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Spectral counting has become a commonly used ap-
proach for measuring protein abundance in label-free
shotgun proteomics. At the same time, the development
of data analysis methods has lagged behind. Currently
most studies utilizing spectral counts rely on simple data
transforms and posthoc corrections of conventional sig-
nal-to-noise ratio statistics. However, these adjustments
can neither handle the bias toward high abundance pro-
teins nor deal with the drawbacks due to the limited
number of replicates. We present a novel statistical
framework (QSpec) for the significance analysis of dif-
ferential expression with extensions to a variety of ex-
perimental design factors and adjustments for protein
properties. Using synthetic and real experimental data
sets, we show that the proposed method outperforms
conventional statistical methods that search for differ-
ential expression for individual proteins. We illustrate
the flexibility of the model by analyzing a data set with a
complicated experimental design involving cellular lo-
calization and time course. Molecular & Cellular Pro-
teomics 7:2373–2385, 2008.

MS-based shotgun proteomics is currently the most com-
monly used approach for the identification and quantification
of proteins in large scale studies (1, 2). A variety of mass
spectrometry-driven protein quantification methods have
been proposed involving stable isotope labeling of proteins or
peptides coupled with MS/MS sequencing, e.g. ICAT (3),
stable isotope labeling by amino acids in cell culture (SILAC)
(4), and multiplexed quantitation using isobaric tags for rela-
tive and absolute quantitation (iTRAQ) (5) (for reviews, see
Refs. 6 and 7). The well known limitations of label based-
methods include requirements for higher amounts of starting
biological material, increased complexity of the experimental
protocols, and high costs of reagents (7).

As a result, in recent years, so-called label-free methods
have received increasing attention as promising alternatives
that automatically waive some of the disadvantages of using
stable isotope labeling methods. Popular methods in this area
have focused on the analysis of two-dimensional images of

ion intensities in the span of retention time and m/z from a
LC-MS or LC-MS/MS run where peak intensities are used as
the abundance measure (8–11). Despite the rich information
contained in the LC-MS data, daunting computational effort
needs to be spent on processing the data, including back-
ground filtering, peak detection, and alignment (8, 11).

A viable label-free quantitative strategy is spectral counting
where the number of spectra matched to peptides from a
protein is used as a surrogate measure of protein abundance.
Although conceptually simple, recent studies have demon-
strated that spectral counting can be as sensitive as ion peak
intensities in terms of detection range while retaining linearity
(12–20). A number of groups have proposed various types of
normalized scores based on transformed spectral counts,
including methods that explore weighted scoring by peptide
match score (16), normalization by the number of potential
peptide matches (17), peptide sequence length, overall ex-
periment-wide abundance (18), or incorporation of the prob-
ability of identification into counting (19). Standard statistical
tests could also be applied on the raw/transformed counts to
analyze the protein expression data (20–22).

Despite published examples of using spectral counting in
proteomics, there is a lack of computational and statistical
methods for analyzing this type of data that are as well es-
tablished as the counterparts in gene expression data. These
include differential expression analysis such as significance
analysis of microarray data (SAM) (23), clustering and classi-
fication, and network analysis (24–26). Most studies demon-
strating the use of spectral counts have resorted to data-
driven corrections of conventional signal-to-noise ratio
statistics such as mean-variance model adjustment (27) and
detection rate adjustment (20). These adjustments are primar-
ily used to correct the bias in the statistic that favors large
differences in highly abundant proteins. However, the techni-
cal challenges for modeling quantitative proteomics data are
distinct in their own right. First neither ion peak intensity
extraction nor spectral counting generates data that can eas-
ily be modeled with standard distributional assumptions as
with gene expression data sets. This increases the burden of
finding the appropriate statistical model and estimation meth-
ods. Second because of the limited amount of sample mate-
rial available or MS instrument availability considerations, com-
parative profiling of two or more distinct biological conditions is
rarely performed in sufficient number of replicates or samples.
Lacking the opportunity to observe consistent evidence over
multiple samples in homogeneous biological condition makes it
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difficult to perform robust estimation and inference on model
parameters. Unless there are more than four or five replicates
generated for each condition permutation-based methods for
generating reference distributions will not work well.

Here we propose a general statistical framework for ana-
lyzing spectral count data. This method addresses the issue
of the appropriate probability distribution for count data as
well as tackles the paucity of information due to the absence
of replicate samples. The model is based on the use of hier-
archical Bayes estimation of generalized linear mixed effects
model (GLMM)1 (28) where the spectral counts are considered
to be random numbers from a large population of proteins,
and hence the model parameters are directly shared within
replicates and across proteins. This comprehensive modeling
strategy is bound to be more powerful than calculating the
signal-to-noise ratio type of differential expression test statis-
tics. These are performed on a per protein basis and refer-
enced to an approximate null distribution especially when the
number of replicates is limited.

This report is organized as follows. First the overall model-
ing framework and its applicability to a wide variety of exper-
imental designs is explained, and its advantages are dis-
cussed. Then the performance of the proposed method
using synthetic data sets is illustrated with a comparison
with methods using signal-to-noise ratio statistics. The
comparison focuses on the power to detect differentially
expressed proteins at fixed error rates and the property of
the detected proteins such as abundance. For a real data
analysis example, the experimental data set taken from
Pavelka et al. (27) comparing proteome profiles of a yeast
strain at two different phases in cell growth is reanalyzed.
The enrichment analysis compares the biological functions
highlighted by the protein signature detected by the pro-
posed method with the conventional signal-to-noise
method, and related computational and statistical issues
are discussed. Finally using the published data set of a
system-wide survey of the mouse proteome in congestive
heart failure (29) the proposed methodology is demon-
strated in the presence of experimental design factors. Fur-
ther discussion of potential improvements on the model and
possible extensions concludes the report.

