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To perform nontrivial, real-time computations on a sensory input
stream, biological systems must retain a short-term memory trace
of their recent inputs. It has been proposed that generic high-
dimensional dynamical systems could retain a memory trace for
past inputs in their current state. This raises important questions
about the fundamental limits of such memory traces and the
properties required of dynamical systems to achieve these limits.
We address these issues by applying Fisher information theory to
dynamical systems driven by time-dependent signals corrupted by
noise. We introduce the Fisher Memory Curve (FMC) as a measure
of the signal-to-noise ratio (SNR) embedded in the dynamical state
relative to the input SNR. The integrated FMC indicates the total
memory capacity. We apply this theory to linear neuronal net-
works and show that the capacity of networks with normal
connectivity matrices is exactly 1 and that of any network of N
neurons is, at most, N. A nonnormal network achieving this bound
is subject to stringent design constraints: It must have a hidden
feedforward architecture that superlinearly amplifies its input for
a time of order N, and the input connectivity must optimally match
this architecture. The memory capacity of networks subject to
saturating nonlinearities is further limited, and cannot exceed �N.
This limit can be realized by feedforward structures with divergent
fan out that distributes the signal across neurons, thereby avoiding
saturation. We illustrate the generality of the theory by showing
that memory in fluid systems can be sustained by transient non-
normal amplification due to convective instability or the onset of
turbulence.

Fisher information � fluid mechanics � network dynamics

Critical cognitive phenomena such as planning and decision-
making rely on the ability of the brain to hold information

in short-term memory. It is thought that the neural substrate for
such memory can arise from persistent patterns of neural
activity, or attractors, that are stabilized through reverberating
positive feedback, either at the single-cell (1) or network (2, 3)
level. However, such simple attractor mechanisms are incapable
of remembering sequences of past inputs.

More recent proposals (4–6) have suggested that an arbitrary
recurrent network could store information about recent input
sequences in its transient dynamics, even if the network does not
have information-bearing attractor states. Downstream readout
networks can then be trained to instantaneously extract relevant
functions of the past input stream to guide future actions. A
useful analogy (4) is the surface of a liquid. Even though this
surface has no attractors, save the trivial one in which it is f lat,
transient ripples on the surface can nevertheless encode infor-
mation about past objects that were thrown in.

This proposal raises a host of important theoretical questions.
Are there any fundamental limits on the lifetimes of such
transient memory traces? How do these limits depend on the size
of the network? If fundamental limits exist, what types of
networks are required to achieve them? How does the memory
depend on the network topology, and are special topologies
required for good performance? To what extent do these traces
degrade in the presence of noise? Previous analytical work has
addressed some of these questions under restricted assumptions
about input statistics and network architectures (7). To answer

these questions in a more general setting, we use Fisher infor-
mation to construct a measure of memory traces in networks and
other dynamical systems. Traditionally, Fisher information has
been applied in theoretical neuroscience to quantify the accuracy
of population coding of static stimuli (see, e.g., ref. 8). Here, we
extend this theory by combining Fisher information with
dynamics.

The Fisher Memory Matrix in a Neuronal Network
We study a discrete time network dynamics given by

xi�n� � f��Wx�n � 1�� i � vis�n� � zi�n�� , i � 1. . . N . [1]

Here a scalar, time-dependent signal s(n) drives a recurrent
network of N neurons (Fig. 1B). x(n) � RN is the network state
at time n, f(�) is a general sigmoidal function, W is an N � N
recurrent connectivity matrix, and v is a vector of feedforward
connections from the signal into the network. We keep v time
independent to focus on how purely temporal information in the
signal is distributed in the N spatial degrees of freedom of the
network state x(n). The norm �v� sets the scale of the network
input, and we will choose it to be 1. The term z(n) � RN denotes
a zero mean Gaussian white noise with covariance �zi(k1)zj(k2)� 	
��k1,k2

�i,j.
We build upon the theory of Fisher information to construct

useful measures of the efficiency with which the network state
x(n) encodes the history of the signal. Because of the noise in the
system, a given past signal history {s(n 
 k) k � 0}induces a
conditional probability distribution P(x(n) s) on the network’s
current state. Here, we think of this history {s(n 
 k) k � 0}as
a temporal vector s whose kth component sk is s(n 
 k). The
Fisher memory matrix (FMM) between the present state x(n)
and the past signal is then defined as

