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Abstract Ogre elements are a distinct group of plant Ty3/
gypsy-like retrotransposons characterized by several spe-
cific features, one of which is a separation of the gag-pol
region into two non-overlapping open reading frames:
ORF2 coding for Gag-Pro, and ORF3 coding for RT/RH-
INT proteins. Previous characterization of Ogre elements
from several plant species revealed that part of their tran-
scripts lacks the region between ORF2 and ORF3, carrying
one uninterrupted ORF instead. In this work, we investi-
gated a hypothesis that this region represents an intron that
is spliced out from part of the Ogre transcripts as a means
for preferential production of ORF2-encoded proteins over
those encoded by the complete ORF2-ORF3 region. The
experiments involved analysis of transcription patterns of
well-defined Ogre populations in a model plant Medicago
truncatula and examination of transcripts carrying dis-
sected pea Ogre intron expressed within a coding sequence
of chimeric reporter gene. Both experimental approaches
proved that the region between ORF2 and ORF3 is spliced
from Ogre transcripts and showed that this process is only
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partial, probably due to weak splice signals. This is one of
very few known cases of spliced LTR retrotransposons and
the only one where splicing does not involve parts of the
element’s coding sequences, thus resembling intron splic-
ing found in most cellular genes.
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Introduction

Long terminal repeat (LTR) retrotransposons represent a
group of mobile genetic elements characterized by a replica-
tive (copy-and-paste) mode of transposition involving tran-
scription of the parental element, reverse transcription of the
resulting RNA into DNA, and subsequent integration of a
new element into the genome. The LTRs, which contain
regulatory sequences for transcription, flank the internal
region (gag-pol) encoding proteins with structural or enzy-
matic functions. The gag gene codes for proteins needed for
an assembly of virus-like particles and RNA packaging. The
pol gene encodes enzymes protease (Pro), reverse transcrip-
tase/RNaseH (RT/RH) and integrase (INT). RT/RH and INT
convert the retrotransposon RNA into DNA and integrate it
into the genome, respectively. Translation of the gag-pol
region is initiated from a single site on full-length RNA and
individual functional proteins are released from a precursor
polyprotein by the action of protease (Kumar and Bennetzen
1999; Havecker et al. 2004).

While the gag-pol genes are common to all autonomous
LTR retrotransposons, there are differences in the structure
of their coding regions, which are arranged in single or
multiple (overlapping or adjacent) reading frames. Since
the structural proteins encoded in the gag region are
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required in higher numbers than the catalytic proteins
encoded in pol, retroelements have developed several
mechanisms permitting expression of the Gag protein at
higher levels relative to Pol. In the case of translation of the
whole polyprotein from a single reading frame, all proteins
are produced in equal amounts and their proper ratio can be
reached by post-translational degradation of Pol, as
observed with yeast retrotransposons Tfl and Ty5 (Atwood
etal. 1996; Irwin and Voytas 2001). On the other hand,
division of the gag-pol region into two reading frames sug-
gests the use of translational recoding mechanisms includ-
ing ribosomal frameshifting and stop codon bypass (Gao
et al. 2003; Forbes et al. 2007).

A unique arrangement of the gag-pol region has been
described for Ogre elements, a family of LTR retrotranspo-
sons occurring in several genera of dicot plants where they
often constitute a major fraction of repetitive DNA (Neu-
mann et al. 2003; Neumann et al. 2006; Macas and Neumann
2007). Ogre elements represent a distinct group of Ty3/
gypsy-like retrotransposons characterized by the extreme
size of the elements (up to 25 kb, with LTRs up to 6 kb), PBS
complementary to tRNA,,, the presence of an extra open
reading frame (ORF1) coding for an unknown protein
upstream of gag-pol, and division of the gag-pol region into
two ORFs. The gag-pro domains (ORF2) are separated from
rt/rh-int (ORF3) by a region of about 150-350 bp, which
includes several stop codons and is surrounded by GT/AG
dinucleotides typical of the 5’ and 3’ termini of most introns
(Breathnach et al. 1978; Mount 1982; Burset et al. 2000).
Although the nucleotide sequences of this region differ
between Ogre elements from various plant species, its posi-
tion within gag-pol and the GT/AG boundaries are con-
served. Moreover, removing the region including these
boundaries leads to in frame fusion of gag-pro and rt/rh-int,
enabling correct translation of the latter domains. Thus, it has
been proposed that this region represents an intron that is
removed by splicing to reconstitute the full-length gag-pol
coding region (Neumann et al. 2003).