EXPERIMENTAL PROCEDURES

Experimental Data Sets

Three data sets were obtained from two published studies (27, 29).
In all cases, no reanalysis of the raw MS data was performed in this
work, i.e. the spectral count data were taken as reported in the
supplemental materials provided in those publications. A brief de-
scription of the data sets is given below.

Yeast Control Data Set—First Pavelka et al. (27) provided a data set
containing four biological replicates of BY4741 strain of yeast grown
in media enriched with different nitrogen isotopes (14N and 15N).
Growing yeast in these two different media is not expected to result
in differences in protein expression between these two samples. For
each growth condition and each replicate, the LC-MS/MS analysis
was performed on 500 �g of protein extract. Proteins were TCA-
precipitated, urea-denatured, reduced, alkylated, and digested with
Lys-C followed by trypsin digestion. The resulting peptide mixtures
were separated using a 12-step multidimensional protein identifica-
tion technology analysis. MS/MS spectra were collected on an LTQ
linear ion trap mass spectrometer (ThermoFinnigan) equipped with a
nano-LC electrospray ionization source. Each full MS scan was fol-
lowed by five MS/MS scans using data-dependent acquisition with
the dynamic exclusion option specified as follows: repeat count, 1;
repeat duration, 30 s; exclusion duration, 300 s. The peak lists were
extracted from RAW files using the extract_ms.exe program with
default parameter settings (consecutive scans acquired on the same
peptide ion grouped into a single .dta file). The resulting peak lists
were searched using SEQUEST against a yeast protein sequence
database appended with decoy sequences. Protein level summaries
were generated using DTASelect with SEQUEST score thresholds set
to achieve a less than 1% false protein identification error rate based
on decoy counts. The spectral count for each protein was calculated
as the number of .dta files assigned a peptide from that protein with
high SEQUEST scores passing DTASelect filtering criteria. In total, the
data set contains four technical replicates for each of the two growth
conditions (light and heavy isotope media) with 1307 proteins identi-
fied at least once in the eight analyses. This data set was used as a
control data set for simulation studies.

Yeast Comparative Growth Data Set—The second data set was
also taken from Pavelka et al. (27) and represents four biological
replicates of the same BY4741 yeast strain grown up to two different
stages of cell growth, namely log and stationary phases. MS/MS spec-
tra were collected and processed as described above. This data set
contains 1856 unique proteins identified in any of the eight experiments
(four replicates for each of the two growth phases). This data set
exhibits a significant difference in protein expression levels between the
log and stationary phase and was used in this study for the comparison
of functional annotation in a real data analysis scenario.

Mouse Data Set—The third data set was taken from a published
mouse study on the causative effect of impaired calcium ion handling
that leads to dilated cardiomyopathy and eventual death (29). Or-
ganellar protein fractions (mitochondrial, microsomal, and cytosolic)
were extracted from pooled ventricle tissue and separated using
centrifugation. 100 �g of protein extract was used in each LC-MS/MS
experiment, TCA-precipitated, denatured, reduced, alkylated, and
digested sequentially with Lys-C and trypsin. The peptide mixtures
were separated using a 12-step multidimensional protein identifica-
tion technology analysis followed by MS/MS sequencing on an LTQ
mass spectrometer equipped with an electrospray ion source. Pre-
cursor ions were subjected to data-dependent sequencing with dy-
namic exclusion enabled (one scan, no repeats, exclude for 90 s). The
peak lists (.dta files) were extracted from RAW instrument files using
extract_ms.exe with default parameter settings. The peak lists were
searched using SEQUEST, and the search results were processed
using the STATQUEST analysis program. The spectral count for each
protein was calculated as the number of .dta files assigned a peptide
from that protein with high confidence. The spectral count profiles of
6190 proteins in phospholamban mutant PLN R9C and wild type mice
were compared at three time points in cytosol, microsome, and
mitochondria. For each combination of time point and organelle, the
spectral count profiles of the mutant and the wild type were paired,
adding up to 18 spectral count profiles in total.

1 The abbreviations used are: GLMM, generalized linear mixed
effects model; FDR, false discovery rates; PLGEM, power law global
error model; PLN, phospholamban; DAVID, database for annotation,
visualization, and integrated discovery; GO, gene ontology; StN, sig-
nal to noise.
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Simulation Data Sets

Using the first yeast data set described above, two groups of
synthetic data sets were generated. Because the original cell cultures
were grown in 14N- and 15N-media and then mixed into four pools at
a 1:1 ratio before LC-MS/MS analysis, in effect these data had no real
signals between the two groups in all proteins. To create synthetic
data sets with non-trivial differential expression, the rows of the data
matrix (proteins) were shuffled to ensure that the distribution of high
and low abundance proteins is uniform across the rows. Then the first
200 proteins in the matrix were selected, and 2-fold changes were
inserted to the selected proteins, generating the first synthetic data
set (F2). The second synthetic data set (F4) was generated by insert-
ing 4-fold changes to the selected proteins. Inserting a fixed -fold
change has been achieved on a protein-by-protein basis. Counts in
the replicates grown in 14N-medium were multiplied by the -fold
change if the mean count in the four replicates in 14N-medium was
greater than the mean count in 15N-medium and vice versa. If a count
in the group with smaller mean was 0, a randomly generated Poisson
random count was inserted with mean equal to the -fold change itself
on the opposite group to bypass the null effect of multiplying 0 by the
-fold change.

