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Taxonomic inventories (or species censuses) are the most elementary data in biogeography, macroecology

and conservation biology. They play fundamental roles in the construction of species richness patterns,

delineation of species ranges, quantification of extinction risk and prioritization of conservation efforts in

hot spot areas. Given their importance, any issue related to the completeness of taxonomic inventories can

have far-reaching consequences. Here, we used the largest publicly available database of georeferenced

marine fish records to determine its usefulness in depicting the diversity and distribution of this taxonomic

group. All records were grouped at multiple spatial resolutions to generate accumulation curves, from

which the expected number of species were extrapolated using a variety of nonlinear models. Comparison

of the inventoried number of species with that expected from the models was used to calculate the

completeness of the taxonomic inventory at each resolution. In terms of the global number of fish species,

we found that approximately 21% of the species remain to be described. In terms of spatial distribution, we

found that the completeness of taxonomic data was highly scale dependent, with completeness being lower

at finer spatial resolutions. At a 38 (approx. 350 km2) spatial resolution, less than 1.8% of the world’s

oceans have above 80% of their fish fauna currently described. Censuses of species were particularly

incomplete in tropical areas and across the entire range of countries’ gross domestic product (GDP),

although the few censuses nearing completion were all along the coasts of a few developed countries or

territories. Our findings highlight that failure to quantify the completeness of taxonomic inventories can

introduce substantial flaws in the description of diversity patterns, and raise concerns over the effectiveness

of conservation strategies based upon data that remain largely precarious.
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1. INTRODUCTION

The report of species at specific sites is probably the most

basic data in ecology (Gaston & Blackburn 2000). Such

records are often used to calculate the number of species

occurring at each site or as a source of information with

which to extrapolate the extent of species’ occurrence and

their area of occupancy (Gaston & Blackburn 2000).

Further uses of these data vary from the construction of

diversity patterns (Roy et al. 1998; Myers et al. 2000;

Bellwood & Hughes 2001; Macpherson 2002; Roberts

et al. 2002; Mora et al. 2003; Mora & Robertson 2005;

Worm et al. 2005; Grenyer et al. 2006) to the identification

of ‘hot spots’ of extinction-prone species (Myers et al.

2000; Roberts et al. 2002) and to the creation of optimum

conservation strategies (Myers et al. 2000; Roberts et al.

2002; Grenyer et al. 2006). Escalating anthropogenic

impacts on biodiversity and the need to prioritize limited

conservation resources have prompted the description of

and attempts to understand diversity patterns and, there-

fore, have stimulated the use of taxonomic inventories (Roy

et al. 1998; Myers et al. 2000; Bellwood & Hughes 2001;

Macpherson 2002; Roberts et al. 2002; Mora et al. 2003;

Mora & Robertson 2005; Worm et al. 2005; Grenyer et al.

2006). Determining the extent to which human-related
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threats affect biodiversity, either through the loss of species

at given sites or through changes in range size, also requires

accurate data on the distribution of species (Gaston &

Blackburn 2000). A limitation with regard to the use of

taxonomic inventories for these purposes is the extent of

their completeness (i.e. the fraction of species in a given

location that has been sampled). If some locations are more

completely sampled than others, or if a species has not

been reported in a given location due to insufficient

sampling effort, this will introduce biases to the yielded

patterns and to the subsequent analyses of ecological

mechanisms and conservation strategies (Soberon &

Llorente 1993; Colwell & Coddington 1994; Gotelli &

Colwell 2001; Soberon et al. 2007). In this study, we used

the largest publicly available database of georeferenced

marine fish records to determine its usefulness in depicting

the diversity and distribution of this taxonomic group. All

records were grouped at multiple spatial resolutions to

generate accumulation curves from which the expected

number of species was extrapolated using a variety of

nonlinear models (see Soberon et al. (2007) for a similar

analysis with butterflies from Mexico). The results of the

different models were averaged using a weighting approach

based on an information-theoretic methodology. Compari-

son of the actual number of species with that expected from

the models was used to calculate the completeness of the

taxonomic inventory at each spatial resolution.
This journal is q 2007 The Royal Society
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Figure 1. (a–c) Effects of the RSA distribution and (d– f ) variable sampling on the rarefaction curves and (g–i ) on the asymptotic
number of species predicted by the models. Here, we created three hypothetical communities each with 500 species and 10 000
individuals. (a–c) The number of individuals per species in each community ranged from being equal to very unequal, to
generate RSAs with different skews. For each of these communities, we created rarefaction curves (d– f ) by sampling a variable
number of individuals for each time period (simulating the sampling occurred at any given year). Sampling effort varied by a
factor of five: from 200 to 1000 individuals each time period, from 400 to 1000, from 600 to 1000, from 800 to 1000 and exactly
1000 individuals each time. We also created another set of curves (not shown) using 10, 20, 30, 40 and 50 years of sampling.
Thus, for each community, we created a total of 25 curves, combining all five sampling efforts and five groups of years. For each
of these of curves, we fitted all nonlinear models and applied the approach mentioned in §2 to calculate the predicted asymptotic
number of species in the community (g–i ).
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2. MATERIAL AND METHODS