Although the splicing has been well documented for
some groups of retroelements like retroviruses and LINEs
(Rabson and Graves 1997; Belancio et al. 2006; Tamura
et al. 2007), it has so far been reported for only a few LTR
retrotransposons. It occurs in transcripts of the envelope-
class retrotransposon Bagy-2 where it generates a subge-
nomic RNA lacking almost the entire gag-pol sequence,
thus enabling expression of the downstream env gene
(Vicient et al. 2001). Alternative splicing of RNA from
Drosophila retrotransposon copia was shown to be
involved in the regulation of the ratio between Gag and Pol
proteins, as the full-length copia RNA containing gag and
pol regions is translated to protein at a far lower level than
spliced subgenomic RNA encoding gag products only
(Brierley and Flavell 1990). In contrast to these cases
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where splicing always removes part of the coding region,
the putatively spliced region within Ogre transcripts does
not include any coding sequence.

Our previous data from pea (Pisum sativum) showed that
Ogre sequences are transcribed in leaves, roots and flowers
and that a significant portion of the transcripts lacks the
putative intron sequence (Neumann et al. 2003). However,
since there is a small fraction of Ogre copies in the pea
genome that also lacks this region, whether the shorter tran-
scripts are produced from these elements instead of the
splicing of full-length RNA could not be ruled out. Thus, in
this work we investigated transcription and processing of
Ogre RNA in more detail employing two different, yet com-
plementary strategies to study this phenomenon: (1) Taking
advantage of the available genomic sequence from the
model plant Medicago truncatula and of our previous char-
acterization of the Ogre population in this species (Macas
and Neumann 2007), we followed transcription patterns of
individual Ogre subfamilies using RT-PCR with specific
sets of primers. This sequence-specific assay enabled us to
exclude the presence of certain spliced Ogre sequences in
the genome and thus to detect splicing of the corresponding
full-length transcripts. (2) Secondly, the splicing of the puta-
tive intron sequence from pea Ogre elements was investi-
gated by its incorporation into the coding sequence of the
GFP-GUS reporter gene and expression in transgenic plant
tissue. Both these approaches demonstrated that the putative
intron sequence can be spliced from the Ogre transcripts but
that the splicing is only partial, presumably due to weak
splicing signals within the Ogre sequence.

Materials and methods
Plant material and nucleic acid isolation

Seeds of P. sativum L. cv. Carrera were obtained from the
Plant Breeding Station at BorSov, Czech Republic. Seeds of
M. truncatula cv. Jemalong were provided by the Crop
Research Institute at Praha-Ruzyné, Czech Republic. Geno-
mic DNA was extracted from leaves or hairy roots as
described by Dellaporta et al. (1983). All DNA concentra-
tion measurements were done with PicoGreen dye (Molec-
ular Probes) according to the manufacturer’s instructions.
Total RNA was isolated using a ToTALLY RNA Kit
(Ambion). RNA isolates were treated with TURBO DNase
(TURBO DNA-free kit, Ambion) to remove traces of con-
taminant DNA.

Sequence analysis

Nucleotide and protein sequence analysis was done using
Staden Package software (Staden 1996) and program tools



Mol Genet Genomics (2008) 280:427-436

429

implemented at the Biology workbench server (http://
workbench.sdsc.edu). Multiple sequence comparisons were
performed with CLUSTALW (Thompson etal. 1994).
Splice site analysis was performed at the NetGene2 server
(Hebsgaard etal. 1996; http://www.cbs.dtu.dk/services/
NetGene?2).