Jk,l�s� � �

�2

�sk�sl

log P�x�n� �s��
P�x�n��s�

. [2]

This matrix captures [see supporting information (SI) Appendix]
how much the conditional distribution P(x(n s) changes when
the signal history s changes (Fig. 1). Specifically, if one were to
perturb the signal slightly from s to s � �s, the Kullback Leibler
divergence between the 2 induced distributions P(x(n s) and
P(x(n) s � �s) would be approximated by (1⁄2)�sTJ(s)�s (SI
Appendix). Thus the FMM (Eq. 2) measures memory through the
ability of the past signal to perturb the network’s present state.
In this work, we will focus on the diagonal elements of the FMM.
Each diagonal element J(k) � Jk,k is the Fisher information that
x(n) retains about a pulse entering the network at k time steps
in the past. Thus, the diagonal captures the decay of the memory
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trace of a past input, and so we call J(k) the Fisher memory curve
(FMC).

For a general nonlinear system, the FMC depends on the
signal itself and is hard to analyze. In this article, we focus on
linear dynamics where the transfer function in Eq. 1 is defined
by f(x) 	 x. Because the noise is Gaussian, the conditional
distribution P(x(n) s) is also Gaussian, with a mean that is
linearly dependent on the signal �x(n)/�s(n 
 k) 	 Wkv, and a
noise covariance matrix Cn 	 � ¥

k	0
 WkWkT, which is indepen-

dent of the signal. Hence, the FMC is independent of signal
history and takes the form

J�k� � vT WkT Cn

1 Wk v. [3]

We focus on two related features of Eq. 3: the form of its
dependence on the time lag k and the total area under the
FMC, denoted by Jtot. An important parameter is the SNR in
the input vector vs(n) � z(n) at a single time n, which is 1

�
.

Because J(k) depends on this input SNR only through the
multiplicative factor 1

�
, we will henceforth express J(k) in units

of 1
�
. In these units, J(k) is the fraction of the input SNR

remaining in the system k time steps after an input pulse, and
Jtot is the total SNR in the system state x(n) about the entire
past signal history, relative to the SNR of the instantaneous
input.

FMCs for Normal Networks
In the following, we uncover a fundamental dichotomy in the
memory properties of two different classes of networks: normal
and nonnormal. We first focus on the class of normal networks,
defined as having a normal connectivity matrix W. A matrix W
is normal if it has an orthogonal basis of eigenvectors or
equivalently commutes with its transpose. For normal networks,
the relationship between the connectivity and the FMC simpli-
fies considerably. Denoting the eigenvalues of W by �i, the FMC
reduces to

J�k� � �
i	1

N

vi
2��i�2k �1 � ��i�2�, [4]

where vi is the projection of the input connectivity vector v on the
ith eigenmode. Thus, for normal matrices, the orthogonal eig-
envectors do not yield any essential contribution to memory
performance.

First we note that summing Eq. 4 over k yields the important
sum rule for normal networks,

Jtot � �
k	0



J�k� � 1, [5]

which is independent of the network connectivity W and v. This
sum rule implies that normal networks cannot change the total
SNR relative to that embedded in the instantaneous input but
can only redistribute it across time. Whereas in the input vector,
the SNR 1

�
is concentrated fully in the immediate signal s(n), in

the network state x(n), the dynamics has spread this information
across time. This implies a tradeoff in memory performance for
normal networks; if one attempts to optimize W or v to remem-
ber inputs occurring in the recent past, then one will necessarily
take a performance loss in the ability to remember inputs
occurring in the remote past and vice versa. The way different
networks balance this tradeoff is reflected in the form of the time
dependence of their FMC.

The reduction of the FMC to eigenvalues allows us to under-
stand its asymptotics. For large k, the decay of the FMC in Eq.
4 is determined by the distribution of magnitudes of the largest
eigenvalues. Dynamic stability requires that the largest eigen-
value magnitude, denoted by �	, is less than 1. If 	 is a finite
distance from 1, then the FMC for large k is dominated by this
single eigenvalue, and it decays exponentially as J(k) � 	k.
However, if 	 is close to 1, then the multiplicity of long time
scales associated with the large eigenvalues at the border of
instability induces a power-law decay of the FMC. Specifically,
if the density of eigenvalue magnitudes 
(r) near the edge of the
spectrum behaves as 
(r) � (�	 
 r)�, then for large k and 	
close to 1, the FMC decays algebraically (see SI Appendix) as

J�k��k
�v�2�, k � 1. [6]

Note that because � � 
1, the integral of Eq. 6 remains finite,
consistent with the sum rule (Eq. 5).

