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Abstract: Opiates are the analgesic of choice for the treatment of post-burn, -trauma and -surgical pain, however, 
it is also well-established that opiates can induce immune complications. These complications, independent of 
the analgesic regime, are also associated with severe traumatic injuries, such as burns. Recent findings suggest 
that opiates can contribute to immune and infectious complications in experimental and clinical settings. Based 
on the immunomodulatory properties of opiate analgesics their therapeutic use/misuse post-injury may 
contribute to the development of complications leading to increased morbidity and mortality in this patient 
population. An improved understanding of the relationship(s) between opiates and complications following major 
injury, such as burn trauma is likely to contribute towards an improvement in existing, as well as the development 
of new therapeutic regimes. This review will focus on the role of opiate analgesic usage and abuse and in the 
development of complications following major traumatic injury with a particular emphasis on burn injury. 
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Introduction 
 
Opiate analgesics (i.e., morphine and other 
opiate derivatives) are the preferred treatment 
for the management of patient pain 
associated with burn injury, major trauma, 
surgical trauma and cancer [1-4]. 
Nonetheless, while these drugs have excellent 
analgesic efficacy, it is well-documented that 
chronic or therapeutic use of opiates can 
compromise a wide range of immune 
functional parameters [5-9]. In this regard, 
studies have shown that morphine can induce 
the following: immunosuppression [10-14], an 
immunosuppressive Th-2 cytokine profile (i.e., 
increased IL-4, IL-10 and/or decreased IL-2, 
IFN-γ) [15,16], suppressed macrophage 
functions [17-21], and increased susceptibility 
to infection [2,22,23]. Since opiates are the 
primary analgesic used in trauma patients, it is 
important to point out that these opiate-
induced immune complications are also 
associated with major traumatic injury, such 
as thermal injury [24-35]. 
 
Post-burn immune complications, such as 
these listed above, appear to be related to the 

activation of a macrophage-dependent pro-
inflammatory cascade [25,36]. The release of 
inflammatory cytokines by macrophages is an 
important mechanism by which they regulate 
the inflammatory response and aspects of 
both innate and acquired immunity. 
Macrophage hyperactivity has been implicated 
in the increased susceptibility to sepsis 
following thermal injury [37,38] and is 
consistent with a “two-hit” phenomenon where 
trauma (1st hit) “primes” the host to exhibit an 
abnormal response to a 2nd hit (i.e., sepsis) 
that is contained by a healthy host, but not a 
compromised host leading to the development 
of multiple organ failure and death [39]. 
Previous studies have examined cellular 
priming and peripheral organ dysfunction in 
two-hit models where the initial injury (i.e., 
ischemia, hemorrhage, burn) was followed by 
wound infection, cecal ligation and puncture, 
or endotoxin challenge [29,40-43]. 
 
Clinical Perspectives on Opiates and Post-
Injury Complications 
 
A recently completed retrospective clinical 
study on the impact of opiate analgesics on 
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the development of post-burn infections 
suggests that opiates can increase burn 
patient morbidity [44]. A total of 237 cases 
and matched controls were included in the 
study. Patients who developed infections were 
20% more likely to be in the high opiate intake 
group. Interestingly, this association was 
modified by burn severity. Among patients with 
smaller burns (≤13% total body surface area, 
TBSA) who were in the high opiate use group 
were 80% more likely to develop an infection. 
Among patients with moderate burns (14% to 
26% TBSA), the high opiate use group was 
34% more likely to develop an infection and 
those with large burns (>26% TBSA), the high 
opiate use group use was similar between 
those who did and did not develop infections. 
The results of this clinical study suggest that 
burn patients who use large amounts of opiate 
analgesics are at increased risk of infection. 
 
