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The vertebrate inner ear possesses an active process that provides
nonlinear amplification of mechanical stimuli. A candidate for this
process is active hair bundle mechanics observed, for instance, for
hair cells of the bullfrog’s sacculus. Hair bundles in various inner ear
organs are coupled by overlying membranes. Using a stochastic
description of active hair bundle dynamics, we study the conse-
quences of an elastic coupling on the properties of amplification.
We report that collective effects in arrays of hair bundles can
enhance the amplification gain and the sharpness of frequency
tuning as compared with the performance of an isolated hair
bundle. We also discuss the transient response elicited by the
sudden onset of a periodic stimulus and its relation to temporal
integration curves. Simulations of systems with a gradient of
intrinsic frequencies show an enhanced amplification gain while
preserving a frequency gradient, provided the coupling strength is
similar to the hair bundle stiffness. We relate our findings to the
situation in the bullfrog’s sacculus and the mammalian cochlea.

auditory amplifier � hair cells � nonlinear oscillators � stochastic processes

The extraordinary ability of the vertebrate ear to detect sound
stimuli over many orders of magnitude in sound amplitude

relies on active processes. The key features of the auditory
amplifier are (i) the amplification of weak stimuli, (ii) a com-
pressive nonlinearity for stronger stimuli, (iii) frequency selec-
tivity, and (iv) the generation of spontaneous emissions (1–3).
All these properties could be understood as the consequence of
nonlinear dynamic oscillators that operate in the ear (4–7).
There is clear evidence for nonlinear amplification to occur in all
vertebrates (3) and even some insects (8). However, the specific
molecular and cellular mechanisms underlying the amplifiers in
different species are still under debate.

Mechano-sensitive hair cells play a key role in the amplifica-
tion. Two mechanisms have been suggested. First, outer hair cell
electromotility, which involves cell body contractions (9), could
be an important element of the amplifier in the mammalian
cochlea (10–12). Second, the hair bundle, which is the mechano-
sensitive organelle at the apical surface of the hair cell, could
generate forces and movements that contribute to amplification
(13–15).

Electromotility is absent in nonmammalian vertebrates, which
nevertheless display exquisite signal detection with all signatures
of the auditory amplifier (3). It has been shown in turtles and
frogs that hair bundles are able to generate noisy spontaneous
oscillations (13, 16–19). Furthermore, mechanical stimulation of
individual hair bundles of the frog revealed a frequency selective
response (13), a compressive nonlinearity (20), and a high
sensitivity at weak stimuli (20). This suggests that the hair
bundles themselves are an essential part of the nonlinear am-
plifier (21). However, the properties of an individual hair bundle
are not sufficient to account quantitatively for the properties of
the auditory amplifier. For example, an important characteristics
of the amplifier is the amplification gain, defined as the ratio of
sensitivity for weak and strong stimulation. The amplification
gain measured in the mammalian cochlea is �1,000 (22),
whereas for a single hair bundle of the bullfrog a value of only
�10 was observed (20). The amplification gain of a hair bundle

is largely limited by random influences, such as thermal fluctu-
ations, channel clatter, and stochastic variations occurring at the
scale of the hair bundle (23).

This raises the question what mechanisms underlie the dis-
crepancy between single hair bundle properties and those of the
auditory amplifier. In mammals, outer hair cell electromotility
could enhance amplification by hair bundles. Another mecha-
nism to increase signal amplification is the cooperative response
of groups of coupled hair bundles. In most hearing organs, hair
bundles are mechanically coupled via an overlying membranous
structure as sketched in Fig. 1A. For example, the outer hair cells
of the mammalian cochlea are directly linked via their hair
bundles to the tectorial membrane, which is an elastic polymer
network (24). Otolithic membranes can also provide an elastic
coupling of hair bundles as for instance in the bullfrog’s saccu-
lus (25).