Splicing analysis in Medicago truncatula

Transcription profiles of individual Ogre subfamilies were
investigated using RT-PCR with subfamily-specific prim-
ers designed according to the multiple sequence alignment
of previously characterized elements (Macas and Neumann
2007; see Supplementary Fig. S1 for the alignment and
primer positions). The following primer pairs were used for
individual subfamilies (labeled as MT1-MT4): MTIF (5’
GAC ATT CCY TCA ATC ATG CAT G 3’), MTIR (5’
GAC CAT GCA AAA ATA TCC GG 3'), MT2F (5’ AGA
RGA ATG AAG CCT CTA TCT 3’), MT2R (5' TTT GAG
RAG CTC TAT CAC TTG 3’), MT3F (5" ACT ACA AGA
GGT GAA ACA TGC 3), MT3R (5" ATT ATC TTT TTC
TTG ACA GAC GC 3'), MT4F (5" TCA TTC CAA GGR
TTC TCT GC 3'), MT4R (5’ CTC AGT ACC CAG ATT
GAT GAT T 3’). Reverse transcription was carried out
using Superscript First-Strand Synthesis System for RT-
PCR (Invitrogen) and 4 pg of the template RNA with either
reverse (R) or forward (F) primer in order to specifically
detect sense or antisense transcripts, respectively. Resulting
c¢DNA was amplified in a subsequent PCR reaction using a
1 ul aliquot of the RT reaction as a template. The PCR was
performed in a 50 pl volume of 1x PCR buffer, 1.5 mM
MgCl,, 0.2 mM dNTPs, 0.2 pM primers and 2 U of Plati-
num Tag polymerase (Invitrogen). The PCR profile
included initial denaturation (2 min at 94°C), 35 cycles of
denaturation (94°C for 1 min), primer annealing (1 min)
and extension (72°C for 1 min), followed by final extension
at 72°C for 10 min. The annealing temperature was 60°C in
the first cycle and was decreased by 1°C at each subsequent
cycle down to 50°C, which was used for the rest of the
reaction. The RT-PCR products were analyzed by agarose
gel electrophoresis, cloned into pCR4-TOPO vector (Invit-
rogen) and sequenced using the BigDye Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems). The
sequences are available from GenBank under accession
numbers FK700536-FK700710.

Verification of the absence of intron-less elements in the
M. truncatula genome corresponding to spliced Ogre tran-
scripts was performed using PCR with primers specific for
subfamilies MT3 and MT4. The reverse primers MT3Rsp
(5" GCT CAT GTA TGT TCA GTT TAG AAA 3') and
MT4Rsp (5" ATT CAC TTA TGT TCA GTT TAG AGC
3’") spanning the spliced intron position (Fig. 2a) were used
in combination with the respective forward primer (MT3F

or MT4F). The PCR profile comprised initial denaturation
(2 min at 94°C), 35 cycles of 94°C for 1 min, 60°C for
1 min and 72°C for 1 min, followed by final extension at
72°C for 10 min. As templates we used genomic DNA or
cloned spliced Ogre cDNA sequences representative of the
MT?3 (clone 1223, acc. no. FK700657) and MT4 (clone
1277, acc. no. FK700706) subfamilies. The amount of tem-
plate genomic DNA (48 ng) corresponded to 10° equiva-
lents of haploid M. truncatula genome (1C =0.48 pg,
Arumuganathan and Earle 1991), and the control cDNA
templates were used in amounts corresponding to 10° and
10* copies/reaction. The control reactions provided a cali-
bration of PCR sensitivity: successful detection of the
expected fragment in the reaction using 10° copies of the
control template indicated that the reaction sensitivity was
sufficient for detection of a single copy target sequence in
48 ng of M. truncatula genomic DNA, and obtaining the
product in the control with 10* template copies per reaction
corresponded to about a tenfold higher sensitivity.

Construction of a reporter gene containing the Ogre intron
and its expression in pea hairy root culture

The intron sequence of pea Ogre element was obtained
from P. sativum genomic clone Ps-phage20 (Neumann
etal. 2003; GenBank accession AY299395, positions
10,863-11,115) by PCR amplification using primers IPS-F
(5" GTA ATT TTC TGT TGT TTT 3’) and IPS-R (5’ CTG
CAT GTT TAA TGC 3’). The amplified fragment was
cloned into the unique SnaBI restriction site within GUS
coding sequence of the plasmid pBGF-D35S, a pBinl9-
based binary vector containing chimeric NLS-sGFP-GUS
gene expressed using a double 35S promoter (Chytilova
etal. 1999). The intron PIV2 which was previously
employed to disrupt GUS coding sequence (Vancanneyt
etal. 1990) was used to prepare a control construct by
amplifying the PIV2 sequence using the primers T1 (5’
GTA AGT TTC TGC TTC TAC CTT TGA 3') and T2 (5’
CTG CAC ATC AAC AAA TTT TG 3') and cloning it into
the same position within the GUS sequence as the Ogre
intron. Nucleotide sequences of both constructs were veri-
fied by sequencing.