To investigate the effect of the number of replicates on the power
of detecting differentially expressed proteins, additional variants of
the two data sets described above were derived by varying the
number of replicates used: F2-1rep (taking first replicate for each
condition), F2-2rep (taking the first two replicates), and F2-3rep (tak-
ing the first three replicates). The same was performed with the 4-fold
change data set to form subsets F4-1rep, F4-2rep, and F4-3rep,
respectively. For the sake of consistency, the original data with all four
replicates for each condition (growth media) were named F2-4rep and
F4-4rep, respectively (data provided in supplemental Table 1). In
addition, the aggregated counts across the four replicates within each
condition were computed and saved as two columns of count sums
(F2-sum and F4-sum). This last variant was generated to understand
whether generating replicates helps by adding more signals to the
total signal or by providing any direct information on the variability
across replicates.

Functional Annotation

Interpretation of data was assisted by two annotation tools,
FATIGO� (30) and DAVID (31). These tools were used to assign
significantly enriched functional categories to a selected set of pro-
teins. FATIGO� takes the set of target proteins and the set of back-
ground proteins, compares the enrichment of each functional cate-
gory in the two sets, and reports the statistical significance of
enriched functions in the former list. DAVID performs essentially the
same operation with the option of specifying the background proteins
as the complement of the target protein list among all proteins iden-
tified in the particular experiment or as the complement in the pop-
ulation of all known proteins in the public databases. FATIGO� was
utilized wherever the “background” list was well defined, and DAVID
was used when it was otherwise.

Bayes Factors

A quantity called Bayes factor (32) was used as an indicator of
statistical significance of the model parameters, e.g. regression co-
efficients for differential expression. Bayes factors are essentially
likelihood ratios of two competing statistical models where the likeli-
hood of each competing model is averaged over all possible param-
eter values by numerical integration. Suppose that we observe data X,
and we have two models M1 and M2 that can describe the observa-
tion of X. For each model, we have parameters �1 and �2, respec-

tively. Then for i � 1 and i � 2, one can calculate the averaged
likelihood.

p�X�Mi� ��p�X,�i�Mi�d�i ��p��i�Mi�p�X��i,Mi�d�i

(Eq. 1)

The Bayes factor is now defined as the ratio of the two averaged
likelihoods.

B�X� �
p�X�M2�

p�X�M1�
�

�p��2�M2�p�X��2,M2�d�2

�p��1�M1�p�X��1,M1�d�1

(Eq. 2)

A large Bayes factor supports the second model M2 over M1 for
describing the data X. If M2 is a model with a differential expression
coefficient and M1 is a model without it, a large B indicates statisti-
cally significant differential expression.

False Discovery Rate (FDR) Estimation

The rate of false positives in the selection of differentially expressed
proteins based on Bayes factors can be estimated using a mixture
model-based method of local FDR control (33, 34). Given a log
transformed Bayes factor B, the local FDR (denoted as fdr) can be
calculated according to Equation 3,

fdr�B� �
�0p0�B�

�0p0�B� � �1p1�B�
(Eq. 3)

where p0(B) and p1(B) are the proteome-wide distribution of Bayes
factor for proteins with trivial and significant differential expression,
respectively, and �0 and �1 are the corresponding proportion of
proteins. Using this method, one can choose a minimum threshold
Bayes factor B* that controls the global FDR at a target rate of �5%
as follows.

FDR�B*� �

�
B�B*

�0p0�B�dB

�
B�B*

�0p0�B� � �1p1�B�dB

(Eq. 4)

RESULTS

Statistical Model for Spectral Counts—For a data set with n
samples and p proteins, a model-based method is proposed
to select proteins whose absolute abundance changes by a
statistically significant amount under different biological con-
ditions. The MS/MS spectral counts of a protein are modeled
as observations from the Poisson distribution. This represents
a natural choice reflecting the stochastic nature of the peptide
sampling process by the mass spectrometer. Similar assump-
tions are often made in related applications, e.g. in the serial
analysis of gene expression (SAGE) approach (35). The ex-
pected counts are modeled as a linear function of normalizing
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factors, treatment or disease status, and other experimental
information. Unlike in gene expression data sets, typical pro-
teomics data sets have data over only a few replicates or
samples, and as a result, fitting a Poisson regression model
for individual proteins separately is often not feasible. The
limited sample size can be as restrictive as the example in Fig.
1A, which shows the partial spectral count table for a data set
with n � 2.

To address the challenge of small numbers of replicates,
we utilize a statistical methodology called hierarchical
Bayes that pools the statistical information on the regres-
sion models across proteins. Considering each protein as a
member of the population of all identified proteins, we
model the regression parameters for each protein as ran-
dom effects. The random effect terms are the coefficients
shared by the replicates within the same protein, allowing
one to account for the intrasubject correlation of the data.
The random effect terms for the base-line abundance of a
particular protein are shared by every sample, and those for
the treatment or disease status are shared by the replicates
within the same condition.