Here, we study the consequences of elastic coupling of hair
bundles for their amplification properties. Although our model
does not describe an entire hearing organ it characterizes groups
of hair bundles as active subunits that are key elements of the
auditory amplifier. Specifically, we investigate the properties of
groups of hair bundles that are coupled mechanically by elastic
springs, excluding from our description inertial elements, such as
cochlear fluids or otolithic masses. We discuss properties of
spontaneous oscillations and of the nonlinear amplification in
response to mechanical stimulation of coupled hair bundles as a
function of the coupling strength. Individual hair bundles in the
group are described by a simple stochastic model (23, 26) that
takes into account random fluctuations and can capture the
noise-limited amplification gain of a single hair bundle. Because
this example is best studied, we choose parameters that corre-
spond to hair bundles observed in the sacculus of the bullfrog.
The same model, however with different parameters, could also
be used to describe hair bundles in the cochlea (26).

Physical Description of Coupled Hair Bundles. We discuss a regular
arrangement of hair bundles that are mechanically coupled by
elastic elements to their neighbors. In our model, hair bundles
are arranged on a square lattice with spacing d (see Fig. 1B).
They are labeled (i, j) according to their position on the lattice
where i � 1,…, N and j � 1,…, M. Each hair bundle is described
by two variables X i, j and X a

i, j, characterizing the stereociliary
deflection and the state of adaptation motors, respectively. We
consider hair bundles that are all oriented with their excitatory
direction in the positive X direction and X i, j are the deflections
along this direction. In the following, we ignore deflections in the
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Y direction†. A given hair bundle at site (i, j) is coupled via linear
springs to the neighboring hair bundles at sites (i � k, j � l) with
k,l � �1,0,1, including diagonal connections.

Boundary conditions are introduced via the boundary sites (k,k�)
where at least 1 of these indices is 0, N � 1 or M � 1 (see gray boxes
in Fig. 1B). We focus on open boundary conditions for which no
elastic connections exist to the boundary sites. In the case of fixed
boundaries these connections exist and Xk,k�' 0 for all boundary
sites. Periodic boundary conditions can be defined in a standard
way‡.

We will consider both spontaneous activity of coupled hair
bundles and the response to a periodic stimulus force Fext(t) �
F cos(2� fs t). In the latter case, all hair bundles are stimulated by
the same periodic force Fext(t) � d2�ext(t). This corresponds to
the situation where a collection of hair bundles is mechanically
stimulated by a periodic shear stress �ext(t) applied homoge-
neously via the overlying elastic membrane.

The equations governing the dynamics of a system of coupled
hair bundles read

� Ẋ i, j � fX �X i, j, X a
i, j� � Fext� t� � � i, j� t�

� �
k, l��1

1
��U�X i, j, X i�k, j�l���X i, j [1]

�aẊ a
i, j � fXa

�X i, j, X a
i, j� � �a

i, j�t�, [2]

where the prime in the first equation indicates that the sum
excludes boundary sites for open boundary conditions. The
potential corresponding to the elastic forces with spring constant
K is given by§

U �
K
2 ���X i�k, j�l � kd � X i, j�2 � l2d2 � �k2 � l2d�2

.

[3]

The force generated by active and passive elements within a
given hair bundle is given by

fX�X, Xa� � � KGS�X � Xa � DPo� � KSP X . [4]

The pivotal stiffness and the gating stiffness of each hair bundle
are denoted by KSP and KGS, respectively. The open probability
of the mechano-sensitive ion channels is given by Po(X,Xa) �
[1 � Aexp(�KGS D(X � Xa)/(Ne kBT ))]�1, where Ne is the
number of transduction elements within each hair bundle,
the displacement D is associated with channel gating, kBT is the
thermal energy, and A � exp[(�G � KGS D2/2Ne)/kBT ]. Eq. 2
describes the force-velocity relation of the adaptation motors.
The force

fXa
�X, Xa� � KGS�X � Xa � DPo� � Fmax�1 � SPo� [5]

is the difference of the force fm � KGS(X � Xa � DPo) exerted
on the motors and the force fa � Fmax(1 � SPo) generated by the
motors at stall. If all channels are closed, the latter is maximal
fa � Fmax. Calcium influx through open channels inhibits motor
activity; the strength of calcium inhibition is characterized by the
parameter S.

