecular functions identified by GO
analysis (Fig 3B). Hydrolases, which utilize water mole-
cules to break chemical bonds, perform a broad range of
functions in fungi, including the extracellular digestion of
complex carbon sources such as cellulose and other com-
ponents of plant cell walls. Oxidoreductases catalyze the
transfer of electrons between molecules and in fungi are
involved in primary and secondary metabolism (includ-
ing cercosporin biosynthesis) as well as the detoxification
of compounds such as reactive oxygen species, superoxide
and hydrogen peroxide. Intriguingly, these same com-
pounds are frequently associated with the oxidative burst
component of plant defense [26]. Although it is reasona-
ble to propose that oxidoreductases of fungal foliar path-
ogens could be involved in detoxification of reactive
oxygen species during pathogenesis, such a relationship
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Functional annotation of cluster consensus sequences based on Gene Ontology (GO) categorization. Sequences
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has not been demonstrated. Sequences involved in signal
transduction comprised 2% of the molecular functions
identified (Fig 3B). Most of these genes were predicted to
encode protein kinases, including 13 genes predicted to
encode histidine kinases analogous to the two-compo-
nent sensor histidine kinase family and three genes pre-
dicted to encode mitogen-activated protein kinases
(MAPKs). The role of MAPKs in regulating morphology
and virulence is well established in many fungi, including
C. zeae-maydis [27,28]. In filamentous fungi and yeasts,
histidine kinases trigger phosphorelay signaling mecha-
nisms that interact with various MAPKs to regulate
growth, differentiation, and virulence [29,30].

The vast majority of annotated sequences are predicted to
encode intracellular proteins (Fig 3C). Considering the
pathogenic lifestyle of C. zeae-maydis, we anticipated iden-
tifying a substantial number of secreted proteins, but
found that limitations inherent to EST sequencing
projects (e.g., 3' bias of sequence data, clones not corre-
sponding to full-length transcripts) made predictions
regarding secretion unreliable. However, nearly 1% of
sequences were categorized by Blast2Go analysis as com-
prising external encapsulating structures, defined as any
constituent of a structure that lies outside the plasma
membrane and surrounds the entire cell [25]. Unlike bac-
teria, filamentous fungi generally produce highly hydro-
phobic proteins (collectively referred to as hydrophobins)
rather than polysaccharide capsules as a protective barrier
against the environment. The extent to which hydrophob-
ins are involved in pathogenesis among filamentous fungi
is not clear, but in Magnaporthe grisea, a hydrophobin
encoded by MPG1 is required for the efficient induction of
appressoria, possibly by mediating aspects of surface rec-
ognition [31].

Consistent with many fungal EST projects, a substantial
number of sequences could not be annotated due to
either a lack of BLAST hits or hits to uncharacterized fun-
gal sequences [e.g., [32,33]]. Of the sequences with no
BLAST hits, some fraction could be unique to C. zeae-may-
dis, whereas a significant percentage is likely to be too
short to yield BLAST hits or correspond to untranslated
regions of the mRNA (such as the 5' or 3' UTR). Of the
sequences with BLAST hits, well over half could not be
annotated due to a general lack of knowledge regarding
the specific molecular functions of many fungal genes. For
example, the genome of the closely related fungus
Moycosphaerella graminicola is predicted to contain 11-
12,000 genes, but to date, only ~30% have been anno-
tated as to biological process, ~15% by cellular compo-
nent, and ~40% by molecular function http://genome.jgi-

psf.org/Mycgrl/Mycgrl.home.html.