Examples of Normal Networks
An important class of normal matrices includes translation
invariant lattices, i.e., circulant matrices. In the 1D case, W is of
the form Wij 	 d(i
j) mod N, where d is any vector, and the
eigenvectors of W are the Fourier modes. The signal enters at a
single neuron so that vk 	 �k,0 and couples to all of the modes
with a uniform strength 1/�N. An important special case is the
delay ring (Fig. 2A), with dk 	 �	�k,1. Its FMC is J(k) 	 	k(1 

	). For any value of 	, the FMC always displays exponential
rather than power-law decay. This occurs because the eigenval-
ues of W all lie on a circle of radius �	. Thus 
(r) 	 �(r 
 �	),
and there is no continuous spectrum near the boundary of
instability. Instead, there is only 1 time constant governed by 	.
Extensions of the delay ring are the ensemble of orthogonal
networks (studied in ref. 7). These are normal networks in which
W is a rotation matrix.

Another class of normal networks consists of networks with
symmetric connectivity matrices. An example is a symmetric
d-dimensional lattice (a 2D example is shown in Fig. 2B). Near
the edge of the eigenvalue spectrum 
(r) � (�	 
 r)(d
2)/2.
Hence, for 	 3 1, FMC exhibits a power-law decay with

Fig. 1. Conversion of temporal to spatial information. (A) Three scalar
signals: a base signal, s(k), and 2 more signals obtained by perturbing s by the
addition of an identical pulse centered at time n 
 10 and n 
 20. (B) Each of
these signals is fed to a recurrent network W through a feedforward connec-
tivity v. (C) At time n, the temporal structure of each signal is encoded in the
spatial distribution of the network state x(n), here shown in 2 dimensions. A
stronger memory trace for the recent input perturbation �s2, relative to the
remote perturbation �s1, is reflected by the larger difference between P(x(n) s
� �s2) and P(x(n) s) relative to that between P(x(n) s � �s1) and P(x(n) s). As
both perturbations recede into the past, both memory traces decay, and the
3 distributions become identical.
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exponent 
(d � 2)/2 (Fig. 2C). Finally, we consider large
random symmetric networks defined by matrix elements Wij 	
Wji that are chosen independently from a zero mean Gaussian
distribution with variance 	/4N. The eigenvalues of W are
distributed on the real axis r according to Wigner’s semicircular
law, which, near the edge, behaves as 
(r) � (�	 
 r)1/2. Hence,
Eq. 6 predicts a power-law decay of the FMC for 	 3 1, with
exponent 
5/2 as verified in Fig. 2C.

Preferred Input Patterns in Nonnormal Networks
For nonnormal networks, Jtot depends not only on the network
connectivity W but also on the feedforward connectivity v. To
investigate the sensitivity to v, we note from Eq. 3 that, in
general, Jtot can be expressed as

Jtot � vT Js v, [7]

where we have introduced the spatial FMM

Jij
s � �

k	0



�WkTCn

1Wk� i, j. [8]

This matrix, Js, and the temporal FMM J in Eq. 2, can be unified
into a general space–time framework (see SI Appendix). Js

measures the information in the network’s spatial degrees of
freedom xi(n) about the entire signal history. The total infor-
mation in all N degrees of freedom is Tr Js 	 N, independent of
W. Because Js is positive definite with trace N, Eq. 7 yields a
fundamental bound on the total area under the FMC of any
network W and unit input vector v:

Jtot  N . [9]

If W is normal, then Ji,j
s 	 �i,j, implying that all directions in space

provide the same amount of total temporal information, and so
Jtot is independent of the spatial structure v of the input,
consistent with the sum rule (Eq. 5). However, if W is nonnor-
mal, Js has nontrivial spatial structure, reflecting an inherent
anisotropy in state space induced by the connectivity matrix W.
There will be preferred directions in state space, corresponding
to the large principal components of Js, that contain a large
amount of information about the total history, whereas other
directions will perform relatively poorly. The choice of v that
maximizes Jtot is the eigenvector of largest eigenvalue of Js.