Transgenic hairy root cultures expressing the intron-con-
taining GUS sequences were obtained by transformation of
P. sativum plants by Agrobacterium tumefaciens C58Cl1
carrying hairy root inducing plasmid pRiA4 together with
either of the constructs. The transformation was performed
by injecting Agrobacterium suspension into stems of 7-day-
old seedlings cultivated in vitro on 50% Murashige and
Skoog medium (Duchefa). The seedlings were grown at
20°C for 2 weeks (16 h photoperiod) and than transferred to
a 25°C growth chamber with identical light conditions.
After 2-3 weeks of cultivation, hairy roots emerging from
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the inoculation sites were excised and placed on solid Gam-
borg B5 medium (Duchefa) supplemented with ticarcillin
(500 mg/1) and cefotaxime (200 mg/l) for elimination of
bacteria, and kanamycin (50 mg/1) for selection of lines car-
rying the GUS constructs. Hairy root cultures were grown
in Petri dishes at 24°C in the dark and transferred to fresh
BS5 medium once a month.

The presence of the GUS transgene in kanamycin-resis-
tant lines was verified using PCR with primers GUS-F (5’
AAC TCG ACG GCC TGT GGG C 3') and GUS-R
(5'AGT TCA ACG CTG ACA TCA CC 3’) designed for
amplification of the GUS coding sequence surrounding the
intron cloning site. Parallel PCR reactions designed to
detect eventual Agrobacterium contamination of analyzed
hairy root cultures were also run using the primers specific
for the vector sequence (BIN-F: 5 GCA TCA GGC TCT
TTC ACT CC 3’; BIN-R: 5" TCA AAC GTC CGA TTC
ATT CA 3'). Selected hairy root lines were subjected to
RNA extraction and reverse transcription reactions (using
oligo-dT primer) as described above. The PCR reaction
employed for intron splicing detection using primers GUS-
F and GUS-R included initial denaturation (2 min at 94°C),
35 cycles of 1 min at 94°C, 1 min at 55°C and 1 min at
72°C, and a final extension step (10 min at 72°C) using a
1 pl aliquot of the RT reaction as a template. Proportions of
amplified fragments corresponding to unspliced and spliced
transcripts were estimated by quantification of band intensi-
ties on ethidium bromide-stained agarose gels using BioC-
apt program (ver. 11, Vilber Lourmat). The proportions
were calculated as percentages of unspliced and spliced
molecules within the samples, taking into account band
intensities (DNA amounts within the bands) and length of
the amplified transcripts.

Polyribosome isolation and analysis

Polyribosome isolation was performed according to Davies
et al. (1972) and Jackson and Larkins (1976) with certain
modifications. 1 g of hairy roots was frozen in liquid nitro-
gen and ground to a fine powder with a mortar and pestle.
The powder was thawed in polysome extraction buffer
(0.2M sucrose, 0.2M Tris—HCI pH 8.5, 0.4M KCI,
35 mM MgCl,, 25 mM EGTA, 5 mM DTT) and the mix-
ture was gently homogenized. The homogenate was
strained through sterile cheesecloth and the filtrate was cen-
trifuged at 2,000 g for 5 min at 4°C. The supernatant was
adjusted to 1% (v/v) for Triton X-100 and centrifuged at
30,000g for 10 min at 4°C. The supernatant was then lay-
ered on a discontinuous gradient consisting of one volume
of 2 M sucrose and one volume of 1.5 M sucrose. Polyribo-
somes were pelleted by centrifugation for 5 h at 200,000g
at 4°C. RNA extraction from pellet and supernatant was
performed using a TOTALLY RNA Kit (Ambion). Reverse
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transcription using oligo-dT primer and PCR detection of
transgene transcripts using GUS-F and GUS-R primers
were carried out as described above. Pea actin transcripts
were detected using primers actin-F (5" CCC TAA GGC
TAA TCG TGA GA 3’) and actin-R (5" ATA TTC TGC
CTT TGC AAT CC 3') with the same PCR profile.