In support of this observation, a recent 
retrospective clinical study has shown that 
morphine for the treatment of chest pain in 
heart patients increases the risk of mortality 
[45]. These findings strongly support the 
concept that therapeutic opiates can adversely 
affect outcome following injury. Patients 
hospitalized for a heart attack have long been 
treated with morphine to relieve chest pain. In 
their analysis of more than 57,000 high-risk 
heart attack patients, approximately 30% of 
who had received morphine within the first 24 
hours of hospitalization, they observed that 
those who received morphine had a 6.8% 
mortality rate, as compared to a 3.8% mortality 
rate for patients receiving nitroglycerin. The 
researchers found that patients who were 
given morphine had 48 percent higher risk of 
dying and 34 percent higher risk of suffering 
another heart attack while in the hospital. 
Moreover, the increase in mortality persisted 
even after adjustment for the patients' 
baseline clinical risk. 
 
Opiates and Immune Function 
 
Abusers of opiates have an increased 
incidence of infectious complications [46,47]. 
This observation has been confirmed in animal 
studies demonstrating that opiate treatment 
decreases resistance to infections by microbial 
agents [2,22,48]. Both therapeutic and 
chronic opiate use has a broad range of 
effects upon the immune system [6,9,49]. In 
animal models, morphine treatment has been 
shown to suppress immune parameters such 

as delayed type hypersensitivity (DTH), 
lymphocyte proliferation, natural killer (NK) cell 
cytotoxicity, antibody production, cytokine 
production, phagocytic function, induce 
lymphoid organ atrophy and diminish 
CD4+/CD8+ ratios [5,6,17,50-54]. 
 
Recent data suggests that activation of opiate 
receptors on immune cells induces altered 
intracellular Ca+2 levels, activation of cAMP-
dependent pathways and changes in MAP 
kinase activation [55-59]. Morphine can 
negatively regulate IFN-γ promoter activity by 
decreasing either NF-κB signaling or MAP 
kinase/AP-1 signaling [56]. In contrast, others 
have shown that morphine sulfate can induce 
activation of the ERK pathway [55]. Shahabi et 
al., [57] have recently shown that δ-opioid 
receptors modulate T-cell receptor signaling 
through a JNK/SAPK-dependent pathway 
leading to activation of ATF-2. Roy et al. [60] 
have shown that morphine increases LPS-
induced expression of IL-6 and TNF-α through 
the NF-κB pathway. Macrophage nitric oxide, 
IL-12 and TNF-α production are also enhanced 
by morphine under basal and LPS-activated 
states [14,61]. A major concern with opiates is 
their profound immunosuppressive properties. 
The opiate-induced suppression in immune 
function has been demonstrated at the level of 
T-cell proliferative responses [12,19,62], 
development of an immunosuppressive Th-2 
profile [15,62], and decreased production of 
antibodies in response to antigenic stimuli 
[11,63]. With regard to burn injury, morphine 
treatment of mice with a small burn induced 
immune dysfunction that was not evident in 
untreated burned or sham animals receiving 
only morphine sulfate [64]. In this study mice 
were subjected to a small 6.25% total body 
surface area (TBSA) burn and treated with 
morphine sulfate (2 mg/kg bwt/day). Neither 
burn injury nor morphine treatment alone 
altered splenic T-cell proliferation. In contrast, 
morphine treatment of burned mice 
suppressed splenic T-cell proliferation at 4 and 
7 days post-injury. The suppressed T-cell 
response correlated with increased nitric oxide 
production and expression of a Th-2 type 
phenotype. These findings demonstrated that 
mice treated with a clinically relevant dosage 
of morphine sulfate after an “immunologically 
insignificant” burn injury displayed significant 
immune derangements and immuno-
suppression. 
 
The mechanisms responsible for opiate-
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induced alterations are not completely 
understood. They appear to be related to the 
direct action on immunocompetent cells and 
indirect action through the central nervous 
system (CNS) and the hypothalamic-pituitary 
adrenal (HPA) axis [65-71]. HPA activation 
induces ACTH production from the pituitary, 
and subsequent release of immuno-
suppressive glucocorticoids by the adrenals. 
Moreover, primary and secondary lymphoid 
organs (i.e., spleen) have sympathetic 
innervations which upon activation by opiates 
can produce catecholamines that are also 
immunosuppressive [72]. In this regard, 
Tracey [73] has proposed an important role for 
sympathetic innervation in the control of the 
inflammatory response.  
 