More specifically, the analysis starts with the observed
spectral count data matrix X � [Xij]. Assuming that Xij are
observations from a Poisson distribution with expected count
�ij for i � 1, 2, …, p, the expected count matrix is expressed
as a GLMM,

log��ij� � log�Li� � log�Nj� � c0 � b0i � b1iTj (Eq. 5)

where �ij is the expected count for protein i in replicate j, Li is
the sequence length of protein i, Nj is the normalizing constant
of replicate j, c0 is the base-line abundance, and b0i and b1i are
the protein-specific abundance and differential expression pa-
rameters for protein i. Most importantly, the treatment effect is
defined as follows: Tj � 1 if replicate j is in treatment and Tj � 0
otherwise. The first term on the right-hand side of Equation
5 is a fixed normalizing term often referred to as the “offset”
in regression analysis. The protein sequence length Li ad-
justs for the bias in the count for longer proteins, and the
normalizing constant Nj of replicates adjusts for the overall
abundance of each replicate or sample (18). For Nj, we use
the average count across all identified proteins in sample j
to reflect the total abundance of all proteins identified in
each MS/MS experiment.

If the treatment effect b1i is not a statistically significant
term, then the model in Equation 5 reduces to the following.

log��ij� � log�Li� � log�Nj� � c0 � b0i (Eq. 6)

The full model (MF) is denoted in Equation 5, and the reduced
model (MR) is denoted in Equation 6. If the evidence from the
spectral count data supports MF over MR, the protein is
considered as differentially expressed. If the protein is indeed
differentially expressed, comparing the goodness of fit by MF

and MR leads to the selection of differentially expressed pro-
teins. This is because the model with the differential expres-
sion parameter fits the data better than the model without it.

FIG. 1. Generalized linear mixed
model with hierarchical Bayes for
the analysis of spectral count data.
The expected counts are normalized
by the sequence length of the protein i
and the normalizing constant equiva-
lent to the overall abundance of each
MS/MS experiment j. In the main text,
the sequence length and the normaliz-
ing constant are denoted by Li and Nj,
respectively. c0 is the base-line abun-
dance, and b0i and b1i are the protein-
specific abundance and differential ex-
pression parameters for protein i.
Experiment Design Factors may include
any discrete levels by which the ex-
pected counts may vary, e.g. time
points, subcellular localization, etc. A, a
subset of the spectral count data ma-
trix without design factors and repli-
cates. B, a subset of the spectral count
data matrix with time course and sub-
cellular localization factors. wk, weeks.
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The exact protein selection method will be described in the
next section more precisely.

Given the model setup, the probability distribution for the
model parameters are specified as follows. Because MR is a
nested model of MF, it suffices to write the model specifica-
tion for MF. Although the expected spectral counts are ex-
pressed in the form of a GLMM, the connection across the
model parameters in different proteins has yet to be estab-
lished. To this end, assume the following.

likelihood: Xij � Poisson��ij� where �ij is a linear function of c0, b0i, b1i

prior: c0 � N�0,�c
2�, b0i � N�0,�0

2�, b1i � N�0,�1
2� (Eq. 7)

hyperprior: 1/�0
2 � G��0,�0�,1/�1

2 � G��1,�1�

This framework is called hierarchical Bayes because the set of
parameters {b0i} and {b1i} for all proteins i � 1, 2, …, p are
specified as random variables from the Gaussian distribution
with inverse �-distributed variance parameters. Inverse � dis-
tribution refers to the distribution of the reciprocal of the �

random variable with certain shape and scale parameters.
Also it is a “conjugate” prior distribution in the sense that the
posterior distribution is also an inverse � distribution. The
hierarchical structure in the model specification is known to
result in shrinkage estimates that have better statistical
properties. This provides the basis for more robust statisti-
cal estimation and inference procedures by pooling statis-
tical information across all identified proteins (24), which
tends to be helpful in small sample problems. The good
property of information pooling has been a well established
practice in gene expression data analysis (24, 36). Model
parameters are estimated by sample averages of the pos-
terior output from Markov chain Monte Carlo (26, 37) (see
supplemental methods for more specific details on the es-
timation procedure).

Tests for Differential Expression and Multiple Testing Cor-
rection—The strategy for determining whether each protein is
differentially expressed between the two conditions is
straightforward. For each protein, the Bayes factor (32) was
calculated as follows.

Bi �
p�Xi�MF�

p�Xi�MR�
(Eq. 8)

In Equation 8, the numerator and the denominator are essen-
tially the likelihoods of observing the counts under MF and
MR, respectively. Thus if this ratio is large, the data support
the model with the differential expression parameters over the
model without, providing probabilistic evidence that the pro-
tein is differentially expressed (see “Experimental Proce-
dures” for details).

Conventionally a Bayes factor greater than 10 suggests a
strong evidence for the model in the numerator, and a Bayes
factor greater than 30 suggests a very strong evidence for the
same model (32). However, these conventional cutoffs may
not work efficiently in the high throughput data sets, and

appropriate cutoffs have to be chosen in a way that the overall
global error is controlled to a desired level. In this work, the
distribution of Bayes factors with significant differential ex-
pression is discriminated from that without by mixture mod-
eling (see “Experimental Procedures” for details).

Solely applying the Bayes factor threshold, however, does
have its own potential drawbacks when there are low quality
replicates. Empirically the Bayes factor can be overestimated
because of the heterogeneity of counts across replicates
rather than the real differential expression. This is especially
true for extremely high abundance proteins. In this case, the
averaged likelihood in the model without the differential ex-
pression parameter (MR) tends to be penalized more than the
model with the parameter (MF). To address this issue, the
selected proteins were required to have a -fold change of no
less than 50%. In the subsequent data analysis, of the pro-
teins filtered by this step a small number were found to be in
the high abundance range.

Simulation Study—To assess the performance of the pro-
posed method, it was compared with the conventional signal-
to-noise ratio statistics coupled with FDR control. Particularly
the variance adjustment of t-statistics by the power law global
error model (PLGEM) was reported to have improved the
detection of differentially expressed proteins in Pavelka et al.
(27); hence that method (PLGEM-StN) was used in place of
the conventional t-statistic.