Results

Transcription patterns and splicing of Ogre elements in
Medicago truncatula

The population of Ogre elements in the M. truncatula
genome can be classified into four basic subfamilies
(MT1-MT4) based on the divergence of their non-coding
sequences. A set of 85 previously identified full-length
elements representing these subfamilies (Macas and Neu-
mann 2007) was used to design subfamily-specific pairs
of primers targeted to amplification of regions surround-
ing a putative intron (Supplementary Fig. S1). RT-PCR
reactions using these primers and carried out with RNA
extracted from different organs (roots, leaves, flowers)
revealed variations in transcription patterns between indi-
vidual subfamilies. While the majority of MT1 and MT2
transcripts corresponded to unspliced sequences, there
were similar proportions of unspliced and spliced tran-
scripts detected in MT3 and MT4 subfamilies, especially
in the root RNA samples (Fig. 1). Cloning and sequencing
of RT-PCR products from this tissue confirmed the speci-
ficity of primers used for each respective subfamily and
revealed that shorter products indeed corresponded to
transcripts spliced at the predicted donor and acceptor
sites. This was the case for all fragments corresponding to
the band labeled as “S” on Fig. 1, sequenced from the
MT1 (23 clones), MT2 (4 clones), MT3 (16 clones) and
MT4 (28 clones) subfamilies. There was an additional
shorter band (labeled as “Sx” on Fig. 1) detected in sub-
family MT3 that was predominantly (13 out of 14
sequenced clones) composed of Ogre-like transcripts with
relatively divergent sequence compared to known ele-
ments (similarity of 78% or lower). Due to this sequence
divergence it was not possible to determine whether this
sequence was spliced or merely transcribed from an ele-
ment containing an internal deletion. The remaining clone
sequenced from this RT-PCR band corresponded to an
aberrantly spliced MT3 element. We also tested for the
presence of antisense transcripts in the MT3 and MT4
subfamilies (Fig. 1) by performing reverse transcription
using the corresponding forward instead of reverse prim-
ers employed in standard RT-PCR reactions. Although the
antisense transcripts were detected, they corresponded to
unspliced sequences only, thus providing additional evi-



Mol Genet Genomics (2008) 280:427-436

431

MT3

Fig. 1 Transcription analysis of Ogre subfamilies MT1-MT4 in
M. truncatula. RT-PCR reactions were performed with total RNA iso-
lated from flowers (F), leaves (L) or roots (R) and primers specific for
individual subfamilies (+ and — indicate the presence or absence of re-
verse transcriptase in otherwise identical RT reactions). The primers
specific for individual subfamilies were designed to amplify a region
between ORF2 and ORF3 including the potential intron (Supplemen-
tary Fig. S1). Positions of amplified full-length (unspliced) fragments
on the gels are indicated with U, and their spliced variants are marked

dence that shorter fragments are generated by splicing,
which acts on the sense transcripts containing the intron
sequence in proper orientation.

PCR reactions using genomic DNA as a template
(Fig. 1) as well as bioinformatic analysis of M. truncatula
genomic data revealed that a small fraction of MT1 and
MT2 elements present in the genome lacks the intron
sequence. Thus, whether the spliced fragments detected by
RT-PCR actually represented transcripts of these elements
instead of the products of full-length RNA splicing could
not be ruled out. Although the intron-lacking elements were
not found for subfamilies MT3 and MT4 by either of the
two approaches, this may be due to incomplete genomic
sequence available for analysis and insufficient sensitivity
of the PCR assay. Therefore, we designed primers spanning
the intron site that should selectively amplify only the
spliced targets (Fig. 2a) and we calibrated the PCR sensitiv-
ity using known amounts of the template copies in order to
ensure that it was sufficient to detect even a single copy of
the corresponding spliced element in the M. truncatula
genome. This assay confirmed that there are no spliced cop-
ies of these elements present in the genome (Fig. 2b) and
thus that the intron-less transcripts detected for MT3 and
MT4 subfamilies originated by splicing their full-length
RNA.

with S or Sx. The lanes marked G and 0 include control PCR reactions
with genomic DNA and no template, respectively, and lane M is the
DNA size marker (lambda DNA digested with PstI). The lanes AS in
panels MT3 and MT4 show detection of antisense transcripts from
roots (using forward primers for RT reaction), whereas all other RT
reactions were performed using reverse primers, thus detecting the
sense transcripts. Sequences of RT-PCR products are available from
GenBank under accession numbers FK700536-FK700710

Splicing analysis of pea Ogre intron expressed within GUS
coding sequence

An alternative approach for functional analysis of the pre-
dicted intron sequence was employed for Ogre elements
from pea (P. sativum). The intron region with the highest
prediction score as calculated at the NetGene2 server (con-
fidence values of 0.96 for both donor and acceptor splice
sites, branch point score of —0.95) was selected from the
available pea Ogre clones (Neumann et al. 2003) and sub-
cloned into a coding region of the GUS reporter gene. This
chimeric sequence was expressed in transgenic pea hairy
root cultures and its splicing was studied using RT-PCR
with primers surrounding the cloning site. A modified
intron 2 of potato ST-LS1 gene (PIV2 intron, Vancanneyt
et al. 1990) cloned into the same position within the GUS
sequence and expressed in the same way as the Ogre con-
struct was used as a control (Fig. 3a).