The majority of burn patients receive opiate 
analgesics for the treatment of pain 
associated with the initial injury as well as for 
post-injury procedures, such as wound 
debridement. Since opiates have profound 
immunomodulatory effects, it is likely that 
treatment of burn patients with these drugs 
alters their immune response to the injury. 
Earlier studies examined the impact of opiates 
on post-burn immune function [74,75]. 
However, these studies were directed towards 
understanding the potential role of 
endogenous opiates such as β-endorphin, 
rather than the impact of exogenous opiates 
administered to burn patients in the ICU (i.e., 
morphine sulfate, fentanyl, hydromorphone, 
meperidine). There is evidence that 
neuropeptides, especially the opiate receptor 
agonists, are involved in wound healing [76-
80]. Opioid peptides have been used in animal 
models in treatment of wounds, as they induce 
fibroblast proliferation and growth of 
capillaries, and accelerate the maturation of 
granulation tissue and the epithelization of the 
defect. Interestingly, Poonawala et al., [81] 
observed that topical application of opiates 
accelerates wound healing by up-regulating 
nitric oxide synthase and the vascular 
endothelial-derived growth factor receptor Flk1 
in the healing wounds. In contrast, however, 
Kramer et al., [82] have shown that the 
intraoperative use of morphine nerve paste 
might delay wound healing and increase 
postoperative morbidity. The impact of opiates 
on wound healing is unclear. 
 
Interestingly, several studies suggest that 
opiates can have positive effects in brain 
injury, as they can modify some trauma-

induced cellular events and pathologies [83-
85]. More recently Zohar et al., [86] have 
shown that morphine administrated to mice 
immediately after brain injury protected them 
from long-term cognitive deficits. These 
findings suggest that activation of the 
endogenous opiate system may influence the 
pathogenesis of traumatic brain injury. Thus, 
whereas opiates may be detrimental in organ 
injury, burns and hemorrhage, they may prove 
to be beneficial in cases of traumatic brain 
injury. 
 
Opiate Derivatives 
 
While morphine sulfate is the most widely 
used opiate for pain management in adults, 
other types of “pure-opioids” are also 
employed under such conditions. They include 
meperidine, fentanyl, and hydromorphone. 
Meperidine has lower analgesic potency than 
morphine, whereas fentanyl and 
hydromorphone have greater potency than 
morphine. To date, only a few studies have 
examined the immunomodulatory properties of 
these non-morphine opiates [87-89]. Yeager et 
al., [88] demonstrated in human volunteers 
that fentanyl increased NK cell cytoxicity and 
circulating CD16+ lymphocytes. Other immune 
parameters, such as T-cell proliferation and 
neutrophil cytoxicity were unaltered. In 
contrast, in a murine system, fentanyl 
treatment of splenocytes has been shown to 
suppress T-cell proliferation, IL-2 production 
and NK cell function [87]. Meperidine had no 
such effect on immune function. Sacerdote et 
al., [89] examined the effect of a range of 
opiate drugs including morphine sulfate and 
hydromorphone in mice. They found that 
treatment with morphine suppressed splenic 
T-cell proliferation, IL-2 production and NK cell 
activity. In contrast, hydromorphone, while 
analgesic, did not alter immune parameters at 
any dose tested (2.5-20 mg/kg bwt). These 
studies suggest that different commonly used 
opiate drugs have different effects on immune 
function. Nonetheless, these studies were 
done in normal volunteers or animals and it 
remains unknown if similar responses would 
be observed in an injured patient. 
 
Opiate Receptors 
 
The pharmacological effects of opiates are 
mediated by several kinds of receptors. The 
primary receptors are the μ-, δ-, and κ- 
receptors [7,9,90]. These receptors belong to 
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the family of G-protein linked receptors and 
are related in structure to receptors for other 
neurotransmitters [90]. A wide range of 
second messengers and signal transduction 
pathways (i.e., cAMP, Ca+2, MAP kinases, NF-
κB, AP-1 etc) are involved in the activation and 
regulation of inflammatory genes such as IL-6, 
TNF-α, iNOS, COX-2 [28,36,91,92].  
 