The analysis was performed using a set of synthetic data
sets containing 200 proteins with either 2- or 4-fold change
embedded in the much large list of proteins identified in the
comparative analysis of two biological replicates of yeast
(grown in 14N- and 15N-media) with no differential expression
expected between the replicates (see “Experimental Proce-
dures” for details). The analysis was repeated for data sets
containing a varying number of replicates for each of the two
conditions (between one and four replicates). The raw spec-
tral counts were converted into normalized spectral abun-
dance factors (27), and the PLGEM-StN model of Pavelka et
al. (27) was used to calculate moderated t-statistics and their
associated FDR-adjusted p values. The proteins were se-
lected using various cutoffs to examine the power over a wide
range of FDRs.

Using the outputs from the two methods, PLGEM-StN and
the hierarchical Bayes method (referred to as QSpec from
here on) presented here, the comparisons were made based
on the power of detection at a fixed FDR. Importantly because
the signal-to-noise ratio statistics require the calculation of
variance, methods like PLGEM-StN (27) cannot be applied to
data sets that have less than three replicates. Therefore the
PLGEM-StN analysis was performed for 2- and 4-fold data
sets with three or four replicates only, F2-3rep, F2-4rep, F4-
3rep, and F4-4rep, respectively. Because the QSpec model
does not have this limitation, it was applied on all data sets.

Fig. 2 illustrates the comparison using the synthetic data
sets with 2-fold change (Fig. 2, A and B) and 4-fold change
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(Fig. 2, C and D), respectively. Several trends are apparent.
With both methods, PLGEM-StN and QSpec, increasing the
number of replicates leads to the selection of a higher number
of differentially expressed proteins. Also with the number of
replicates fixed, both models are more successful at detecting
proteins having higher -fold change (compare corresponding
4- versus 2-fold curves for QSpec and PLGEM-StN models,
Fig. 2, A versus C and B versus D, respectively). Comparing
the two methods with each other when applied to the same
data set, QSpec outperforms the PLGEM-StN across the
entire range of FDR values (compare Fig. 2, A versus B and C
versus D, for 2- and 4-fold data, respectively). For example, in
the F2-4rep data set, QSpec selects 50 proteins (25%) at an
FDR of 10%, whereas PLGEM-StN selects only 24 proteins
(12.5%). In the F4-4rep data set, QSpec collects 193 proteins
(96.5%) at the same FDR level, whereas the other method
selects 167 (83.5%). Furthermore the QSpec protein selection
from the single replicate data sets, F2-1rep, performs no
worse than the PLGEM-StN selection from the three-replicate
F2-3rep data set. Similarly the QSpec results in the two-
replicate F4-2rep data set are equivalent to the PLGEM-StN
results in the three-replicate F4-3rep data.

As an important feature of the model, QSpec performed
equally well when applied to the aggregate data sets, F2-sum
and F4-sum (with spectral counts from all replicates summed
and represented as a single number), as with the original
four-replicate F2-4rep and F4-4rep data sets (data not

shown). This can be explained by the fact that all the infor-
mation used to fit the Poisson model is summarized in the
count sum (sufficient statistic). More precisely, the Poisson
model assumes that the expected count is equal to the vari-
ability of the counts (variance) due to its parameterization, so
the model does not have a separate variance parameter. The
consequences of this inherent assumption are further dis-
cussed later.

Because it was found that the real signals accumulate
through replicates, the properties of proteins that could not be
detected as differentially expressed in the synthetic data sets
with only one or two replicates were investigated. One would
expect that the area where the gain in statistical power due to
replicates is most significant is among low abundance pro-
teins. The ratio of biological signal to the technical noise in low
abundance proteins tends to be too low to be accurately
characterized using spectral counts in a single shotgun pro-
teomics experiment. Fig. 3 shows the proportion of proteins
selected by QSpec among the 200 proteins with spiked sig-
nals in the synthetic data sets. Indeed the protein selection
achieves greater power in the low abundance range as more
replicates are collected and is especially noticeable in the
case of proteins with 2-fold change (Fig. 3A).

Comparative Growth Analysis—With the evidence that
QSpec outperforms the method of conventional signal-to-
noise ratio statistics in simulated settings, the data set from
the comparative growth phase analysis (27) was reanalyzed.

FIG. 2. The number of true positive
proteins (from the total of 200) iden-
tified by QSpec and PLGEM-StN at
fixed FDRs in synthetic data sets
with known -fold changes and using
different number of replicates. A,
QSpec, 2-fold change. B, PLGEM-StN,
2-fold change. C, QSpec, 4-fold
change. D, PLGEM-StN, 4-fold change.
rep, replicate(s).
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Before applying QSpec, the distributions of spectral counts in
each replicate were analyzed for homogeneity. The spectral
counts for one of the replicates (LP3) were vastly higher in
many midabundance proteins and lower in low and high
abundance proteins relative to other replicates (see supple-
mental Fig. 1). The degree to which this replicate differed
from the others was deemed more than what can be cor-
rected by normalization procedures. For this reason, this
replicate was expected to introduce unnecessary heteroge-
neity in the group logarithmic phase. Therefore, it was re-
moved, and the analysis proceeded with the total of seven
replicates. The final data set contained 1508 proteins in-
cluding 10 contaminants that were excluded from the sub-
sequent analysis.