The hair bundle is subject to various sources of fluctuations.
Brownian motion of the surrounding fluid and channel clatter,
i.e., the stochastic opening and closing of ion channels, lead to
noise in the position variable X. The variable Xa is influenced by
motor noise stemming from stochastic activity of adaptation
motor proteins. Stochastic forces are represented by the inde-
pendent Gaussian white noises � i, j(t) and �a

i, j(t) with correla-
tions 	� i, j(t)� i, j(0)
 � 2kBT�	(t), 	�a

i, j(t)�a
i, j(0)
 � 2kBTa�a	(t),

where Ta is an effective temperature.

Results
We perform numerical simulations of Eqs. 1 and 2 for varying
system size, coupling strength, and driving parameters. First we
consider homogeneous systems with N � M, using a single set of
parameters (see Table 1) and study spontaneous and driven
movements, and transient responses. Finally, we discuss effects
of heterogeneities.

Spontaneous Noisy Oscillations and Synchronization. In the absence
of coupling, external force, and noise, hair bundles show spon-
taneous relaxation oscillations. If f luctuations due to Browninan
motion, channel clatter, and stochastic binding and unbinding of

†We have verified by additional simulations that including passive movements in Y direc-
tion does not affect our main results.

‡Periodic boundaries are introduced by setting Xi,0 � Xi,M, Xi,M � 1 � Xi,1, X0, j � XN, j,
XN � 1, j � X1, j for i � 1,…,N and j � 1,…,M, X0,0 � XN,M, XN � 1,0 � X1,M, X0,M � 1 � XN,1,
and XN � 1,M � 1 � X1,1.

§The particular form of the interaction potential results from neglecting any dynamics in Y;
this variable, however, still contributes via the diagonal springs.
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Fig. 1. Coupled hair bundles. (A) Schematic view of a group of hair cells (HC),
stereociliary bundles are elastically coupled via an overlying gelatinous mem-
brane (side view). (B) Representation of coupled hair bundles (top view). Hair
bundles are arranged on a square lattice with spacing d. Each hair bundle is
labeled according to its position (i, j) on the lattice where i � 1,…,N, j � 1,…,M
and N�M is the total number of hair bundles. Solid lines represent elastic
springs. The excitatory direction of the hair bundles is the positive X direction.

Table 1. List of parameters and their values used in our
simulations

Parameter Definition Value

� Friction of hair bundle 2.8 
N�s�m�1

�a Friction of adaptation motors 10 
N�s�m�1

Ne Number of adaptation motors 50
KGS Combined gating-spring stiffness 0.75 mN�m�1

KSP Hair bundle pivot stiffness 0.6 mN�m�1

T Temperature 300 K
�G Ion channel energy 10 kBT
D Gating-spring elongation 60.9 nm
Fmax Maximal motor force 50.24 pN
S Feedback strength 0.65
Ta Effective temperature 1.5 T
d Lattice spacing 50 
m
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motor proteins are taken into account these turn into noisy
oscillations characterized by a broad peak in the power spectrum
S(f ). The latter is defined by S( f ) � limT3 �	�X̃�2
/T where
X̃( f ) � ʃ0

TdtX(t)e2�ift is the Fourier transform of a hair bundle’s
deflection and 	. . .
 denotes the average over a stationary
ensemble. For the parameters chosen, the spectral properties
closely match those observed for a hair bundle from the sacculus
of the bullfrog (23).