http://www.biomedcentral.com/1471-2164/9/523

Highly differentially expressed sequences

Consensus sequences consisting of ESTs found predomi-
nantly or exclusively in either vegetative or sporulation
libraries could reveal molecular mechanisms involved in
regulating fungal development, and the library-to-library
distribution of ESTs corresponding to a single cluster
offers at least a qualitative measure of gene expression. We
designated consensus sequences comprised of at least 20
ESTs that were substantially enriched in either the vegeta-
tive or sporulation libraries (10-fold or greater distribu-
tion of ESTs in one set of libraries) to be highly
differentially expressed sequences (HDESs). Twenty-six
consensus sequences from the sporulation libraries met
those criteria (Table 3). Of these 26 HDESs, fifteen (58%)
were comprised of ESTs obtained exclusively during vege-
tative conditions, and seven were comprised of more than
100 ESTs. Many of the HDESs in the sporulation libraries
were of unknown function (50%), with the next largest
categories including genes predicted to be involved in pro-
tein synthesis (11%), mitochondrial sequences (11%),
and components of primary metabolism (11%). The
sequence most highly enriched during asexual develop-
ment corresponded to prohibitin-1 of Ajellomyces capsula-
tus, the causal organism of histoplasmosis. Prohibitins are
activators of Ras-induced signal transduction pathways
that regulate growth and development in higher eukaryo-
tes [34], but their molecular functions in fungi have not
been established. In the vegetative libraries, only four
sequences met the criteria of HDESs, all of which were
comprised of 39 or fewer ESTs (Table 3). Three of the veg-
etative HDESs returned no hits after tBLASTx analysis
against the nr database, thus indicating these sequences
may be unique to C. zeae-maydis. The other vegetative
HDES shared high levels of identity with fungal glutami-
nases, enzymes catalyzing the hydrolysis of glutamine to
glutamic acid. Glutaminases play a role in the acquisition
of nitrogen from less preferred sources, and a glutaminase
from A. nidulans is subject to nitrogen metabolite repres-
sion [35]. The enhanced expression of a glutaminase on a
nitrogen-poor medium such as 0.2x PDA is consistent
with nitrogen metabolite repression.

The enrichment of ESTs corresponding to a specific cluster
sequence in one set of libraries over the other could reflect
differences in fungal morphology and development or the
effect of environmental conditions such as composition
of growth medium. In this study, all cultures prepared for
construction of vegetative libraries were grown in constant
light on a variety of media, whereas all cultures prepared
for sporulation libraries were grown in constant darkness
on V8 agar. To correlate the occurrence and distribution of
ESTs with levels and patterns of gene expression, we per-
formed real-time quantitative PCR (qPCR) to evaluate
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Table 3: Consensus sequences highly enriched during either sporulation or vegetative growth

Cluster ID_consensus sequence BLAST hit (gi #)' E value
Enriched during sporulation

35_8 154277410 6e-56
4016_1 n/a n/a
357 73808014 6e-18
110o1_1 n/a n/a
295 2 n/a n/a
2170_1 n/a n/a
I_1l 39974277 4e-11
134_1 n/a n/a
2189_1 25091421 8e-13
2064 _1 111064426 le-20
13_1 156052246 3e-39
1_12 4572458 4e-34
1356_1 46102748 9e-23
2201 _1 n/a n/a
159_1 119173169 4e-85
2953 336895 6e-15
2139_2 154281566 8e-56
2156_1 145238173 9e-17
2324_| 46108711 le-40
2255_1 154323144 3e-129
2134_1 5831429 3e-26
2277_1 5829297 6e-66
2303_1 5828212 le-49
294_1 145232507 2e-12
2154 | n/a n/a
2301_1 84573599 9e-15
Enriched during vegetative growth

540_1 71000414 0.0
351 n/a n/a
1302_1 n/a n/a
353 n/a n/a

Annotation2 No. of ESTs in libraries

Sporulation Vegetative

Prohibitin 387 3

No hits found 325 |

Exo-beta-|,3-glucanase 529 40
No hits found 190 2
No hits found 211 6
No hits found 133 0
Conserved hypothetical protein 169 3
No hits found 67 0
Hydrophobin 63 0
Conserved hypothetical protein 85 2
Conserved hypothetical protein 46 0
Formate dehydrogenase 68 2
Conserved hypothetical protein 75 3
No hits found 39 0
Aquaglyceroporin 37 0
ATP synthase protein 9 50 2
Ribosomal protein L30 26 0
ATP synthase subunit Atp18 26 0
60S ribosomal protein L36 24 0
Enoyl-CoA hydratase 24 0
60S ribosomal protein L29 24 0
Blue light induced gene-3 23 0
Cytochrome c oxidase 22 0
Conserved hypothetical protein 53 3
No hits found 20 0
Conserved hypothetical protein 20 0
Glutaminase 0 39
No hits found 0 26
No hits found 0 23
No hits found 0 21

I gi = GenBank gene index number of most similar sequence obtained by tBLASTx.
2 Projected annotation based on known function of all similar sequences obtained by tBLASTx with a threshold of le-5.

seven HDESs in response to light and growth medium. Of
five arbitrarily selected clusters that are highly enriched in
sporulation libraries, three (1101, 2189, 13) showed sub-
stantially higher levels of expression on V8 agar compared
to 0.2x PDA regardless of exposure to light, one (4016)
appeared to be repressed by light, and another (2170)
appeared to be regulated by both light and medium com-
position (Fig 4A). Of the four clusters enriched in vegeta-
tive libraries, at least one (1302) was regulated
predominantly by medium composition (Fig. 4A). These
analyses confirm that light and medium composition
influence the transcriptome of C. zeae-maydis and that the
distribution and frequency of EST occurrence in the two
sets of libraries is a direct reflection of how genes are reg-
ulated in response to developmental and environmental
cues.

