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Abstract

CisGenome is a software system for analyzing genome-wide chromatin immunoprecipitation 

(ChIP) data. It is designed to meet all basic needs of ChIP data analyses, including visualization, 

data normalization, peak detection, false discovery rate (FDR) computation, gene-peak 

association, and sequence and motif analysis. In addition to implementing previously published 

ChIP-chip analysis methods, the software contains new statistical methods designed specifically 

for ChIP-seq data. CisGenome has a modular design so that it supports interactive analyses 

through a graphic user interface as well as customized batch-mode computation for advanced data 

mining. A built-in browser allows visualization of array images, signals, gene structure, 

conservation, and DNA sequence and motif information. We illustrate the use of these tools by a 

comparative analysis of ChIP-chip and ChIP-seq data for the transcription factor NRSF/REST, a 

study of ChIP-seq analysis without negative control sample, and an analysis of a novel motif in 

Nanog- and Sox2-binding regions.
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INTRODUCTION

Chromatin immunoprecipitation followed by genome tiling array analysis (ChIP-chip)1-3 or 

by massively parallel sequencing (ChIP-seq)4-10 are recently developed approaches to 

study genome-wide transcriptional regulation (see Supplementary Fig. 1 online). By 

systematically identifying protein-DNA interactions of interest, studies using these 

technologies provide information on cis-regulatory circuitry underlying various cellular 

processes. The analysis of the massive and heterogeneous datasets from these studies, 

however, poses several challenges. These include effective data visualization, seamless 

connection of low-level (close to raw data) and high-level (close to biological questions) 

analysis tasks, integration of data from multiple technological platforms, and flexibility to 

customize the analysis to address specific biological questions. Although there are several 

recently developed programs11-31 that target some of the individual steps, an integrated tool 

that can satisfy all basic needs in ChIP data analyses is not yet available (see Supplementary 

Notes online).

We have developed a set of methods to meet these needs in ChIP data analyses and 

implemented them in the integrated software CisGenome (Fig. 1). CisGenome provides a 

wide range of functionalities for ChIP data analyses which can be accessed through a menu-

driven system in a graphic user interface (GUI), and the results are automatically linked to 

the CisGenome browser which is designed for data visualization. CisGenome is a standalone 

system that bench biologists can use to analyze their own data locally on personal 

computers. At the same time, most CisGenome functionalities can also be accessed in a 

command line manner. This modular design allows computational biologists to build large 

batch jobs for customized analyses on computer servers.

RESULTS

Basic functionalities of CisGenome

Data processing and binding region identification—CisGenome can detect binding 

regions (or peaks) from raw tiling array probe intensities or mapped sequence reads. For 

example, using the GUI one can directly load Affymetrix CEL and BPMAP tiling array 

data, examine raw array images to detect hybridization artifacts, normalize data across 

different arrays, and then detect binding regions (see Supplementary Fig. 2a-c online). 

CisGenome can also take as input the binding regions/peak scores obtained from other 

preprocessing programs, such as MAT11 for ChIP-chip and QuEST30 for ChIP-seq data. 

CisGenome uses TileMap12 for internal ChIP-chip peak calling and FDR estimation (see 

Supplementary Methods online).

Visualization of results—The peak signals including fold changes and summary 

statistics are reported in tables and linked to CisGenome browser. In the browser, one can 

visualize the probe-/read- level data together with gene structures, conservation scores and 

DNA sequences (Supplementary Fig. 2d). One can freely zoom in, zoom out, move left and 

right, search for genes and regions, add and delete annotation tracks. By clicking a location 

of interest, one can link to external resources such as NCBI32, UCSC33 and Ensembl34 to 
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obtain more comprehensive information. CisGenome browser also supports visualization of 

raw array images and sequence logos of motifs. The memory requirement is minimal. This 

built-in browser makes it easy and efficient to visualize millions of data points without the 

need to transfer them over the internet to web-services such as the UCSC genome browser 

which often becomes inefficient in large-scale analyses.