To reveal the effect of coupling on an N � N array of hair
bundles, we varied the spring constant K and the system size, and
determined the power spectrum of the central hair bundle’s
displacement¶. Power spectra for increasing coupling strength K,
shown in Fig. 2A for a 9 � 9 array, demonstrate a sharpening of
the spectral peak. This is further quantified in Fig. 2 B and D in
terms of the height S( f0) of the spectral peak at its characteristic
frequency f0, and its quality factor Q � f0/�f2 � f1� where the
halfwidth � f2 � f1� is defined by S( f1) � S( f2) � S( f0)/2.

The height and quality dependence on K reveal three regimes:
weak (low plateau), intermediate (steep slope), and strong
coupling (high plateau). In the latter two regimes, the height and
quality of the spectral peak depend on the system size—the
respective plateau at large K is growing with N. We note that the
frequency f0 varies only mildly with increasing coupling strength
(�10%; data not shown) resulting in a shallow maximum of the
quality factor vs. K.

Coupling also introduces synchrony among the different hair
bundles that can be characterized by cross-correlation coeffi-
cients. Specifically, we show in Fig. 2C the cross-correlation
coefficients between the central hair bundle and its neighbors to
the right for a 9 � 9 array. Cross-correlations increase with
increasing K and for sufficiently strong coupling (see the data for
K � 1 mN�m�1) all hair bundles in the array are synchronized;
the correlation coefficient between any two hair bundles in this
case is close to 1 (data not shown).

Nonlinear Amplification and Frequency Tuning. The main task of hair
bundles is the transduction and amplification of sound signals

that are in the simplest case pure harmonics. In this section, we
study how the linear and the nonlinear response of the system of
coupled hair bundles depends on coupling parameters. If all hair
bundles in a given system are simultaneously driven by a periodic
stimulus Fext(t) � F cos(2� fs t), the central hair bundle responds
after a transient with a periodic mean motion of the same
frequency. This response contains in general higher harmonics
of the driving frequency and reads 	X(t)
 � A1 cos(2� fs t � �1) �
A2 cos(4� fs t � �2) �..., where the dots indicate further har-
monics and �i is the phase shift of the ith Fourier mode. The
sensitivity is defined as the absolute value ��( fs,F)� of the
nonlinear response function of the first Fourier mode � �
(A1/F)ei�1. The sensitivity has units of a compliance. It describes
the elicited output amplitude per unit driving force. We discuss
the sensitivity as a function of the coupling strength, of the
driving frequency for weak periodic driving, and as a function of
the forcing amplitude. In the latter case, the sensitivity saturates
for both very weak and very strong stimuli. The ratio of these two
limiting values for a driving at the characteristic frequency fs �
f0 defines the gain

G � lim
F30

��� f0, F� � / lim
F3�

��� f0, F� � [6]

because of the nonlinearities in the hair bundle dynamics.
The sensitivity as a function of coupling strength for a weak

driving at fs � f0 is displayed in Fig. 3A. The resulting behavior
resembles the one of the spectral peak height discussed above.
At weak coupling the sensitivity changes little with increasing
coupling or system size and is close to the value of a single hair
bundle (23). Beyond a certain critical coupling K  0.1 mN�m�1,
the sensitivity sharply increases and saturates at a size-dependent
level.

To characterize the best possible performance, in the follow-
ing we tune the coupling such that the sensitivity is at or close
to its high-coupling limit. Specifically, we choose the coupling

¶For each setup we monitor the noisy oscillations performed by the central hair bundle, i.e.,
the hair bundle at position (1

2
(N � 1),1

2
(N � 1)) in the case of odd N, or in the case of even

N at position (1

2
N,1

2
N).
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Fig. 3. Sensitivity of coupled hair bundles for periodic forcing. (A and B)
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various system sizes as indicated. Forcing amplitudes are F � 0.1 pN for 1 � 1,
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Linear response to a stimulus tuned to the frequency of spontaneous oscilla-
tions ( fs � f0) vs. coupling strength K. (B) Linear response vs. frequency
detuning fs � f0. (Inset) Same data with maxima normalized to 1. (C) Nonlinear
response as represented by the sensitivity vs. forcing amplitude F. (D) Ampli-
fication gain as a function of the total number of hair bundles (boundary
conditions as indicated). In B and C, the coupling strength K is chosen such that
the quality of spontaneous oscillations is maximal (K � 0.45 mN�m�1 for 3 � 3
and 4 � 4, K � 0.32 mN�m�1 for 6 � 6, K � 0.28 mN�m�1 for 9 � 9). The dashed
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that maximizes the quality of the spontaneous activity. We have
checked that the exact value of the coupling is immaterial as long
as we are in the strong-coupling regime discussed above.