Photoreceptors and light-responsive genes

In many filamentous fungi, light affects diverse aspects of
growth and development, including the formation of
conidia, sexual reproduction, secondary metabolism, and
circadian rhythms. Because light is a critical environmen-
tal regulator of pathogenesis in C. zeae-maydis, we focused
on identifying genes involved in photoreception and
light-dependent signal transduction. Two classes of pho-
toreceptors have been identified in fungi: the het-
erodimeric blue-light-sensing White collar complex
comprised of White collar-1 and White collar-2 [36] and the
red-light-sensing phytochromes [37]. We identified a clus-
ter highly similar to fungal phytochromes as well as
sequences homologous to photoreceptors from higher
eukaryotes that are uncharacterized in fungi, including
blue/green light-sensing opsins, blue-light sensing pho-
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Expression analysis of selected cluster consensus sequences. (A) Expression of highly differentially expressed
sequences from the vegetative and sporulation libraries was evaluated by quantitative PCR (qPCR) after three days of growth
on 0.2x PDA in constant light, 0.2x PDA in constant darkness, V8 agar in constant light, and V8 agar in constant darkness. For
each sequence, expression was normalized relative to expression during growth on 0.2x PDA in constant light. (B) Expression
analysis of selected photoreceptors and putative light-regulated genes. (¥) indicates not detected.
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totropins, and blue-light sensing cryptochromes (Table
4). Additionally, we identified several sequences homolo-
gous to light-regulated genes, including circadian clock-
regulated genes (Table 4). We were unable to identify a
cluster corresponding to either White collar-1 or White col-
lar-2, most probably due to their low basal levels of
expression. Somewhat surprisingly, ESTs corresponding
to bli-3, a blue-light induced gene from N. crassa, were
found predominantly in the sporulation libraries; enrich-
ment of light-induced genes would be unexpected in cul-
tures grown in constant darkness.

To investigate the transcriptional regulation of putative
photoreceptors and light-regulated genes, we analyzed the
expression of selected genes in response to light and
growth medium. The sequence similar to members of the
cryptochrome/photolyase family was more highly
expressed in light than dark (Fig 4B) and, consistent with
the distribution of corresponding ESTs (Table 4), the
expression of the phytochrome-like gene did not appear
to be affected by light (Fig 4B). Additionally, expression of
the sequence similar to bli-3 appeared to be regulated pri-
marily by growth medium (Fig 4B), thus explaining its
enrichment in the sporulation rather than vegetative
libraries.

Sequences implicated in the regulation of development

Morphological differentiation and the regulation of devel-
opment are complex processes in filamentous fungi and
involve numerous genes and regulatory networks. We
identified ten clusters corresponding to genes known to
specifically regulate development and morphogenesis in
other fungi (Table 5). Included among these clusters are
several orthologs of genes regulating development in
yeasts, including zds1, implicated in regulating multiple
cellular events including sexual differentiation and mor-
phology [38], rcd1, a key regulator of differentiation in
response to nitrogen starvation [39], and moc3, a gene

http://www.biomedcentral.com/1471-2164/9/523

encoding a Zn-finger protein involved in sexual develop-
ment and stress responses [40]. Additionally, we identi-
fied an ortholog of Stel2, a transcriptional regulator that
in turn is regulated by MAP kinase signal transduction
pathways [41]. Ste12 orthologs are well conserved among
fungi and regulate various aspects of growth, differentia-
tion, and pathogenesis [e.g., [42-44]].

Because conidia play a key role in the propagation of dis-
eases caused by Cercospora species, we are particularly
interested in identifying genes involved in the regulation
of asexual development. In C. zeae-maydis and many other
filamentous fungi, conidia are borne on specialized struc-
tures termed conidiophores (Fig. 1A, C, D). However, the
morphological characteristics of conidia and conidio-
phores vary widely among fungi, often to the extent that
the size and shape of conidia and/or conidiophores form
a basis for taxonomic identification of genera or species.
Given the structural complexity of conidiophores and
conidia as well as the extent to which conidiation is regu-
lated by environmental cues, asexual development pre-
sumably requires the coordinated expression of many
genes. However, relatively little is known at the molecular
level regarding how fungi regulate conidiation. Much of
the existing knowledge is derived from model fungi, such
as Aspergillus nidulans and Neurospora crassa, which are
only distantly related to C. zeae-maydis.