The spatial anisotropy of nonnormal networks is demon-
strated by evaluating the FMC for random asymmetric networks,
where each matrix element Wij is chosen independently from a
zero mean Gaussian with variance 	/N. If the feedforward
connectivity v is chosen to be a random vector, the distribution
of Jtot (Fig. 3A, blue) is centered around 1 as expected, because
the trace of Js equals N. However, if v is chosen as the maximal
principal component of Js, the resultant Jtot is approximately 4
times as large (Fig. 3A, red).

Additional insight into the structure of the preferred v comes
from the Schur decomposition of W. Whereas every normal
matrix is unitarily equivalent to a diagonal matrix (Fig. 3B
Upper), every nonnormal matrix is unitarily equivalent to an
upper triangular matrix (Fig. 3B Lower). On this basis, it may, in
general, be preferable to distribute the signal near the beginning
of the network to counterbalance the noise propagation along
the network. We have tested this hypothesis by plotting the
magnitude of the components of the optimal input vector for the
random asymmetric networks in their Schur basis. As Fig. 3C
shows, the optimal choice of feedforward weights v does indeed
exploit the hidden feedforward structure by coupling the signal
more strongly to its source than to its sink.

Transient Amplification and Extensive Memory
Comparing Eqs. 5 and 9 motivates defining networks with
extensive memory as networks in which Jtot is proportional to N
for large N. With this definition, normal networks do not have
extensive memory. Furthermore, as indicated in Fig. 3A, despite
the enhanced performance of generic asymmetric networks,
their total memory remains O(1), prompting the question
whether in fact there exist nonnormal networks with extensive
memory. Surprisingly, such networks do exist.

A particularly simple example is the delay line shown in Fig.
4A Upper). In this example, the only nonzero matrix elements are
Wi�1,i 	 �	 for i 	 1…N 
 1. The FMC depends on how the
signal enters the delay line. The optimal choice is to place the
signal at the source, so that vi 	 �i,1. Then the FMC takes
the form J(k) 	 	k(1 
 	)/(1 
 	k�1), k 	 0…N 
 1, and 0
otherwise. For values of 	 �1, J decays exponentially as 	k and
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Fig. 2. Normal networks. (A) A delay ring. (B) A 2D symmetric invariant
lattice (periodic boundary conditions not shown). (C) The FMC for the delay
ring (green, 	 	 0.99, N 	 1,000), the 2D Lattice (blue, 	 	 0.99, N 	 1,024), and
10 random symmetric matrices (red, 	 	 0.99, N 	 1,000). The black trace is the
analytic prediction of a mean field theory for the FMC of random symmetric
matrices, derived in SI Appendix.
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Fig. 3. Matching input connectivity to nonnormal architectures. (A) Histogram of Jtot for 200 random Gaussian matrices with N 	 100, and 	 	 0.99, for random
(blue) and optimized (red) input weights v. (B) (Upper) Every normal matrix can be diagonalized by a unitary matrix, and so its memory properties are equivalent
to a set of N disconnected neurons each exerting positive feedback on itself. (Lower) A nonnormal matrix can only be converted to an upper triangular matrix
through a unitary transformation and thus has a hidden feedforward architecture. (C) For the same 200 matrices in B, the mean (black) and standard deviation
(red) of the magnitude of the components of the optimal input vector v, in the Schur basis, ordered according to the hidden feedforward structure.
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Jtot � 1 (Fig. 4B, blue). However, for 	 � 1, J saturates to a finite
value, 1 
 1

	
for large k � N, so that Jtot � N (1 
 1

	
) (Fig. 4B,

red).
The delay line with extensive memory is an example of a

dynamical system with strong transient amplification. Network
amplification can be characterized by the behavior of Ak �
�Wkv�2 for k � 0. Whereas in normal systems, Ak is montonically
decreasing for all v, in nonnormal networks, Ak may initially
increase before decaying to zero for large k (9). In the case of Fig.
4C (red), Ak 	 	k increases exponentially, and this amplification
lasts for a time of order N. It is important to note that, in such
a system, not only the signal but also the noise is exponentially
amplified as it propagates along the chain. Introducing the signal
at the beginning of the chain guarantees that the signal and noise
are amplified equally, resulting in the saturation of J(k) (Fig. 4B).