The sensitivity for weak stimuli (linear response) is shown in
Fig. 3B as a function of the frequency mismatch fs � f0. Close to
the spontaneous frequency ( fs � f0), the sensitivity attains its
maximum, which increases and sharpens strongly for increasing
N. For large frequency mismatch the sensitivity is independent
of N. The nonlinear response to periodic forcing can be char-
acterized by the dependence of the sensitivity on the forcing
amplitude F (see Fig. 3C). A clear nonlinearity can be seen
already for a single hair bundle (23). At small driving amplitude,
the linear response regime manifests itself by a plateau. At higher
values of F, the sensitivity decreases approximately like a power
law ��� � F�. Remarkably, by increasing the system size we
increase considerably the range of forcing amplitudes for which
a power law applies. For a 9 � 9 array, the sensitivity exhibits a
power-law behavior with  � 0.88 over at least two orders of
magnitude. Note that the value of  is larger than the one
characterizing the nonlinearity for a single hair bundle ( �
0.66). The larger value of  implies an even stronger nonlinear
compression.

We also find that the gain increases almost linearly with the
number of hair bundles (see Fig. 3D) and attains a value of �400
for a 9 � 9 array. To verify that this result is not solely due to
the kind of boundary conditions chosen we repeated the simu-
lations for periodic and fixed boundary conditions. The resulting
gain (see Fig. 3D) demonstrates that even in the rather pessi-
mistic setting with fixed boundaries an enhancement effect
(although reduced compared with the case with open boundary
conditions) survives. Interestingly, the curve for periodic bound-
ary conditions differs only marginally from the main result for
open boundary conditions.

Transient Responses. So far, we have discussed the nonlinear
amplification of coupled hair bundles for long stimulation times.
However, after a periodic stimulus is switched on it takes a
certain time until this full response is reached (see Fig. 4A). This

limits the time resolution of the system regarded as a detector.
We now discuss the characteristic relaxation time � of a group of
hair bundles for a periodic stimulus with frequency fs � f0. In
general, � depends on the force amplitude F and the system size.
If the stimulus is switched on at t � 0 the mean response for t 
0 is well described by

	X�t�
 � F���F���1 � exp��t /��F���cos�2�f s t � �1� . [7]

The relaxation time �(F) obtained by a fit of this expression to
simulation data is displayed in Fig. 4B as a function of stimulus
amplitude F. At small amplitude, the relaxation time is largest
and is given by � � Q/(� f0), i.e., by the inverse half-width of the
spectral peak in the absence of a stimulus (shown by solid lines
in Fig. 4B). A 9 � 9 system relaxes at weak stimulus after �100
stimulus cycles whereas a single hair bundle already relaxes after
one cycle. Remarkably, the relaxation time decreases for stron-
ger stimuli as a power law � � F�� with � � 1.17, which occurs
in the same range of stimulus amplitudes as does the power law
of the sensitivity (Fig. 3C). Therefore, as the stimulus amplitude
is increased, sensitivity is reduced but the response becomes
faster. We note that the relaxation time saturates for strong
forcing at a value corresponding to the relaxation time of the
passive system (�� � (KGS � KSP)/�), which is smaller than 1/f0.