We identified several consensus sequences from the EST
libraries corresponding to genes known to regulate conid-
iation in filamentous fungi (Table 5). In A. nidulans, the
regulator of G-protein signaling fIbA is required for asex-
ual sporulation [45], and the Zn(II)2Cys6 transcription
factor encoded by nosA that is required for the induction
of sexual development is also transcriptionally upregu-
lated during asexual development [46]. The exact molecu-
lar function of the protein encoded by hymA, also required
for conidiophore formation in A. nidulans, is unknown

Table 4: Putative photoreceptors and light-regulated genes found in EST libraries of Cercospora zeae-maydis

Cluster or singleton # GenBank gi #' BLAST e value Annotation?

No. of ESTs in libraries

Sporulation Vegetative

839 156057216 2e-99 Opsin 0 2
CBYB4938 121705009 3e-57 Cryptochrome/photolyase 0 |

3281 154291031 2e-80 Phototropin 0 2
217 39656354 0.0 Phytochrome 2 2
2277 5829297 6e-66 Bli-3 23 0
18 46137218 le-11 Clock-controlled gene 6 14 35
404 32993638 0.0 Glyceraldehyde 3-phosphate dehydrogenase 8 8

(clock-controlled gene 7)
2878 121713003 4e-16 Clock-controlled gene 8 2 0

I'gi = GenBank gene index number of most homologous sequence obtained by tBLASTx.
2Based on comparative analysis of similar sequences obtained by tBLASTx with a threshold of le-5.
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Table 5: Sequences from EST libraries of Cercospora zeae-maydis implicated in fungal development

Cluster # GenBank gi#' BLAST value Putative function (fungal homolog)?2 No. of ESTs in libraries
Sporulation  Vegetative
545 67525274 5e-36 Conidiophore development protein (hymA) 0 4
1155 402369 le-63 Regulator of conidiation (flbA) 0 4
1164 46125378 2e-55 Regulator of fruiting body formation (nosA) 0 4
1146 115387582 3e-109 Regulator of conidiation (nrc-2) 0 2
1217 154287709 le-62 Regulator of development in response to nutrient availability (rcd/) 0 6
40 32995311 5e-85 Pleiotropic developmental regulator (fstl2) 2 4

I'gi = GenBank gene index number of most homologous sequence obtained by tBLASTx.
2 Projected function based on comparative analysis of similar sequences obtained by tBLASTx with a threshold of le-5.

[47]. In Neurospora crassa, an insertional mutant that con-
stitutively initiated, but failed to complete, conidial devel-
opment arose from disruption of nrc-2, a gene encoding a
serine-threonine protein kinase [48]. Also, the putative
green-light photoreceptor encoded by nop-1 regulates
conidiation-specific gene expression in N. crassa, thus
implicating the gene in fungal development [49]. Because
of the complexity of conidiophore and conidial develop-
ment and their relatively poor evolutionary conservation
among taxonomic classes of fungi, further characteriza-
tion of candidate genes involved in asexual development
in C. zeae-maydis will require functional characterization
such as targeted disruption.

Pathogenesis-related sequences

As a foliar pathogen, C. zeae-maydis presumably produces
a suite of enzymes during pathogenesis to facilitate the
utilization of complex carbon sources, acquisition of
nitrogen from non-preferred sources, and detoxification
and/or avoidance of host resistance responses. We identi-
fied clusters encoding a wide variety of catabolic enzymes
likely to be involved in leaf colonization, including cellu-
lases, cutinases, cellobiases, xylanases, glucosidases, cello-
biohydrolases, lipases, and proteases (Table 6).
Additionally, we identified conserved transcription factors
implicated in pathogenesis (Table 6), including areA, a
central regulator of nitrogen metabolite repression and a
key regulator of secondary metabolism in filamentous
fungi [50], and homologs of xInR and ctf1a, which encode
conserved regulators of xylanase and cutinase expression,
respectively [51,52]. Consistent with a dichotomy
between infectious and reproductive growth, ESTs encod-
ing pathogenesis-related sequences were found predomi-
nantly in the vegetative libraries.