Statistical summaries—Through the GUI one can associate binding regions to 

neighboring genes and study statistical properties of the binding regions in relation to 

various genome annotation features. For example, one can extract the frequency of regions 

found in exons, introns, UTRs, etc., and summarize the conservation level of each individual 

binding region (Supplementary Fig. 2e).

Motif analysis—CisGenome contains many functions related to sequence and motif 

analyses. It can be used to retrieve DNA sequences on binding-regions, map transcription 

factor binding motifs to the genome, and search for novel motifs35 and cis-regulatory 

modules36. A de novo motif search may return multiple motifs. CisGenome identifies the 

functionally relevant ones by comparing the occurrence rates of the motifs in binding 

regions to those in matching genomic control regions37 (Supplementary Fig. 2e-h and 

Supplementary Methods).

Support for different species—Currently CisGenome supports human, mouse, 

Drosophila and Arabidopsis for species-dependent analyses (e.g., peak-gene association). 

Users can add support for other species (Supplementary Methods).

Modular structure—CisGenome has a modular design so that most of its functions can be 

accessed in command mode as well as from the GUI. The command mode functions can be 

conveniently embedded into users' own programs. Interfaces that allow users to link their 

own programs to CisGenome browser are provided. Interfaces that allow users to plug their 

own tools into CisGenome GUI are under developing.

Open source and user support—Download, FAQ, file formats, tutorial and user 

manual can be found in http://biogibbs.stanford.edu/~jihk/CisGenome/index.htm. 

Developing language and operating systems are discussed in Supplementary Methods 

online. We provide source codes to enable customization by users.

Processing of ChIP-seq data

CisGenome can handle data from two types of designs common in ChIP-seq experiments, 

namely, one-sample analysis where only a ChIP'd sample is sequenced5,9, and two-sample 

analysis4,6,8,10 where both a ChIP'd sample and a negative control sample are sequenced 

(see Methods and Fig. 2). In one-sample analysis, CisGenome scans genome with a sliding 

window and picks up those with read counts bigger than a user-chosen cutoff as binding 

regions. False discovery rates are estimated by modeling the read count in non-binding 

windows using a negative binomial distribution. In contrast to the constant rate assumed in 

the widely used Poisson background model, the negative binomial model allows the 

background rate of occurrence of the reads to vary across genome and to have a more 
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flexible Gamma distribution. In analyses of many datasets, the negative binomial model had 

provided much better fit to the data than the Poisson model (Fig. 2b,c). A systematic 

evaluation of the method is provided in Supplementary Data 1, Supplementary Figure 3-7 

and Supplementary Table 1-3 online.

In two-sample analysis, where a negative control sample is also available, CisGenome uses a 

conditional binomial model to identify regions in which the ChIP reads are significantly 

enriched comparing to the control reads. Windows passing a user-specified FDR cutoff are 

used to generate predicted binding regions. Both one- and two-sample analyses use the 

directionality of reads to refine peak boundaries and filter out low quality predictions. These 

are provided as two post-processing options, namely, boundary refinement and single strand 

filtering (Fig. 2d).

A comparative analysis of NRSF ChIP-chip and ChIP-seq data

To illustrate the basic functions provided by CisGenome, we analyzed whole genome ChIP-

chip and ChIP-seq datasets generated for the transcriptional repressor NRSF/REST39,40 in 

Jurkat cells (see Methods). By going through the steps shown in Supplementary Figure 2, 

the ChIP-chip analysis identified 7,114 binding regions at a 10% FDR level (median length 

= 616bp). The NRSF motif was successfully discovered by de novo motif discovery and had 

the highest enrichment level among all the discovered motifs.