For a sound detector an important property is the minimal
force amplitude F* required for the mean response to reach a
detection threshold X* within a given time tth (see Fig. 4A). Put
differently, F* is the threshold force of the system for a given
time resolution tth and detection threshold X*. Using Eq. 7 we
find that the relation between F* and tth is given by

tth � ��F*� ln
F* ���F*� �

F* ���F*� � � X*
. [8]

This relation is displayed in Fig. 4C using our simulation data for
arrays of different sizes and a threshold amplitude of X* � 1 nm
(15). For increasing detection window tth, the threshold ampli-
tude F* decreases until a minimal threshold force X*/��(F � 0)�
is reached. For large systems, we obtain a power law dependence
F* � tth

1/( � � � 1), which is indicated in Fig. 4C as a dashed line.
For increasing system size, cooperativity of hair bundles leads to
a reduction of the minimal threshold force X*/��(F � 0)�; this
requires increasingly large stimulus durations tth. Note, however,
that for a force amplitude of F � 10�2 pN, which is in the
sensitive linear response regime, only �20 stimulus cycles (tth �
20 f0

�1) are required to reach the detection threshold of X* �
1 nm.

Heterogeneities. So far, we have considered systems of N � N
identical hair bundles. However, in vertebrate hearing organs
neighboring hair cells can differ in their characteristic frequen-
cies. In addition, hair cells are arranged in various geometries.
For instance, in the cochlea outer hair cells occur in three rows
and exhibit a frequency gradient along the basilar membrane.

To verify that the effects discussed above are not solely due to
the specific setup chosen, we have also investigated systems of
N � M coupled hair bundles with different values of N and M,
and random and graded frequency profiles with up to 20%
frequency variability. In general, if the coupling is sufficiently
strong, we recover all of the effects found in homogeneous
quadratic systems (synchronization, enhanced frequency tuning,
and enhanced gain).

In the following, we discuss the specific case of N � 3 and M �
27 with a linear gradient of the intrinsic frequencies of individual
hair bundles along the Y axis. The intrinsic frequency of an
individual hair bundle depends on the pivotal stiffness KSP in an
almost linear fashion (see Fig. 5A Inset). By varying KSP between
0.5 mN�m�1 and 0.7 mN�m�1, we tune the spontaneous oscilla-
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tions to frequencies varying �20%. In Fig. 5, we show the
statistics of spontaneous and driven activity of the central hair
bundle of a system of coupled hair bundles for different ranges
of intrinsic frequencies. These frequency ranges are introduced
by a linear gradient of pivotal stiffness� with a range �KSP.

Fig. 5A shows the frequency range � f0 relative to the fre-
quency of the central hair bundle f�0 of the spontaneous activity††.
The relative frequency range depends on coupling strength K. In
the absence of coupling (K � 0), � f0 equals the intrinsic
frequency range of the system. The examples shown correspond
to relative intrinsic frequency ranges of 0% (green), 2% (red),
9% (blue) and 18% (yellow). In the limit of large coupling (K 
KSP), � f0 vanishes and all hair bundles are synchronized. For K
� �KSP, the frequency range is reduced but a significant frequency
gradient remains. The maximal sensitivity ��� and the quality Q�
of the central hair bundle are displayed in Fig. 5 B and C,
respectively, as functions of K. For both quantities, deviations
from the homogeneous case (green lines) occur predominantly
for K � K� SP. If K differs by less than an order of magnitude from
K� SP, amplification and frequency tuning are significantly en-
hanced, while at the same time frequency gradients can be
preserved. The sensitivity as a function of driving amplitude is
shown in Fig. 5D for coupling strength K � K� SP. At this coupling
strength sensitivity is significantly enhanced by coupling while
there still exists a range �f0 of frequencies of the spontaneous
activity in heterogeneous systems. All cases shown exhibit a
strong compressive nonlinearity and amplification gain. Increas-
ing the intrinsic frequency range from 0% to 18%, the amplifi-
cation gain is reduced from �300 to �100.