(a) Database

We used approximately 2.1 million records available for

marine fishes in the Ocean Biogeographical Information

System (OBIS). This database is part of the Census of Marine

Life programme (extended details of the database can be

found at www.iobis.org). Data included in the OBIS date

back to the beginning of the modern Linnaean classification

system 250 years ago, and consist of dated and georeferenced

records of individual species but not their abundances. All

data in the OBIS have been cross-checked with the Catalogue

of Fishes to ensure that each record is valid based upon the

most up-to-date taxonomy. The OBIS has been in operation

since 1998 and has gathered data from all major public

sources of marine biogeographical data such as the Global

Biodiversity Information Facility, FISHBASE and Catalogue of

Fishes, which have been themselves gathering data from

numerous sources for a number of years. The OBIS also has a

policy of easy data posting, which allows parties such as

natural museums, regional organizations, scientific projects

and individuals to post their data, and significant efforts have

been made to encourage the posting of and free access to data
Proc. R. Soc. B (2008)
(Grassle 2000; Costello & Vanden 2006). The accessibility of

such data is critical to the global description and verification

of diversity patterns; data that have been collected but not

made publicly available cannot be used for these purposes. In

the light of the fact that there are such inaccessible data, our

results have to be interpreted as a synopsis of the combined

state of public knowledge on the global distribution and

diversity of marine fishes.
(b) Accumulation curves

We calculated the completeness of taxonomic inventories

within square cells across a range of spatial resolutions from

38 to 368 within the world’s oceans and within the high seas

and exclusive economic zones (EEZs) of the world. Using

geographical information system software, records were

assigned to a given cell, high sea or EEZ based on their

geographical positions. We used the year of collection for each

record to construct an accumulation curve of species over

time within each of our spatial units. This temporal

accumulation curve may be viewed as analogous to a ‘rate

of discovery’ curve (May 1990), since each species only

contributes to the curve upon first being reported within each

http://www.iobis.org
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spatial unit, despite any subsequent appearance in a sample.

Data collected prior to 1960 were markedly patchy, due to the

events such as the two world wars and perhaps varying

taxonomic interest (Zapata & Robertson 2007; see also

figure 2b). Therefore, data collected prior to that year were

added to the models as a y-intercept. As recommended by

other studies (Colwell & Coddington 1994; Gotelli & Colwell

2001), we used sample-based rarefaction to reduce biases

introduced by inconsistencies and discontinuities in taxo-

nomic effort. Each iteration of this Monte Carlo approach

randomly ordered the years of the records to create an

accumulation curve (this is equivalent to obtaining a number

of species in a sample of n years). We repeated this approach

50 times for the data in each cell, high sea or EEZ, and

averaged the resulting curves to get a smoothed species

accumulation curve (a detailed description of this approach

can be found in Colwell & Coddington (1994) and Gotelli &

Colwell (2001)).
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Figure 2. Temporal description of marine fish species
worldwide. (a) The species accumulation curve, the
smoothed rarefaction curve and the fit of the nonlinear
models to the global data. Results for the different models are
shown in table 2. (b) The accumulation of records with date
stamps in OBIS.
(c) Calculation of completeness

A number of parametric and non-parametric models have

been put forward to estimate species richness through the

extrapolation of discovery record data. However, comparative

studies have indicated that the results of such models may

vary considerably depending upon different attributes of the

data (e.g. Colwell & Coddington 1994; Walther & Morand

1998; Gotelli & Colwell 2001; Shackell & Frank 2001; Cam

et al. 2002; Foggo et al. 2003), and not surprisingly the

models recommended by different studies usually vary. To

overcome the problem of model selection, we used a model

averaging approach (Burnham & Anderson 2002; Johnson &

Omland 2003) to combine the results of different nonlinear

models. This approach allows us to weight the models based

on the support of the data, and to incorporate model selection

uncertainty into confidence limits. The use of multimodel

averaging has been argued to be statistically more accurate

than the simplistic use of a unique model (e.g. Burnham &

Anderson 2002). It should be noted that multimodel

averaging uses fit estimators, and therefore it is suitable only

for parametric models.