Therapeutic opiates produce their activity by 
mimicking the action of endogenous opioid 
peptides (i.e., metenkephalin, β-endorphin, 
dynorphin) at receptors in the CNS, immune 
system and elsewhere. The three main types 
of opiate receptors, each with their own 
subtypes, are mu (μ, μ1, μ2), delta (δ, δ1, δ2) 
and kappa (κ, κ1-4). In vitro studies in humans 
and rodents support the concept that all three 
main types of opiate receptors can modulate 
immune function [93-96]. Taub et al., [96] 
showed that the opiate-induced suppression of 
murine splenic antibody responses can be 
mediated through either the μ- or κ-opioid 
receptor. Additional findings by this group have 
demonstrated that the δ-receptor effect is 
through the δ2 receptor subtype [95]. In 
contrast, studies by other investigators [97] 
suggest that the immunomodulatory effects of 
morphine are through the μ receptor. These 
studies demonstrated suppressed NK cell 
activity and T-cell proliferation, diminished 
CD4+/CD8+ ratio and lymphoid atrophy. 
However, these studies used either a μ 
receptor knockout mouse or administration of 
a μ receptor agonist to the left ventricle of the 
brain. Thus, they do not preclude a role for the 
other opioid receptors on peripheral immune 
cells. While traditionally, it is thought that a 
given response to an opiate results from an 
interaction with a single type of receptor (μ κ, 
δ), Smith and Lee [90] have recently proposed 
that interactions between receptor types play a 
major role in opiate action. These interactions 
may be local (i.e., same tissue such as 
immune cells) or non-local (i.e., different 
tissues such as CNS and immune cells). Non-
local interactions would involve inter-cellular 
mechanisms, whereas local interactions would 
potentially involve both inter- and intracellular 
interactions. Thus, it is plausible that 
therapeutic opiates may exert their action on 
one particular receptor type in the CNS and 
another receptor type in the immune 
compartment, which both ultimately influence 
immune functions by differing mechanisms. 
 
Drug Abuse and the Trauma Patient 

Studies suggest that the number of burn 
patients reported as abusing drugs prior to 
admission is on the increase [98]. The patients 
identified as drug abusers had increased 
morbidity as compared to non-abusers. More 
recently, burn units are increasingly treating a 
new type of patient, individuals injured in 
explosions/fires from homemade laboratories 
producing methamphetamines [99]. One 
major difference in this patient population is 
that the patients injured in methamphetamine 
lab explosions are typically drug users and 
need to undergo withdrawal during treatment. 
A recent study by Santos et al., [100] indicates 
that increasing incidences of burn injuries are 
related to methamphetamine laboratory 
accidents. In this patient sub-population, most 
patients are also positive for poly-substance 
abuse. Specifically, all the methamphetamine 
patients were positive for methamphetamine 
and most of them had a positive screen for 
two or more drugs compared with the control 
group. The most commonly abused 
recreational drugs with methamphetamine 
were opiates, benzodiazepines, and cannabis. 
These patients required higher levels of 
resuscitation as well as sedation. In addition, 
methamphetamine lab patients tended to 
have a higher skin graft loss as compared with 
the graft loss rate in the control group. Future 
studies assessing the impact of drugs of 
abuse, and particularly opiates, on trauma 
patient morbidity are clearly warranted. 
 
Conclusion 
 
Traumatic injury occurs with alarming 
frequency in the United States. In this regard, 
burn injury is a significant health problem in 
the United States with approximately 70,000 
people sustaining such injuries requiring 
hospitalization each year [101]. Improvements 
in therapeutic procedures for the treatment of 
burn victims have improved patient prognosis, 
however, high morbidity and mortality rates 
remain as major concerns. Some of the 
causative factors for post-burn morbidity and 
mortality may be in part related to therapeutic 
regimes employed in the treatment of such 
patients. In this regard, opiates (the analgesic 
of choice for the treatment of post-burn pain) 
can induce immune complications and 
increased infectious complications. None-
theless, pain management in trauma patients 
is a primary concern that should take 
precedence over the potential immune 
complications that opiates might induce. In the 
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future, the development of novel analgesic 
regimes that maximize analgesic efficacy and 
minimize immune/infectious complications is 
warranted and likely to lead to decreased 
morbidity and mortality in this unique patient 
population.  
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