Discussion
Using a theoretical description, we have numerically studied the
properties of hair bundles that are mechanically coupled to their
neighbors. We have shown that this local coupling has a signif-
icant impact already on small groups of hair bundles. Upon
periodic stimulation, coupled hair bundles exhibit compared
with single hair bundles (i) a substantially enhanced amplifica-
tion gain; (ii) a more pronounced compressive nonlinearity,
extending over a larger range of amplitudes; and (iii) a sharper
frequency discrimination. Groups of synchronized hair bundles
generate enhanced responses and almost attain the extraordi-
nary features observed for the cochlear amplifier of mammals
with G � 1,000 (22). In comparison, we found for a sufficiently
large coupling strength K a pronounced nonlinearity in the
response to periodic stimulation with an amplification gain of
�400 for a 9 � 9 system.

The substantial enhancement of the amplification coincides
with a pronounced synchronization of hair bundles. Both effects
suddenly appear for increasing coupling strength at values of
approximately the passive stiffness of the single bundle and
persist for stronger coupling (K � KSP). In the strong coupling
regime, all hair bundles become synchronized (see Fig. 2C),
suggesting that the group of hair bundles behaves effectively like
one oscillator, but with a reduced noise intensity. In this case, the
movements of the central hair bundle are well-described by the
average movement of the group, which is subject to an average
noise. Because the sources of noise in different hair bundles are
uncorrelated, the noise intensities kBT� and kBTa�a are reduced
by the total number of hair bundles N2. To test this idea, we have
performed simulations of a single hair bundle with artificially
lowered noise intensities, dividing the original noise intensities
by N2 � 81. We find a compressive nonlinear response with a
gain of �400 (data not shown), very similar to a coupled 9 � 9
system. This suggests that the increased sensitivity observed in
arrays of coupled hair bundles is a consequence of noise
reduction due to coupling.

In addition to the long-time behavior, we also observe strong
effects of hair bundle coupling on the transient response to
periodic stimulation. The minimal amplitude F* of a stimulus to
reach a detection threshold after a finite time tth can obey a
power law (see Fig. 4C). In many hearing organs, temporal
integration curves have been measured (28, 27) revealing non-
linear relationships between threshold and duration; often,
power laws close to F* � tth

�3/8 are reported (27) (assuming that
F is proportional to stimulus pressure). As shown above, cou-
pling of hair bundles naturally generates power laws, but with an
exponent closer to �3/4 than to �3/8.

The properties of hair bundles coupled via the tectorial or
otolithic membranes can be related to features of the auditory
amplifier of different species. Our results for many hair bundles
of the same intrinsic frequency apply, for example, to the
echo-response region of some bats. There many hair cells,
specialized to the same frequency, generate extremely sharply
tuned threshold responses. The observed sharpness of tuning
corresponds to a quality of the detector Q � 500 (29, 30). This
can be related to the quality of spontaneous activity of a
homogeneous 9 � 9 system for which we find Q � 160.
Therefore, the sharp tuning observed in the echo-response
region in bats could result from the mechanical coupling of large
groups of hair bundles that operate at the same frequency.

Although in special cases, as just discussed, many hair cells of
the same frequency can exist nearby, in most hearing organs
neighboring hair cells are tuned to different frequencies. To
study the effects of frequency variability on the amplification
gain we have studied systems of coupled hair bundles with a
linear frequency gradient. Motivated by the arrangement of
outer hair cells in the cochlea, we have chosen a geometry of 3 �

�Denoting the passive stiffness of the hair bundle at site (i,j) by KSP
i,j we use K SP

i,j
� K� SP �

j��KSP/26 for j � �13,…,13. K� SP is the pivotal stiffness of the central hair bundle at (2, 14).