Infection of leaves by C. zeae-maydis progresses through
distinct stages, including spore germination, appresso-
rium formation, penetration of leaves, and a transition to
necrotrophic growth. Underlying each of these stages are
unique molecular interactions reflected at least in part
through modulation of gene expression. To establish the

expression profiles of pathogenesis-related genes during
distinct stages of leaf colonization, we performed qPCR
on leaves three, seven, ten, and 14 days after inoculation
(Fig 5A). The expression of two transcriptional regulators
of extracellular enzymes involved in catabolism and a
putative cutinase gradually increased during colonization,
as did the expression of a putative catalase (Fig 5B), which
suggests that these genes are involved in colonization of
host tissue.

Many fungal secondary metabolites, including cer-
cosporin, are polyketide compounds formed by the head-
to-tail condensation of acetate molecules as catalyzed by
polyketide synthases. Recently, a gene cluster encoding a
group of biosynthetic genes required for cercosporin bio-
synthesis was identified in Cercospora nicotianae, a foliar
pathogen of tobacco [15]. The cluster contains a
polyketide synthase (CTB1I), disruption of which abol-
ishes cercosporin biosynthesis [53], as well as other coor-
dinately regulated genes such as oxidoreductases
hypothesized to catalyze specific steps in the biosynthesis
of cercosporin [54]. Consistent with established patterns
of cercosporin biosynthesis in culture, the C. zeae-maydis
homolog of CTB1 was induced by light on 0.2x PDA and
was repressed by V8 agar irrespective of exposure to light
(Fig 4B).

Although cercosporin is known to function as a virulence/
pathogenicity factor in many Cercospora species, the
dynamics of cercosporin biosynthesis during pathogene-
sis are largely unknown. To explore this question, we
monitored CTB1 expression during colonization of leaf
tissue. Although expression of CTB1 increased two-fold by
14 days after inoculation, it was somewhat surprising that
expression of CTB1 changed little from 3-10 days after
inoculation (Fig 5B). During this time, the fungus makes
its initial penetration of mesophyll tissue and, as reflected
by the visible development of lesions, commences necro-
trophic growth. The absence of CTB1 induction during
these stages of pathogenesis suggests that other virulence/
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Table 6: Pathogenesis-related sequences identified in EST libraries of Cercospora zeae-maydis

Cluster no. GenBank gi #'  BLAST e-value  Putative function? No. of ESTs in libraries
Sporulation  Vegetative

834 50080728 7e-124 Polyketide synthase involved in Cercosporin biosynthesis (CTB/) 0 3
1641 156446810 2e-80 Polyketide synthase 0 2
3502 40787371 le-125 Polyketide synthase 0 |
859 121704362 3e-103 Hybrid non-ribosomal peptide synthetase/polyketide synthase 0 4
3456 119469758 6e-65 Non-ribosomal peptide synthetase 0 |
1346 121714834 le-161 Extracellular lipase 2 4
1982 119472133 3e91 Cellulase 0 |
2054 121716183 le-51 Cutinase 0 2
908 164425479 9e-126 Catalase 0 19
740 154317444 6e-97 Regulator of xylanase activity (xInR) 0 8
661 67541772 7e-135 Regulator of cutinase activity (cf/ @) 0 7
3591 12082799 4e-43 Nitrogen response factor (areA) 0 |
1982 119472133 3e-91 cellobiohydrolase 0 3
1254 115389439 4e-80 B-glucosidase 0 7
527 13816425 7e-44 B-glucosidase 0 7
641 115389439 7e-135 B-glucosidase 0 5
136 74054463 2e-107 B-glucosidase 3 12
1663 15982667 3e-98 B-glucosidase | 3
1059 156061937 4e-103 a-glucosidase 0 6
1855 1552175 8e-69 xylanase 0 4

I'gi = GenBank gene index number of most homologous sequence obtained by tBLASTx.
2 Projected function based on comparative analysis of similar sequences obtained by tBLASTx with a threshold of le-5.

pathogenicity factors may play a greater role in the initial
colonization of leaf tissue.

Somewhat surprisingly, no other sequence similar to
genes in the cercosporin biosynthesis (CTB) cluster was
found among the ESTs obtained in this study. Among
fungi that produce a given secondary metabolite, the
underlying gene clusters are generally highly conserved,
making it unlikely that C. zeae-maydis possesses a funda-
mentally different mechanism responsible for cercosporin
biosynthesis. Rather, the most likely explanation for the
absence of other CTB homologs from the EST dataset is
that the cultures from which the vegetative libraries were
produced represented a variety of growth conditions, not
all of which supported cercosporin biosynthesis; there-
fore, the relative concentration of mRNAs corresponding
to CTB genes was diluted. We hypothesize that more
extensive sequencing of the vegetative libraries would lead
to the identification of homologs of CTB genes such as
those identified in C. nicotianae.