Analysis with QSpec resulted in the selection of 298 pro-
teins with a Bayes factor above 9.8 (see supplemental Table 2
for details of the analysis). Considering all proteins satisfying
this criterion as differentially expressed would introduce on
average a 5% or less FDR according to the mixture model-
based error estimation (see supplemental Fig. 2). Of the 298
proteins, 121 were overexpressed in the stationary phase,
and 177 were overexpressed in the log phase. The GO anno-
tations and their significance measures were given by
FATIGO�, and the most significant terms (FDR-corrected p
value less than 0.05) located in a reasonably high hierarchy of
the GO are shown in Fig. 4A (also see supplemental Table 3
for the entire enrichment analysis results). For comparison,
Fig. 4B shows the results of the original analysis presented in
Pavelka et al. (27).

It should be noted that in that work the PLGEM-StN method
was applied not to the entire data set of all protein identifica-
tions but to the selected subset of 511 proteins that were
identified in both the logarithmic and stationary phases. Sub-
sequently the set of 100 proteins with the highest signal-to-
noise ratios was selected and categorized using gene ontol-
ogy of which 34 were overexpressed in the stationary phase
and the remaining 66 were overexpressed in the log phase.
Among those 100 proteins, 82 were also in the list of 298

proteins selected by QSpec; this implies that the top list from
Pavelka et al. (27) was almost completely recovered by QSpec.

Fig. 4 shows that almost all statistically enriched functions
reported in the original study were also highlighted in this
analysis. Biological processes such as translation and cellular
biosynthetic process are the common top significant terms in
both QSpec and PLGEM-StN lists of proteins overexpressed
in the log phase. Notably the multiple testing-corrected p
values were much lower in the QSpec annotation table (higher
significance), giving a high confidence explanation for the
slowdown of biosynthesis machinery in the stationary phase
of cell growth. Furthermore a large number of terms selected
only in the QSpec annotation were found to be enriched in the
list of proteins overexpressed in the stationary phase, includ-
ing (especially glycolysis-related) catabolism, cellular respira-
tion, and oxidoreductase activity. This finding extends the
biological interpretation beyond what was given in Pavelka et
al. (27): as the cell growth process slows down in the station-
ary phase, the focus of molecular activities shifts to breaking
down large molecules into smaller units and releasing energy,
potentially creating energy required for chemical reactions in
anabolism or more generally the maintenance of the cell.

The overlap of the lists of top differentially expressed pro-
teins selected by QSpec and by PLGEM-StN analysis of the
entire list of 1508 proteins was also examined. Using the R
implementation by Pavelka et al. (27) (plgem package avail-
able from BioConductor), PLGEM-StN selected 319 proteins
with the cutoff FDR-adjusted p value less than 0.05. The
overlap with the QSpec-selected list (298 proteins) was only
172 proteins with most of the discrepancies appearing in the
mid- and low abundance proteins. However, subsequent en-
richment analysis of these 319 proteins demonstrated diluted
significance of relevant functional terms compared with those
selected by QSpec and also by PLGEM-StN with 511 proteins
(see supplemental Table 3).

Accounting for Experimental Design—Thus far the discus-
sion has been limited to two-group comparisons. However,
the model can be extended to more flexible study designs,

FIG. 3. The proportion of true posi-
tive proteins (sensitivity of identifica-
tion) identified by QSpec in the syn-
thetic data sets with 2-fold change (A)
and 4-fold change (B) across the
range of protein abundance. (x–y) im-
plies counts ranging from x to y. Rep,
replicate.
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FIG. 4. Venn diagram of the selected proteins from QSpec with all 1508 proteins and PLGEM-StN with the subset of 511 proteins (27).
Tables A and B correspond to the significantly enriched gene ontology terms in the protein list identified by QSpec and PLGEM-StN, respectively.
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including designs studying subcellular localization (29). Fig.
1B shows a part of an example data matrix of spectral
counts of the proteins identified in different cellular com-
partments at two different time points. The focus here was
to investigate whether differentially expressed proteins were
identified in specific cellular compartments or at particular
time points.

These extra factors (localization and time course) can be
coded into the model as additive main effect predictors and
additive interaction predictors of expected count as seen in
Equation 9,

log��ij� � log�Li� � log�Nj� � c0 � b0i � b1iTj

� b�2i 	Design Factors
 � b�3i 	Design Factors
 � Tj (Eq. 9)

where b�2i and b�3i are the coefficient vectors for the main
effect and interaction effect terms corresponding to the
design factors. Assuming that the study design factors have
a finite number of levels, e.g. two cellular compartments or
two time points as in Fig. 1B, a total of K factors can be
coded in the standard analysis of variance form as follows.
Let MF be the full model with all three sets of terms, i.e. 1)
differential expression (treatment effect) b1i; 2) main effects of
design factors b�2i; and 3) interaction effects of design factors
and differential expression b�3i. For k � 1, 2, …, K, also let
MR-k be the reduced model with the interaction effects be-
tween the kth factor and differential expression excluded from
the full model, i.e. with every term above preserved but the
coefficients for kth factor in b�3i.

Testing for the differential expression specific to some lev-
els in design factors can be done equivalently using Bayes
factors. With K models now to compare with the full model, K
Bayes factors are calculated using Equation 8 with the de-
nominator replaced by those averaged likelihoods of reduced
models. That is, for k � 1, 2, …, K, Bayes factor can be
calculated according to Equation 10.

Bi
k �

p�Xi�MF�

p�Xi�MR-k�
(Eq. 10)

By comparing the averaged likelihoods in the models with and
without the interaction effects between the differential expres-
sion and the design factors, one can apply the same minimal
threshold filter by Bayes factor. This leads to the selection of
proteins whose differential expression is specific to certain
cellular compartments or time points in the experiment.