It is not necessary to have purely feedforward connectivity to
have large transient amplification and extensive memory. As an
example, we consider a delay line with feedback (Fig. 4A Lower).
In addition to the feedforward connections, �	, there are
feedback connections, Wi,i�1 	 ��, for i 	 1…N 
 1. We
consider a scenario in which �	 � 1, so that in the absence of
the feedback, inputs would decay exponentially. If the feedback
is in the range 1 
 �	 � �� � 1/(4�	), then the system
exhibits transient exponential amplification while maintaining
global stability (9). Fig. 4D shows an example of the amplification
and the extensive FMC in this regime. One advantage of the
feedback is that the amplification as well as the tail of the FMC
lasts longer than N, which cannot be achieved in a delay line of
length N without feedback (Fig. 4D, black curve).

Transient exponential amplification, as in the above examples,
is not a necessary condition for extensive memory. Consider, for
example, a delay line with inhomogeneous weights, Wi�1,i 	 �	i
for i 	 1…N 
 1, where Ak 	 �p	1

k 	p for 0 � k � N and A0 	
1. The FMC equals

Jdelay�k� �
1�m	0

k Am

1, 0  k  N � 1. [10]

From Eq. 10, it is evident that Jdelay saturates to a finite value at
large k as long as Ak increases superlinearly in k, i.e., Ak � O(k),
as shown in Fig. 4 B and C (magenta). If this superlinear

amplification lasts a time of order N, then Jtot will be extensive.
The above results raise the question whether superlinear tran-
sient amplification lasting for a time of order N is a necessary
prerequisite for extensive memory in general nonnormal net-
works with feedback. Interestingly, we have proven (see SI
Appendix) that this is, indeed, a necessary condition for a general
network. Specifically, we have shown that for any network with
a given sequence of signal amplification Am, 0  m  k, the FMC
up to time k cannot be larger than that of a delay line of length
k � 1, with input vector vi 	 �i,1, that possesses the same set of
amplification factors, i.e.,Wi�1,i 	 �Ai/Ai 
 1 for i 	 1…k. Thus
for any network,

J�m�  Jdelay�m� for m � 0, . . . , k , [11]

where Jdelay(m) is given by Eq. 10. We have further shown (see
SI Appendix) that, remarkably, in the space of networks with a
given signal amplification profile, the only networks that saturate
the bound Eq. 11 are those that are unitarily equivalent to the
corresponding delay line, with the signal placed at the source.
Thus the delay line is essentially the unique network that
achieves the minimal possible noise amplification for a given
amount of signal amplification. Therefore, the strong inequality
(Eq. 11) reveals that, in general architectures, noise undergoes
stronger amplification than it otherwise would in the corre-
sponding delay line. However, the length of the delay line
necessary to realize amplification up to k time steps is exactly k
� 1, so that for k � N, the number of neurons in the corre-
sponding delay line is larger than that of the actual network with
feedback, as noted in the example of Fig. 4D.

Consequences of Finite Dynamic Range
The networks discussed above achieve extensive memory per-
formance through transient superlinear amplification that lasts
for O(N) time steps. However, such amplification may not be
biophysically feasible for neurons that operate in a limited
dynamic range, due, for example, to saturating nonlinearities.
This raises the question, what are the limits of memory capacity
for networks with saturating neurons? To address this question,
we assume that the network architecture is such that all neurons
have finite dynamic range, i.e., �xi(n)�2 � R for i 	 1, …, N. We
show (see SI Appendix) that in this case,

J�k� 
1

1 �
k�k � 1�

2NR

for all k � 0. [12]

This bound implies that such a network cannot achieve an area
under the FMC that is larger than O(�N) and, in particular,
cannot achieve extensive memory.

Can a network of neurons with finite dynamic range achieve
the O(�N) limit? To do so, a network must distribute the signal
among many neurons so that as the distributed signal is ampli-
fied, the local input to any individual neuron does not grow. An
example of such a network is the divergent fan-out architecture
shown in Fig. 5A. It consists of L layers where the number of
neurons Nk in layer k grows with k. The signal enters the first
layer and, for simplicity, the connections between neurons in
layer k to those in k � 1 are all equal to ��k. We show in SI
Appendix that if Nk grows linearly in k, and ��k decreases
inversely with k, then as the overall signal propagates through the
layers, it is amplified linearly, whereas single-neuron activities
neither grow nor decay. Memory traces in such a network last a
time proportional to the depth L, but because the number of
neurons N is O(L2), in terms of neurons, the area under the FMC
is O(�N), which is the limit.