To calculate the total number of species occurring at

any spatial resolution, we calculated the asymptotes of six

nonlinear models fitted to the smoothed rarefaction curves

(figure 2a; table 2). We used the bias-corrected form of

Akaike’s information criterion (AIC) to assess model

performance (Burnham & Anderson 2002; Johnson &

Omland 2003). AIC penalizes the addition of unnecessary

parameters, and thus selects for a model that has the best

combination of good fit and minimal number of parameters

(i.e. simplicity, parsimony). We used multimodel averaging

based on the AIC weight of each model to compute the

asymptotic number of species expected. Per cent complete-

ness at each spatial resolution was calculated by dividing

the total number of species currently reported within the

cell, high sea or EEZ by the averaged asymptotic value. We

used the multimodel weighted average unconditional

standard errors to calculate 95% CIs. The entire approach,

from sorting the data, to running the simulations, to fitting

the models, and to calculating completeness, was per-

formed using a macro developed in Microsoft EXCEL. The

models were fitted using DATAFITX v. 2.0. by Oakdale

Engineering. The results of this program were identical to

those of a more popular statistical package such as
Proc. R. Soc. B (2008)
STATISTICA. The former was preferred because it can be

run directly from EXCEL allowing full automation of the

procedure.

(d) Assessment of biases

We defined as biases factors likely to consistently affect the

accuracy (i.e. extent to which the predicted value

approached the true value) with which our approach (see

calculation of completeness above) predicted the true

number of species at any given spatial unit. We assessed

three factors that we believe may affect accuracy. Firstly, the

natural variation in the number of individuals per species in

natural communities (i.e. the relative species abundance

frequency distribution, RSA). This affects the likelihood of

sampling a given species per unit of sampling effort, which is

known to affect the shape of the rarefaction curve (Gotelli &

Graves 1994). Sampling a community with a more even

distribution of individuals among species will detect species

more quickly than a community with a long tail of rare

species, and hence the rarefaction curve will rise more

quickly to an asymptote (Gotelli & Graves 1994). Secondly,

we assessed the effects of the temporal variation in sampling

effort (figure 2b). Thirdly, the effect of using a variable

number of sampled years in a curve. To assess these

potential sources of bias, we created hypothetical



Table 1. Present-day completeness of the global taxonomic inventory of marine fishes by habitat and as a whole.

habitat currently described asymptotic value 95% CI
per cent
completeness species remaining

bathydemersal 2081 3719 3594–3843 56 1638
bathypelagic 1275 1670 1591–1749 76 395
benthopelagic 908 1126 1105–1146 81 218
demersal 6159 8462 8039–8886 73 2303
pelagic 1052 1216 1192–1240 87 164
reef associated 4241 4611 4543–4679 92 370
all species 15 716 19 800 19 082–20 518 79 4084
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Figure 3. Area of the world’s oceans with taxonomic censuses
over 80% complete at various spatial resolutions.
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communities, then simulated these factors and assessed the

extent to which they affect the accuracy of our approach in

predicting the true number of species.

We simulated three hypothetical communities all with

10 000 individuals and 500 species but with different RSAs.

The skews of the different RSAs were determined using a

geometric series (GS) distribution, with the distribution of

individuals among species being even (GS ratioZ1.0001),

uneven (GS ratioZ1.02) and very uneven (GS ratioZ
1.05), (figure 1a–c). From each of these communities, we

surveyed a random number of individuals per time

(analogous to 1 ‘year’ of sampling) with an effort ranging

from being highly variable to being always consistent (i.e.

each time we surveyed between 200 and 1000 individuals,

400 and 1000, 600 and 1000, 800 and 1000 and always

1000). This simulates variable sampling effort that may

exist in our database. Using these surveyed individuals, we

created five sets of smoothed rarefaction curves (using the

Monte Carlo approach described above), each of which

used 10, 20, 30, 40 and 50 years of sampling (this simulates

the variable number of sampled years that exist in the

different analysed spatial units). Therefore, in summary, for

each of our three hypothetical communities, we created 25

smoothed rarefaction curves combining variable sampling

effort (for any given year) and variable number of years. To

each of these curves, we fitted all nonlinear models and

calculated the asymptotic maximum number of species in the

subject community. This entire approach was repeated 50

times. The mean predicted number of species in the 50

iterations were compared graphically to assess variations in

accuracy due to the different factors.
3. RESULTS AND DISCUSSION
In assessing the effect of potential biases, we found that

our approach tended to underpredict the true number

of species among the two communities with some

degree of skew in their RSA, and whose curves were

based on less than 30 years of sampling (figure 1h,i ).