Splicing of the Ogre intron from the chimeric GUS tran-
scripts was evident in four out of five lines of transgenic
hairy roots tested (Fig. 3b). The only line where almost no
spliced transcripts were detected (PO25b) showed reduced
growth rate and was viable for only a few months. In the
other four lines the expression patterns varied considerably
and the splicing was always only partial, although in two of
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A MT3

MT3Rsp
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TACCTCTTTCTAAGTAAT. .. .TGCAGACTGAACATACATGAGCCCGTTGAA

MT4

MT4Rs
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CACCCCGCTCTAAGTAAT. .. .TGCAGACTGAACATAAGTGAATCCGTTGAA
B _ MT3 ) MT4 .
3F+3R 3F+3Rsp 4F+4R 4F+4Rsp
G5 G5 c5 c4 G5 G5 C5 c4 0

1 2 3 4

Fig. 2 Investigation of the presence of spliced Ogre copies in the M.
truncatula genome. The detection was done using PCR with forward
primers specific for either MT3 (primer MT3F) or MT4 (primer
MT4F) elements in combination with the respective reverse primer
(MT3Rsp or MT4Rsp) shown in panel a The reverse primers spanned
regions adjacent to both sides of the intron (gray shading), so it could
efficiently anneal only to the spliced sequence variants. b PCR reac-
tions were performed with defined amounts of genomic DNA or con-
trol templates in order to confirm that sensitivity was sufficient to
detect a single copy of spliced sequence in the genome. Therefore, the
amplification using 48 ng of M. truncatula DNA (lanes GS5), corre-

them (PO10d and PO25d) the spliced transcripts clearly
prevailed. On the other hand, the splicing in the line
expressing GUS with the control intron PIV2 was complete
and no unspliced transcripts were detected (Fig. 3b, line
PIV2).

Splicing accuracy was checked by cloning and sequenc-
ing RT-PCR-amplified spliced transcripts from lines
PO25d (47 clones), PO23d (19 clones), PO10d (9 clones)
and PO5a (7 clones). Surprisingly, from a total of 82 ana-
lyzed sequences only two clones from the line PO23d con-
tained transcripts spliced at the expected donor splice sites
of the Ogre intron, whereas other clones were spliced using
a cryptic donor site occurring within the GUS sequence
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5 6 7 8 9 10

sponding to 10° genome equivalents (1C = 0.48 pg), was compared to
the reactions including 10° and 10* molecules of control templates
(lanes C5 and C4, respectively). Cloned fragments of spliced tran-
scripts were used as the controls (the clone c1223 was used for the
MT3 and c1227 for the MT4 subfamily). No amplified fragments were
observed in the genomic DNA samples (lanes 2 and 7), whereas the
sensitivity of the assay was sufficient to detect even 10* of template
molecules (lanes 4 and 9). Lanes I and 6 show positive controls (geno-
mic DNA amplified with primers surrounding the intron), lanes 5 and
10 contain reactions with no template (0)

four nucleotides upstream of the Ogre intron (Fig. 3a). On
the contrary, all 36 sequenced fragments from the control
PIV2 line were spliced at the PIV2 intron acceptor and
donor sites.

Intron-containing RNAs can be retained in the nucleus to
await splicing or degradation or they can represent a type of
alternative splicing—intron retention. Thus, we investi-
gated whether the unspliced transcripts occur outside the
nucleus by testing for their presence in the mRNA fraction
associated with polyribosomes. In all three tested trans-
genic lines (PO5a, PO10d, PO23d), the same ratios of
spliced to unspliced transcripts were observed when
RT-PCR reactions with total cellular or polyribosome-
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A GUS + Ogre intron
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Fig. 3 Splicing of intron-containing GUS constructs expressed in
transgenic pea hairy root lines. a Schematic representation of GUS
coding sequence (gray boxes) containing intron from pea Ogre element
or a control intron PIV2 (white boxes). Authentic donor and acceptor
sites are connected with solid lines, and the alternative splicing involv-
ing the cryptic donor site within the GUS sequence is marked with
dashed lines. b Splicing patterns detected in transgenic lines using RT-
PCR with primers GUS-F and GUS-R surrounding the intron cloning
site within the GUS sequence. Fragment sizes corresponding to spliced

associated RNA samples were compared (an example is
shown in Fig. 4). These findings suggest that transcripts
retaining the intron are exported from the nucleus at a simi-
lar rate as the spliced ones and are also associated with
polyribosomes.