Identification and characterization of Zephyr, a novel
transposable element

Among the ESTs highly represented in the vegetative
library compared to the sporulation library, we identified
a sequence highly similar to members of the Ty3/Gypsy
family of long terminal repeat (LTR) transposons, includ-
ing Grasshopper from Magnaporthe grisea [55], REAL from
Alternaria alternata [56], and Skippy from Fusarium oxyspo-

rum [57]. Members of the family typically contain two
long, partially overlapping open reading frames encoding
a protein similar to retroviral structural proteins and a
poly protein containing protease, reverse transcriptase,
RNaseH, and integrase domains [58]. The retroelement
identified in this study, designated Zephyr, is comprised of
four clusters of 1749, 3664, 1028, and 1707 bp as well as
four cluster singlets consisting of 110, 766, 745, and 252
bp. A conceptual translation of the 3664-bp cluster results
in a protein of 1221 amino acids that corresponds to the
poly protein of the element and is highly similar to Ty3/
gypsy elements found in Magnaporthe grisea and other fil-
amentous fungi, including the closely related fungus
Mpycosphaerella graminicola (data not shown). To date, only
one other retroelement has been identified in C. zeae-may-
dis: Malazy, a degenerate, presumably non-coding mem-
ber of the gypsy family [59] that shares substantial
identity with Zephyr at the nucleotide level. Because the
numerous premature stop codons found in Malazy are
absent from Zephyr and EST evidence indicates Zephyr is
an active element, we hypothesize that Malazy represents
a defective/inactivated descendent of Zephyr.

Transposition of retroelements in fungi can be induced by
a variety of biotic and abiotic stresses as well as morpho-
logical changes such as sexual reproduction. However,
activation of transposable elements is relatively rare dur-
ing the normal growth and development of most organ-
isms, including filamentous fungi [60]. Therefore, it is
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Expression analysis of putative pathogenesis-related sequences during infection. (A) Infected maize leaves were
collected three, seven, ten, and fourteen days after inoculation. (B) Real-time quantitative PCR was performed to analyze

expression of selected fungal genes during pathogenesis.

somewhat surprising that ESTs representing the polypro-
tein-encoding region of Zephyr are highly enriched in the
vegetative libraries (34 ESTs in vegetative libraries com-
pared to two in sporulation libraries). To further charac-
terize the regulation of Zephyr, we profiled its expression
during growth of C. zeae-maydis under a variety of envi-
ronmental conditions. When evaluated by qPCR, cycle
threshold values were low (< 20), thus indicating high lev-
els of expression. Consistent with the distribution of ESTs
in vegetative and sporulation libraries, the pol polypro-
tein-encoding region of Zephyr was expressed nearly 4-
fold greater during growth on 0.2x PDA in light than on

V8 agar in darkness. These results suggest that Zephyr is an
actively transcribed element that is regulated by growth
medium and possibly by light. Although EST and qPCR
data indicate that Zephyr is highly expressed, further stud-
ies will be required to verify the transposition of the ele-
ment.

Currently, little is known regarding the molecular mecha-
nisms controlling the activity of transposable elements in
fungi. Transposable elements have been implicated as a
driving force behind genetic diversity; their activation in
response to environmental stress is hypothesized to be a
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mechanism of adaptation, and consequently, genomic
evolution [61]. Because Cercospora is believed to be a
largely asexual genus, transposition of elements such as
Zephyr could be a driving force behind the remarkably
high level of host-specific speciation that has evolved
among Cercospora species.

Conclusion

By generating ESTs from vegetative and sporulating cul-
tures of C. zeae-maydis, we identified novel genes involved
in a wide range of biological processes. Functional anno-
tation and expression profiling implicated subsets of
genes in pathogenesis and conidiation. Consistent with
the crucial role light plays in host-pathogen interactions
between C. zeae-maydis and maize, we identified a large
number of photoreceptors and light-regulated genes, plus
Zephyr, a novel, highly expressed transposable element.
We conclude that light plays a key role in the dichotomy
between vegetative and reproductive growth in C. zeae-
maydis and that future characterization of the underlying
molecular mechanisms will contribute significantly to the
fundamental understanding of how fungi respond to
light.
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