In those cases, accuracy decreased with reductions in

the number of years included in a curve and with

increases in the level of skew of the RSA. Exception-

ally, our approach predicted the true number of species

with an accuracy of 80% when a minimum of 10 years

were included in a curve (figure 1h,i ). Although we

cannot use the OBIS data to predict the RSA of each

community, examining the empirical data show that

approximately 54% of the 38!38 cells have less than 10

years of sampling, 30.6% of the 98!98 cells, 19% of

the 188!188 cells and 8% of the 368!368 cells. These

results indicate that a higher level of caution should be

applied to the results at smaller spatial scales, as these
Proc. R. Soc. B (2008)
are likely to underestimate the true number of species

to a greater degree. However, in those cases, our

results will overestimate the true completeness of

taxonomic inventories, or in other words, the taxo-

nomic inventories may be more incomplete than what

this study shows.

Based on the OBIS data, we found that at the global

scale there are currently 15 716 marine fish species

publicly described (figure 2a; table 1). We found that

such a global census is approximately 79% complete or

that approximately 4084 marine fish species remain to be

described (figure 2a; table 1). The proportion of species

remaining to be described is greater in the open and deep

ocean (i.e. bathypelagic, bathydemersal and demersal

habitats) and smaller in shallower and coastal areas (i.e.

reef and benthopelagic habitats; table 1). These variations

in the completeness of inventories among habitats

probably reflect variations in the accessibility and facilities

available to sample those habitats. For instance, the

bathydemersal region, one of the most inaccessible and

deepest marine environments, has the lowest census

completeness. In contrast, shallower reef habitats are the

most complete of all inventoried habitats (table 1). Pelagic

fish species have also been well inventoried (table 1),

which has previously been attributed to the large body size

of most species in this environment and their ease of

capture (Zapata & Robertson 2007).

We found that the completeness of taxonomic censuses

is highly scale dependent, being particularly low at finer

spatial resolutions (figure 3). At a relatively broad 368

resolution, 24% of the world’s oceans area has inventories
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Figure 4. Taxonomic sampling of the marine fishes of the world. (a) The positions of the approximately 2.1 million
georeferenced records used in this study. (b) The completeness of the taxonomic inventories within the high seas and EEZs of the
world. (c– f ) Resolutions of 368!368, 188!188, 98!98, and 38!38, respectively. White areas in the maps indicate locations
whose curves have less than 10 years sampled. Congruence between the number of species observed and expected was
R2Z0.0098, nZ1318, p!0.3 (at 38!38);R2Z0.00002, nZ409, p!0.9 (at 98!98);R2Z0.0001, nZ151, p!0.87 (at 188!188);
and R2Z0.85, nZ48, p!0.001 (at 368!368).
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above 80% complete (figures 3 and 4c). In contrast, at a

finer 38 resolution, only 1.8% of the world’s oceans have

inventories above that level of completeness (figures 3 and

4 f ). These findings highlight a significant issue in current

marine biogeographical and conservation research.

Firstly, large-scale diversity patterns are built upon species

data recorded at finer resolutions (Levin 1992; Roy et al.

1998; Bellwood & Hughes 2001; Macpherson 2002; Mora

et al. 2003; Mora & Robertson 2005; Worm et al. 2005).

Unfortunately, the few relatively complete inventories are

not continuously distributed in space so as to warrant

reliable patterns, even at regional scales (figure 4f ).

Moreover, there was a very poor congruence between

current and expected numbers of species, suggesting that

patterns based on existing data may not be a good

surrogate for true diversity patterns (with the exception

of the coarse resolution (i.e. 368 cells), R2 between

observed and expected species was smaller than 0.001;

figure 4). A problem that may arise due to unreliable

diversity patterns is the accuracy of tests about their causes

or mechanisms. If existing diversity patterns fail to

accurately depict true diversity, then support for inference
Proc. R. Soc. B (2008)
of causal mechanisms from and for these patterns should

be treated with caution. Finally, these results raise

uncertainty on the effectiveness of conservation strategies

aimed at protecting marine fish biodiversity. For con-

servation research, the issue is particularly critical because

high-resolution data are commonly used as the basis from

which to estimate species’ extinction risk (Gaston &

Blackburn 2000), and because some of the main threats to

biodiversity often occur at small scales (Grenyer et al.