Differential Expression with Time Course and Subcellular
Localization Factors—To demonstrate the use of the pro-
posed methodology in the presence of experimental design
factors, it was applied to the mouse data generated for the
aforementioned PLN R9C mutant model. To identify proteins
over- or underexpressed to varying degrees over time in
different organelles, the full model and three reduced models
have been fitted with the time factors nested within each

organelle as seen in Equations 11–14,

MF: log��ij� � log�Li� � log�Nj� � c0 � b0i � b1iTj � b2i
microCj

� b2i
mitoCj � b2i

time coursePj � 	b3i
microCjTj � b3i

mitoCjTj � b3i
cyto-timePjTj

� b3i
micro-timePjTj � b3i

mito-timePjTj
 (Eq. 11)

MR-(Cyto-Time): log��ij� � log�Li� � log�Nj� � c0 � b0i � b1iTj

� b2i
microCj � b2i

mitoCj � b2i
time coursePj � 	b3i

microCjTj � b3i
mitoCjTj

� b3i
micro-timePjTj � b3i

mito-timePjTj
 (Eq. 12)

MR-(Micro-Time): log��ij� � log�Li� � log�Nj� � c0 � b0i � b1iTj

� b2i
microCj � b2i

mitoCj � b2i
time coursePj � 	b3i

microCjTj � b3i
mitoCjTj

� b3i
cyto-timePjTj � b3i

mito-timePjTj
 (Eq. 13)

MR-(Mito-Time): log��ij� � log�Li� � log�Nj� � c0 � b0i � b1iTj

� b2i
microCj � b2i

mitoCj � b2i
time coursePj � 	b3i

microCjTj � b3i
mitoCjTj

� b3i
cyto-timePjTj � b3i

micro-timePjTj
 (Eq. 14)

where Pj and Cj are indicators for organelle and time course.
Then the Bayes factors comparing MF against the reduced
models MR-(Cyto-Time), MR-(Micro-Time), and MR-(Mito-Time) ef-
fectively test the significance of differential expression spe-
cific to time course effects within each organelle (cytosol,
microsome, and mitochondria), respectively.

Applying the same criterion of Bayes factor greater than or
equal to 10, which gives an approximate FDR of 5% accord-
ing to the mixture model-based assessment, 444 differentially
regulated proteins between mutant and wild type mice in
specific time points within any of the three organelles were
identified. Subsets of the 444 proteins pertaining to a partic-
ular change in expression (up/down-regulation), time point (8,
16, and 24 weeks), and organelle (cytosol, microsome, and
mitochondria) were subjected to the functional annotation tool
DAVID. Fig. 5A shows the clusters of proteins that were up-
and down-regulated in the mutants at specific time points in
each organelle. Fig. 5B shows a heat map of differential
expression between each pair of mutant and wild type. In this
figure, overexpression in PLN R9C mutant is highlighted in
yellow, and underexpression is highlighted in blue.

Overall mitochondrial proteins concerned with muscle de-
velopment and calcium ion binding showed the most drastic
changes with up- and down-regulation in the earlier two time
points (8 and 16 weeks). A good number of proteins involved
with antioxidant activity and fatty acid metabolism were un-
derexpressed in week 8 consistent with biological interpreta-
tion in the original study (29). At the organelle level, cytoskel-
eton organization- and actin cytoskeleton-related proteins
were consistently overexpressed across all time points in
cytosol. A cluster composed of endoplasmic reticulum target-
ing sequence, response to protein stimulus, and protein un-
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FIG. 5. Selected proteins and functional annotation in the mouse mutant model data set. A, clustered time course graphs by time points
and organelles. Time points (T1, T2, and T3) correspond to week 8, 16, and 24, respectively. B, heat map of differential expression in the nine
categories by time point and organelle. Yellow indicates overexpression in the PLN R9C mutant relative to the wild type, and blue indicates
underexpression. Gene ontology terms with FDR-adjusted p value less than 0.05 are reported. dw, down; w, weeks.

Significance Analysis of Spectral Count Data in Proteomics

2382 Molecular & Cellular Proteomics 7.12



folding protein was highlighted in the up-regulated protein list
in mitochondria at week 8. Many of the proteins in this list also
appeared in the up-regulated list at week 16 with functions
such as muscle protein, contractile fiber, muscle contraction,
actin filament depolymerization, and negative regulation of
cell organization. These same functions remained significant
at week 24 in mitochondria. In the microsome, glucose me-
tabolism was enriched in the down-regulated protein list con-
sistent with antioxidant activities. Oxidative phosphorylation
and ion transporter activity remained enriched across the time
points in the up-regulated list in this organelle as well as in
others. In summary, up-regulated calcium ion binding, cy-
toskeleton organization, and response to intracellular stress
seem to have a strong association with the functional impair-
ment on the cardiac ventricular muscle (see supplemental
Table 4 for the selected proteins and their functional
annotations).

DISCUSSION AND FUTURE WORK

At present, many studies that utilize spectral counting for
relative quantification still rely on simple data analysis meth-
ods such as filtering based on -fold change ratios. Such an
approach selects proteins based solely on the effect size
without incorporating the variability. Therefore it may intro-
duce a number of false positive calls in low abundance pro-
teins where a small difference may result in artificially large
-fold change ratios. More recently, a method has been de-
scribed that improves the conventional signal-to-noise ratio
statistics by adjusting the variance terms based on the anal-
ysis of the spectral counts across multiple replicates (27). The
limiting factor of this method is that it requires a sufficient
number of replicates. Because the variability is estimated
separately for each protein, the estimates are likely to be
coarse when the source of the variance calculation is merely
a few data points. Moreover the limited number of or total
absence of replicates makes it difficult to find a robust method
to assign significance to these statistics and reasonably con-
trol global false discovery rates. For example, in the popular
method of referencing observed statistics to the permutation
distribution, the number of possible permutations is 70 at
most when there are four replicates in each comparison
group, which gives a low resolution permutation distribution
vulnerable to outlying observations.