Discussion

The results obtained using two different experimental
approaches concurrently demonstrated that Ogre LTR retro-
transposons possess functional introns, non-coding regions
that are spliced out from the element transcripts. It has been
shown that in spite of the presence of intron-less Ogre cop-
ies in the M. truncatula genome, at least some of the tran-
scripts present in the cells originate by splicing of the RNA
expressed from intron-containing elements. The ratio of
spliced to unspliced transcripts varied between Ogre sub-
families, being the highest in MT3 and the lowest in MT?2.
As all subfamilies include large proportions of recently
transposed elements (Macas and Neumann 2007) carrying
intact donor and acceptor splice sites (Supplementary

99.9 8.2 0

01 18 100

(S) and unspliced (U) transcripts are indicated. RT-PCR reactions per-
formed with RNA from five independent lines expressing pea Ogre in-
tron are shown (marked as Ogre) along with the line expressing the
control intron (P/V2). The lanes marked with + and — indicate the pres-
ence or absence of reverse transcriptase in RT reactions. The lane
GUS + int shows the control PCR amplification of the GUS construct
containing the Ogre intron. The marker is lambda DNA digested with
Pstl. Proportions of unspliced and spliced transcripts (in %) within the
RT + samples are given below the gel

Fig. S1), this variation was probably not caused by differ-
ences in sequence degeneration of the elements. On the
other hand, there are differences in sequence composition of
introns and their adjacent regions between the subfamilies
(Supplementary Fig. S1) which could provide more likely
explanation for their different splicing efficiencies (Buratti
and Baralle 2004). However, it should be noted that in some
cases the splicing patterns of the same subfamily differed
between the organs (for example, MT4 in roots vs. leaves/
flowers, Fig. 1), suggesting that some tissue-specific factors
could also influence the proportion of spliced transcripts.
Investigation of the dissected Ogre intron sequence
expressed within the GUS gene also confirmed its splicing,
although this process was incomplete in all transgenic lines
tested. Moreover, it was found to predominantly involve a
cryptic donor site within the surrounding sequence instead
of the one in the investigated intron. These results can be
directly compared to those reported by Ibrahim et al. (2001)
who used the same experimental strategy for investigation
of potato ST-LS1 and pea legumin introns. They showed
that the splicing accuracy of investigated introns differed
when expressed in transgenic plants or protoplasts and that
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Fig. 4 Detection of polyribo-
some-associated RNA. Cyto-
plasmatic extract from hairy root tOt
line PO10d was loaded onto a GUS
sucrose cushion gradient and
RNA was extracted from the
resulting polysomal pellet and
corresponding supernatant. The
RNA panel shows that large and
small ribosomal RNAs (28S and
18S) were effectively concen-
trated in the pellet, indicating the
presence of polyribosomes.
RNA was used for the reverse
transcription reaction and the
subsequent PCR was performed
with undiluted (+) or 10x dilut-
ed [(0.1x)+] cDNA with primers
GUS-F and GUS-R (unspliced
and spliced transcripts are indi-
cated as U and S, respectively) or
act-F and act-R designed for
amplification of part of the actin
transcript (used as a control).
Eventual false-positive results
caused by contamination with
genomic DNA were excluded in
the RT— reaction (-). The result
of RT-PCR with total RNA is
also presented (fof). The marker
is lambda DNA digested with
Pstl

actin

RNA
28 S~
18 §-

tRNAs-

it depended to a lesser extent on the intron sequence.
Although the activation of the same GUS cryptic splice site
as in the Ogre intron was also observed, the authentic splice
sites were always utilized preferentially. The difference in
splicing accuracy was even more evident in comparison
with the intron PIV2 (a derivative of ST-LS1 intron, Van-
canneyt et al. 1990) used as a control in our experiments,
which was spliced correctly in all analyzed transcripts.
Based on these observations we conclude that the splice
signals within the Ogre intron are less efficient compared to
the other introns investigated. It is also possible that
efficiency of the authentic donor site is in part determined
by Ogre sequences surrounding its intron, which were
missing in the GUS construct. This is in agreement with our
observation that the splicing of Ogre intron is correct when
present within the element sequence. Nevertheless, the
weak splice signals probably contribute to only partial
splicing of the corresponding transcripts.