††We denote by f0
i,j the position of the spectral peak of the spontaneous activity of the hair

bundle at site (i,j). The frequency range is defined as �f0 � f 0
2,27

� f 0
2,1. The frequency of

the central hair bundle is �f0 � f 0
2,14.
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the central hair bundle vs. coupling strength K. The dashed lines in A–C
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27 coupled hair bundles. For sufficiently strong coupling, we
recover the amplification gain of homogeneous systems of the
same number of hair bundles. In this case, the frequency gradient
is drastically reduced because of synchronization effects. Our
analysis shows that there is characteristic range of coupling
strengths K approximately K � KSP where amplification is
significantly enhanced while at the same time frequency vari-
ability is preserved. For smaller K values, synchronization is lost,
whereas, for larger K values, frequency variability is lost.

In our work, we have studied the effect of coupling on hair
bundle dynamics as a function of coupling strength K. Values of
K in different hearing organs can be estimated from the elastic
properties of otolithic or tectorial membranes. In the otolithic
membrane of the bullfrog, direct mechanical measurements
show that the membrane constitutes an elastic medium and local
stresses lead to displacements that decay exponentially with a
characteristic length �, which depends on direction in the
sacculus (31). Such a decay with � � d(K/KSP)1/2, where d is the
spacing between hair cells, also occurs in our model (data not
shown). Using d � 50 
m, � � 150 
m (31), and KSP � 1 mN�m�1

(including contributions from subotolithic filaments; see ref. 31)
results in K � 9 mN�m�1. Alternatively, we can estimate the
coupling strength based on the Young’s modulus E of the
membrane overlying the hair bundles as K � Ed. For the otolithic
membrane of the bullfrog’s sacculus E � 6.6 kPa has been
suggested (31, 32), leading with d � 50 
m to an estimate of K �
330 mN�m�1. Both estimates of K correspond to the strong
coupling regime and lead to complete synchronization and
reduction of frequency heterogeneities in our simulations. Note
that these estimates do not take into account the 3 dimensional

shape of the otolithic membrane that exhibits large cavities
inside which hair bundle tips are attached (25). This specific
geometry and a potentially soft coupling of the hair bundle to the
otolithic membrane could reduce K, thus permitting different
frequencies to coexist. Furthermore, inertial effects introduced
by otolithic masses that we have neglected in our simulations
might also influence synchronization in the system.

In the mammalian cochlea the Young’s modulus of the
tectorial membrane has been estimated and exhibits a gradient
of tectorial stiffness (33–37). Values reported range from E � 0.3
kPa at the apex to 3 kPa at the base in gerbil (37) and from E �
24 kPa at the apex to 224 kPa at the base in mouse (36). With
d � 10 
m the values observed in gerbil correspond to a range
K � 3�30 mN�m�1. As discussed above, to benefit from hair
bundle coupling, while retaining a frequency profile, the cou-
pling strength provided by the tectorial membrane should be
within an order of magnitude of the hair bundle stiffness. Hair
bundle stiffness does indeed vary along the cochlea. In guinea pig
values of KSP of outer hair cells ranging from �0.5 mN�m�1 at
the apex to �40 mN�m�1 at the base, have been reported (38).
This suggests that the tectorial membrane stiffness is tuned to the
local hair bundle stiffness following a similar gradient (37),
ensuring that the local coupling strength K is adjusted to the local
hair bundle stiffness KSP. Our work shows that such an adjust-
ment of coupling permits a significant enhancement of ampli-
fication via coupling while preserving at the same time gradual
frequency changes.
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26. Tinevez JY, Jülicher F, Martin P (2007) Unifying the various incarnations of active
hair-bundle motility by the vertebrate hair cell. Biophys J 93:4053–4067.

27. Eddins DA, Green DM (1995) Temporal integration and temporal resolution. Hearing,
ed Moore BCJ (Academic, San Diego), pp 207–242.

28. Florentine M, Fastl H, Buus S (1988) Temporal integration in normal hearing, cochlear
impairment, and impairment simulated by masking. J Acoust Soc Am 81:195–203.

29. Pollak G, Novick A, Henson OW (1972) Cochlear microphonic audiograms in the ‘‘pure
tone’’ bat Chilonycteris parnellii parnellii. Science 176:66–68.
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