The method presented here has several advantages. It can
be applied to a variety of situations including the comparative
experiments that feature no or a few numbers of replicates
within each biological condition. In contrast to other methods,
by assuming the equal mean and variance relationship, the
Poisson model of QSpec faces no issues with the absence of
replicates. Because the protein-specific parameters are mod-
eled as random numbers from a common population distri-
bution, the method effectively pools statistical information
needed for robust estimation (24) and provides a simple way
to filter proteins based on a well established quantity known

as Bayes factor (32) with an option of model-based FDR
control.

The method can also be extended to more complex exper-
imental designs where proteins are first separated into many
fractions. In this instance, one can insert protein fraction-
specific parameters in the model to account for the initial
separation. In any case, hierarchical Bayes estimation will
effectively pool the statistical information across the proteins
from different fractions for more robust parameter estimations
and attempt to overcome the paucity of information because
of the small sample sizes. Another advantage of the method is
the flexibility for possible extensions to more complicated
data structures. It was demonstrated in this work that the
Poisson model can easily incorporate design factors in anal-
ysis of variance form, including time course and subcellular
localization factors. This class of GLMMs with hierarchical
Bayes estimation can be applied to even more general data
analysis scenarios. These include longitudinal profiling study
without comparative design (no differential expression), rep-
licate analysis where the reproducibility of quantitation is
studied by comparing the within and between replicate vari-
ability, and protein-protein interaction study with a large num-
ber of pulldown experiments where the strength of interaction
between pairs of proteins is validated based on the number of
spectra corresponding to the interaction partners.

Yet there remain a number of areas for improvements in this
modeling strategy. One well known problem with Poisson
models is the potential violation of the assumption of the
equal mean-variance relationship also termed the overdisper-
sion problem. In data sets with many replicates, for instance,
the observed data can include heterogeneous counts across
replicates even within the same biological condition. In that
case, the Poisson model with conventional assumptions may
not work as efficiently. Furthermore using this model aggre-
gating counts over replicates in a data set will produce largely
identical results as in the case of applying it to the same data
set but with replicates represented in it as separate experi-
ments. In effect, this observation shows the drawback of the
plain Poisson model from a different angle in that the model
does not make full use of the variability observed in the data
efficiently. Several extensions of the model are now being
investigated. In addition to using the overdispersed Poisson
model, another possibility is to use alternative distributions
such as negative binomial models replacing the Poisson
model used here. The latter model has a natural connection to
Bayesian modeling through mixture model specification.

The discussion in this work was limited to spectral counts
that were defined as the number of MS/MS spectra identified
for each protein. However, related metrics such as the num-
ber of unique peptides are likely to contain additional useful
information. Future work should involve detailed analysis of
these different protein abundance parameters and their rela-
tive performance in different applications. To this end, future
efforts should focus on designing multivariate statistical ap-
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proaches that can effectively combine different abundance
metrics leading to improved statistical power of detecting
differential proteins. Furthermore such work should examine
the effects of various instrument control settings on the ac-
curacy of spectrum counting-based quantification.

Finally the protein inference problem of shotgun proteomics
should not be overlooked because it also affects quantifica-
tion (38). Peptides whose sequence is present in multiple
proteins often cannot be unambiguously assigned to a par-
ticular protein or protein group in the protein summary file.
The spectral counts for peptides shared among multiple pro-
teins or protein isoforms should be appropriately weighted
when computing the spectral count for each protein in a
method similar to apportioning the probability of a peptide
among all its corresponding proteins via peptide-protein
weights when computing protein probabilities in Protein-
Prophet (39). For example, for a peptide identified from n
MS/MS spectra and shared between two distinguishable pro-
teins, A and B, its contribution to the spectral count of protein
A could be taken as n � NA

d/(NA
d � NB

d) where NA
d and NB

d are
the spectral counts of proteins A and B, respectively, deter-
mined based on distinct (non-shared) peptides only. Note that
the analysis presented in this work utilized spectral counts as
provided in the original publications. Although less of an issue
with yeast, in the mouse data set apportioning spectral counts
of shared peptides as described above should provide more
accurate protein abundance measures and thus more accu-
rate results of the protein function enrichment analysis.

CONCLUSION

A statistical framework was presented for the significance
analysis of differential expression in label-free shotgun pro-
teomics using spectral counts. The statistical methodology
developed in this work is a proteome-wide model-based as-
sessment of differential expression using GLMM equipped
with a hierarchical Bayes estimation procedure that borrows
statistical strengths across all proteins. Unlike the conven-
tional methods using ad hoc data transformation, signal-to-
noise ratio, and posthoc data-driven adjustments, the pro-
posed method is more powerful in finding differentially
expressed proteins and robust to the variation because of the
limited number of biological replicates at individual protein
levels. The model showed superior performance in terms of its
sensitivity of detection over existing methods. The real data
analysis examples also illustrated the important advantages
of handling the challenges because of the limited number of
replicates and providing flexibility of extension of the model to
more complicated study designs. It is expected that the com-
putational framework presented in this work will be useful in a
wide range of applications in label-free shotgun proteomics.
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