A comparison between the performance of the fan-out archi-
tecture and a random Gaussian network of the same size, N �

Fig. 4. Memory from transient amplification. (A) Delay line architecture
(Upper) and a delay line with feedback (Lower). (B) The FMC for 3 delay lines
of length N 	 103 whose corresponding signal amplification profiles are
shown in the same color in C. The red curves correspond to exponential
amplification (Ak 	 	k, 	 	 1.1), whereas the blue curves correspond to
exponential decay (Ak 	 	k, 	 	 0.9). The magenta curves correspond to power
law amplification in an inhomogeneous delay line (Ak 	 k2). (D) The signal
amplification profile (blue) and corresponding FMC (red) for a delay line with
feedback of length n 	 100 in the transient amplification regime �	 and ��

	 0.2. The black curve shows the FMC of a delay line of length N with the same
signal amplification profile up to time N 
 1.
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7,000, is shown in Fig. 5 B and C. The first network consists of
n 	 7,021 neurons organized in a divergent chain of length
L 	 118 with the number of neurons at each layer growing as
Nk 	 k and the connection strengths are ��k 	 1

k
. The Gaussian

network consists of 7,000 neurons with a Gaussian connectivity
matrix; the square magnitude of its maximal eigenvalue is 	 	
0.95. Fig. 5B shows the marked difference between the FMC of
the two systems. The enhanced FMC of the chain translates into
a better reconstruction of the signal (see Discussion). To dem-
onstrate this relation, we have computed for the two systems the
correlation coefficients between a white noise input with SNR
1
�

	 20 and the estimated signal using an optimal readout of the
network state. In the case of the divergent chain the optimal
estimate of the signal s(n 
 k) is the summed activity of the
neurons at layer k � 1. Fig. 5C shows the vastly improved signal
reconstruction of the divergent chain.

Finally, to test the robustness of the fan-out architecture to
saturation, we have simulated the dynamics of Eq. 1 with a
saturating nonlinear transfer function f(x) 	 tanh(x) (see SI
Appendix). As before, the input is white noise with SNR of 20.
A sample of the signal and its reconstruction from the layers’
activity is shown in Fig. 5D. The correlation coefficient of the 2
traces, roughly 0.8, is in accord with the theoretical prediction of
the linear system, Fig. 5C. Thus, the fan-out architecture
achieves impressive memory capacity by distributed amplifica-
tion of the signal across neurons without a significant amplifi-
cation of the input to individual neurons.

Nonnormal Amplification and Memory in Fluid Dynamics
To illustrate the generality of the connection between transient,
nonnormal amplification and memory performance, we consider
an example from fluid mechanics. Indeed, nonnormal dynamics
is thought to play an important role in various fluid mechanical
transitions, including the transition from certain laminar flows to
turbulence (10). Here, we focus on a particular type of local
instability known as a convective instability (11) that plays a role
in describing fluid flow perturbations around wakes, mixing and
boundary layers, and jets. For example, the fluid flow just behind
the wake of an object, or in the vicinity of a mixing layer where
two fluids at different velocities meet, is especially sensitive to
perturbations, which transiently amplify but then decay away as
they are convected away from the object or along the mixing
layer as the two velocities equalize.

Following refs. 9 and 11, we model these situations phenom-
enologically through the time evolution of a 1D flow perturba-
tion u(x,t) obeying the linear evolution operator

�tu � h2�x
2u � h �xu � �1

4
� x2�u � v�x�s�t� � �. [13]

This describes rightward drift plus diffusion in the presence of a
quadratic feedback potential (Fig. 6A) driven by a 1D signal s(t)
and zero mean, unit variance additive white Gaussian noise in
time and space, �(x, t). Perturbations in the region  x 

1
2

receive
positive feedback and are exponentially amplified. However, the
system is still globally stable, because these perturbations con-
vect downstream and enter a region of exponential decay for
x � 1

2
. The time spent by any perturbation in the amplification

region is O(1/h), and thus the total transient amplification will be
O(e1/h). Thus, for small h, significant nonnormal amplification
occurs.

Although the sum rule (Eq. 5) holds also for continuous time
(see SI Appendix) and discrete space, there is no analogous
bound (Eq. 9) for continuous space because the number of
degrees of freedom is infinite. Nevertheless, for a given system,
Jtot is finite and is bounded by the amplification time, or
equivalently by the effective number of amplified degrees of
freedom, which, in our case, is O(1/h).