2006), and it is at those scales that decisions are made

(Roy et al. 1998; Bellwood & Hughes 2001; Macpherson

2002; Mora et al. 2003; Mora & Robertson 2005; Worm

et al. 2005; Grenyer et al. 2006) and where data are

particularly precarious (figure 4 f ).

Incomplete taxonomic inventories were not distribu-

ted uniformly in space. Globally, most records for marine

species have been collected near the vicinity of con-

tinental coasts and are concentrated within the EEZs of

few countries (figure 4a). Consequently, existing records

yield taxonomic inventories over 80% complete for the

coasts of only a few developed countries or territories

(Canada, Australia, Alaska, the United Kingdom, the
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Figure 5. Completeness of taxonomic inventories by marine habitat. Completeness of taxonomic inventories was determined at
a 38 resolution for species residing in different marine habitats. Species-specific habitat associations were obtained from Froese &
Pauly (2006). They were as follows: (a) pelagic, (b) demersal, (c) reef associated, (d ) benthopelagic, (e) bathypelagic and
( f ) bathydemersal (details of each of the habitats can be found in Froese & Pauly (2006)). For a spatial reference of where the
different habitats may occur (i.e. all delimited cells), we selected all the cells where at least one species with a particular habitat
association has been described.

Table 2. Results of the asymptotic nonlinear models fitted to the accumulation curve based on available records for all marine
fish species of the world.

model name function asymptote 95% CI AIC

Michaelis–Menten YZ(a�x)/(1C(b�x)) 17 957 17 685–18 229 488.4
negative exponential YZa�(1Kexp((Kb)�x)) 15 312 15 046–15 577 551
asymptotic YZaK(b�(c^x)) 15 699 15 414–15 985 525.3
Chapman–Richards YZa�((1Kexp(Kb�x))^c) 16 999 16 634–17 363 434
rational YZ(aC(b�x))/(1C(c�x)) 18 325 18 025–18 639 474
Weibull YZa�(1Kexp(K(b�(xKc))^d )) 19 800 19 082–20 518 358
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United States, Greenland, Republic of South Africa and

Bermuda). In general, however, incomplete inventories

were common across the range of countries’ wealth

(completeness versus gross domestic product purchasing

power parity (GDP PPP): R2Z0.046, nZ90 EEZs,

p!0.05; completeness versus GDP PPP per capita:

R2Z0.08, nZ90 EEZs, p!0.006). Forty-four countries

have inventories between 50 and 80% complete, and 175

countries have inventories below 50% completion

(figure 4b). All of the high seas have inventories below
Proc. R. Soc. B (2008)
50% completion. Remarkably, tropical areas that are

well-known for their diversity have among the lowest

completeness of all taxonomic inventories (figure 4c– f ).

These data gaps occurred regardless of habitat (figure 5;

table 2).

Significant efforts have been made to improve and

synthesize the taxonomy of marine fishes (e.g. Eschmeyer

1998) and to index information on their biology,

distribution and diversity (e.g. Froese & Pauly 2006).

However, our results indicate that these enormous efforts
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fall short for describing the worldwide diversity and

distribution of marine fishes with reasonable accuracy,

particularly at smaller spatial scales. Fishes are one of the

most intensively studied marine taxonomic groups,

suggesting that the situation may well be worse among

other marine taxa. This scarcity of data occurs nearly 250

years since species first started to be described according

to the Linnaean system of classification. Given that

current projections on biodiversity change and the extent

of human threats predict major biodiversity losses within

the next half of a century (Thomas et al. 2004; Worm et al.

2006), many species may be lost without us ever knowing

they existed. The precarious nature of existing data also

highlights potential flaws in the accuracy of existing

patterns. Our spurious knowledge about the current

distribution of marine fish species also raises concern

upon the effectiveness of existing conservation efforts

aimed at protecting biodiversity and upon the future

quantification of human-driven extinctions. With biodi-

versity increasingly being threatened by human-related

activities, the uncertainty arising from incomplete data is a

problem needing to be rapidly addressed. Though

remarkable effort and progress have been made, a solution

to this data gap is going to require considerable renewed

interest in taxonomy by both researchers and funding

agencies, and a continuation of effort among researchers

and publishing journals to encourage the storage of raw

data in publicly available databases.
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