Transcript splicing is known to occur in several groups
of retroelements, including retroviruses, LINEs, and Penel-
ope-like elements (Rabson and Graves 1997; Tamura et al.
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2007; Arkhipova et al. 2003), but it has been reported for
only a few LTR retrotransposons. A retrovirus-like element
Bagy-2 in barley employs splicing to generate subgenomic
transcripts lacking most of its coding region in order to
express the env gene located at its 3’ end (Vicient et al.
2001). A similar strategy, but involving removal of the pol
coding region from part of the transcripts, is used by the
copia element in Drosophila in order to regulate the ratio of
Gag and Pol proteins produced (Brierley and Flavell 1990).
Alternative splicing as a mechanism of Gag to Pol ratio reg-
ulation was also proposed for CRR, a Ty3/gypsy-like cen-
tromeric retrotransposon of rice. In spliced transcripts of
these elements the removal of the RT-coding domain
together with alternative usage of several different donor
splice sites suppresses translation of the pol region while
gag-pro domains remain unaffected (Neumann et al. 2007).
Splicing as a mechanism for modulation of the proportion
of element-encoded proteins can also be envisioned for
Ogre retrotransposons investigated in this work. Removal
of the sequence containing several stop codons between
protease and reverse transcriptase domains allows translation
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of the rt/rh-int region in frame with the upstream gag-pro
sequence, while the unspliced transcripts would be trans-
lated into gag-pro proteins only. It should be noted that in
this case the splicing does not involve removal of any cod-
ing sequence, contrary to the cases of other spliced LTR
retrotransposons described above. Thus, the intron in Ogre
elements closely resembles those occurring in most genes.

The discovery of the functional intron within the Ogre
sequence raises several interesting questions regarding the
replication strategy of this element. In a similar way to
other retroelements, Ogre is supposed to use its transcripts
as a replication intermediate, serving as a template for
reverse transcription and reintegration of new elements into
the genome. The results of our experiments suggested that
both full-length and spliced transcripts are present in the
cytoplasm and thus could potentially serve as a replication
template. However, replication of the spliced transcripts
should lead to gradual replacement of intron-containing
elements with their spliced variants during genome evolu-
tion, as there is no reverse mechanism available. Although
the spliced Ogre copies have been detected in genomes of
several investigated species, they represented only a minor-
ity of the Ogre populations. In pea, there are only about
1.5% of spliced elements (Neumann et al. 2003) and similar
or smaller proportions of spliced copies were estimated for
Vicia pannonica (our unpublished data). Using bioinfor-
matics analysis we estimated that there were 3.2% of
spliced elements in the M. truncatula genome (data not
shown). Thus, there is probably some mechanism favoring
intron-containing transcripts as a replication template or
preventing reintegration of spliced copies into the genome.
The mechanism of recognition of full-length RNA for
encapsidation has been well studied in retroviruses. In gen-
eral the RNA sequences necessary for RNA encapsidation,
which are usually present only in the unspliced genomic
RNA, are recognized by the viral unprocessed Gag poly-
protein (Jewell and Mansky 2000). Thus we can speculate
of the presence of some signal within the Ogre intron
sequence that would allow the integration of unspliced cop-
ies only into the genome. On the other hand, the presence of
intron-less Ogre copies in the genome suggests that this
selection is not complete. This is in agreement with obser-
vations reported from retrovirus HIV-1, where spliced
RNAs were found to be at a very low frequency packaged
into the virus particles, in spite of the lack of corresponding
signals (Luban and Goff 1994; Houzet et al. 2007b), and
can also be reverse transcribed into cDNAs (Liang et al.
2004; Houzet et al. 2007a).

Splicing of the intron sequence separating the ORF2 and
ORF3 reported in this work is only one of the features that
distinguishes Ogre elements from other groups of LTR ret-
rotransposons. The other one is an additional open reading
frame (ORF1) upstream of the gag-pol ORFs, coding for a

protein with unknown function that is present in all Ogre
copies identified so far (Macas and Neumann 2007). More-
over, the complex structure of the Ogre sequence, including
multiple ORFs, raises questions about the mechanisms
facilitating translation of the ORFs downstream from
ORF]1. As the Ogre populations in several investigated spe-
cies include intact, recently transposed elements that are
also transcriptionally active (Neumann et al. 2003, 2006;
Macas and Neumann 2007), there is the potential to study
these aspects of Ogre structure by experimental approaches
similar to those described in this paper.
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