The optimal way for the signal to enter the network, i.e., the
first principal eigenvector of Js, is shown in Fig. 6A. This optimal
input profile v(x) is a wave packet poised to travel through the
convective instability (Fig. 6B). Fig. 6C (red) shows that the
optimal memory performance, or maximal eigenvalue of Js,
scales linearly with 1/h. Thus, consistent with the results above,
the maximal area under the FMC is proportional to the time over
which inputs are superlinearly amplified. For comparison, we
have computed the value of the optimal Jtot in the case of a fluid
dynamics that contains only diffusion and drift, the first 2 terms
of the right-hand side of Eq. 13 but not the amplifying potential.
In this case, Jtot is low for all values of h (Fig. 6C, blue).
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Fig. 5. Memory in fan-out vs. generic architectures. (A) A feedforward,
fan-out architecture, or divergent chain. (B) The FMC of the divergent chain
(red) and a random Gaussian network (blue) of comparable size. (C) The
reconstruction performance of the divergent chain (red) and Gaussian net-
work (blue). m(k) is defined to be the average correlation between the actual
past input s(n 
 k) and an optimal estimate of this input, constructed from the
current network state x(n) (7); see also SI Appendix. (D) An example of the
actual input sequence (red) and its optimal linear reconstruction (blue) from
the final state of a nonlinear divergent chain.

Fig. 6. Memory through convective instability. (A) The optimal input profile (blue) and quadratic potential (red). (B) The rightward time evolution and transient
amplification of this input (h 	 0.1). (C) Optimal memory in the presence (red) and absence (blue) of the convective instability.
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Discussion
In this work, we focused on the diagonal part of the FMM (Eq.
2. In networks that are unitarily equivalent to simple delay lines
(e.g., Fig. 4A Upper and Fig. 5A), this matrix is diagonal.
However, in general, the off-diagonal elements are not all zero.
Their value reflects the interference between two signals in-
jected into the system at two different times, and their analysis
provides an interesting probe into the topology of (partially
directed) loops in the system, which give rise to such interference
(see SI Appendix).

It is interesting to note the relation between the FMC J(k) and
the more conventional memory function m(k) defined through
the correlation between an optimal estimate of the past signal
ŝ(n 
 k) based on the network state x(n) and the original signal
s(n 
 k) (see Fig. 5C). Even in the linear version of Eq. 1 studied
here, m(k) depends on the full FMM. Furthermore, it depends
in a complex manner on the signal statistics (see SI Appendix),
whereas Fisher information is local in signal space and in the
present case is, in fact, independent of the signal except for an
overall factor of the input SNR. Both features render signal
reconstruction a much more complex measure to study analyt-
ically. Nevertheless, it is important to note that the FMC
measures the SNR embedded in the network state, relative to the
input SNR 1

�
. Hence, for small-input SNR, high Fisher memory

is crucial for accurate signal reconstruction. On the other hand,
when 1

�
is sufficiently large, m(k) may be close to 1 even for low

Fisher information (see SI Appendix).
Our results indicate that generic recurrent neuronal networks

are poorly suited for the storage of long-lived memory traces,
contrary to previous proposals (4–6). In systems with substantial
noise, only networks with strong and long-lasting signal ampli-
fication can potentially sustain such traces. However, signal
amplification necessarily comes at the expense of noise ampli-
fication, which could corrupt memory traces. To avoid this,
long-lived memory maintenance at high SNR further requires
that the input connectivity pattern be matched to the architec-
ture of the amplifying network. By analyzing the dynamical
propagation of signal and noise through arbitrary recurrent
networks, we have shown (see SI Appendix), remarkably, that for
a given amount of signal amplification, no recurrent network can
achieve less noise amplification (i.e., higher SNR) than a delay
line possessing the same signal-amplification profile, with the
input entering at its source. However, a recurrent network,
unlike a delay line, can amplify signals four times larger than its
network size (see Fig. 4D).

Although most of our analysis was limited to linear systems, we
have shown that systems with a divergent fan out architecture
(see Fig. 5A) can achieve signal amplification in a distributed
manner and thereby exhibit long-lived memory traces that last a

time O(�N), even in the presence of saturating nonlinearities.
Indeed, this duration of memory trace is the maximum possible
for any network operating within a limited dynamic range (see
SI Appendix). We further note that it is not necessary for a
network to manifestly have a connectivity as in Fig. 5A to achieve
this limit. We have tested numerically the memory properties of
networks with saturating nonlinearites whose connectivity arises
from random orthogonal rotations of the divergent fan-out
architecture. Such networks appear to have unstructured con-
nectivity, and the underlying feedforward architecture is hidden.
Nevertheless, these networks have memory traces that last a time
O(�N) (S.G. and H.S., unpublished work).

Given the poor memory performance of generic networks, our
work suggests that neuronal networks in the prefrontal cortex or
hippocampus specialized for working memory tasks involving
temporal sequences may posses hidden, divergent feedforward
connectivities. Other potential systems for testing our theory are
neuronal networks in the auditory cortex specialized for speech
processing or networks in the avian brain specialized for song
learning and recognition.

The principles we have discovered hold for general dynamical
systems, as illustrated in the example from fluid dynamics. In
light of the results of Fig. 6, it is not surprising that reconstruction
of acoustic signals injected into the surface of water in a laminar
state, attempted in ref. 12, fared poorly. Our theory suggests that
performance could be substantially improved if, for example, the
signal were injected behind the wake of a fluid flowing around
an object, or in the vicinity of a mixing layer, or even into laminar
f lows at high Reynolds numbers just below the onset of
turbulence.

In this work, we have applied the framework of Fisher
information to memory traces embedded in the activity of
neurons, usually identified as short-term memory. However, the
same framework can be applied to study the storage of spatio-
temporal sequences through synaptic plasticity, i.e., long-term
memory (S.G. and H.S., unpublished work). More generally,
memory of past events is a ubiquitous feature of biological
systems, and they all face the problem of noise accumulation,
decaying signals, and interference. In revealing fundamental
limits on the lifetimes of memory traces in the presence of these
various effects, and in uncovering general dynamical design
principles required to achieve these limits, our theory provides
a useful framework for studying the efficiency of dynamical
processes underlying robust memory maintenance in biological
systems.

ACKNOWLEDGMENTS. We have benefited from useful discussions with
Kenneth D. Miller, Eran Mukamel, and Olivia White. This work was supported
by the Israeli Science Foundation (H.S.) and the Swartz Foundation (S.G.). We
also acknowledge the support of the Swartz Theoretical Neuroscience Pro-
gram at Harvard University.

1. Lowenstein Y, Sompolinsky H (2003) Temporal integration by calcium dynamics in a
model neuron. Nat Neurosci 6:961–967.

2. Seung HS (1996) How the brain keeps the eyes still. Proc Natl Acad Sci USA 93:13339–
13344.

3. Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working memory. Science
319:1543–1546.

4. MaassW,NatschlagerT,MarkramH(2002)Real-timecomputingwithoutstablestates:Anew
framework for neural computation based on perturbations. Neural Comput 14:2531–2560.

5. Jaeger H (2001) GMD Report No. 148 (German National Research Center for Informa-
tion Technology, Sankt Augustin, Germany).

6. Jaeger H, Haas H (2004) Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science 304:78–80.

7. White O, Lee D, Sompolinsky H (2004) Short-term memory in orthogonal neural
networks. Phys Rev Lett 92:148102.

8. Seung HS, Sompolinsky H (1993) Simple models for reading neuronal population codes.
Proc Natl Acad Sci USA 90:10749–10753.

9. Trefethen LN, Embree M (2005) Spectra and Pseudospectra: The Behavior of Nonnor-
mal Matrices and Operators (Princeton Univ Press, Princeton, NJ).

10. Trefethen LN, Trefethen AE, Reddy SC, Driscoll TA (1993) Hydrodynamic stability
without eigenvalues. Science 261:578–584.

11. Cossu C, Chomaz JM (1997) Global measures of local convective instabilities. Phys Rev
Lett 78:4387–4390.

12. Fernando C, Sojakka S (2003) Pattern recognition in a bucket: A real liquid brain. Proc
of ECAL (Springer, New York).

Ganguli et al. PNAS � December 2, 2008 � vol. 105 � no. 48 � 18975

N
EU

RO
SC

IE
N

CE
PH

YS
IC

S

http://www.pnas.org/cgi/data/0804451105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0804451105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0804451105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0804451105/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0804451105/DCSupplemental/Appendix_PDF