We applied both one- and two-sample analyses to the corresponding ChIP-seq data. One-

sample analysis identified 3,312 NRSF binding regions before post-processing (FDR≤10%, 

median length = 269bp), from which the NRSF motif was recovered by de novo motif 

discovery (see Supplementary Fig. 8 and Supplementary Table 4 online). Motif mapping 

results (Table 1) showed that among the initial 3,312 peaks, 1,277 contained ≥1 NRSF 

motif. Boundary refinement greatly reduced the median length of these 3,312 regions (from 

269bp to 60bp) with only a slight decrease of the number of NRSF-site-containing regions 

(from 1,277 to 1,223). The further step of single strand filtering reduced the number of 

regions from 3,312 to 1,861 but retained most (1,051 out of 1,223) of the NRSF-site-

containing regions. The occurrence rate of NRSF sites in the ChIP-seq regions, even before 

post-processing, was significantly higher than that in ChIP-chip regions (1.26/kb vs. 0.15/

kb). The rate was further increased after each step in the post-processing (to 5.54/kb after 

boundary refinement, and 6.98/kb after single strand filtering). Such increase of signal-to-

noise ratio could potentially increase the chance of finding weak unknown motifs by de 

novo motif discovery in future studies. Predictions with a higher resolution can also provide 

more focused targets for future experimental studies, such as those seeking the minimal cis-

regulatory elements sufficient and necessary to drive target gene expression.

By using both the ChIP and negative control samples, two-sample analysis identified 3,317 

initial binding regions (FDR≤10%, median length = 261bp). Post-processing reduced the 

median region length to 60∼70bp and produced a list of 1,794 high quality regions (Table 

1). After post-processing, there is a 96% concordance between the peaks detected in one-

sample analysis and those detected in two-sample analysis, i.e., their intersection is 96% of 

their union (Fig. 3a,b).
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Comparisons between array and sequencing technologies showed that peak signals produced 

by the two platforms had a clear correlation (Fig. 3c,d), although peaks called in the tiling 

array analysis were generally longer than the corresponding ChIP-seq peaks, and the array 

peaks were less likely to contain the NRSF motif (Table 1). In all studies, binding regions 

were more likely to be located near promoters (see Supplementary Table 5 online). They 

were significantly more conserved than randomly selected genomic regions (Fig. 3e), and 

they were able to cover 10%-13% of all NRSF motif sites in the genome (Supplementary 

Table 6 online). Noticeably, 5,517 out of 7,114 (78%) array peaks did not overlap with any 

ChIP-seq peak (Fig. 3a). To investigate whether these regions represent noise in the tiling 

array technology or signals missed by ChIP-seq, we performed motif analyses. De novo 

motif discovery was not able to recover the NRSF motif from the array-specific peaks, and 

only 1.23% (68/5,517) of the array-specific peaks contained ≥1 NRSF motif. As a 

comparison, 14.1% (1,001/7,114) of all array peaks, 20.9% (290/1,385) of peaks common to 

the ChIP-seq analyses but not found by arrays, and 58.8% (933/1,587) of peaks common to 

all three analyses contained the motif. Analyses using non-canonical NRSF motifs yielded 

similar results (see Supplementary Data 2, Supplementary Fig. 9 and Supplementary Table 

7,8 online). Thus in this example the array-specific peaks are not likely to represent true 

signals.

Merits and limitations of one-sample ChIP-seq analyses

One-sample design has been used in many ChIP-seq experiments5,9. It allows more 

biological contexts to be analyzed within a fixed sequencing budget. To study the merits and 

limitations of this design, we analyzed ChIP-seq data for two additional transcription 

factors, Oct4 and Nanog, in embryonic stem cells10. Again, there is good agreement 

between one-sample and two-sample analyses after post-processing – the concordance is 

96% in the case of Oct4 and 83% in the case of Nanog (see Supplementary Data 3 and 

Supplementary Fig. 10,11 online). These examples suggest that one-sample experiment may 

sometime provide a cost-effective alternative to the two-sample experiment, perhaps at the 

expense of some specificity.

To gain a better understanding of limitations of one-sample analysis, we applied it to process 

negative control samples. A small number of peaks were reported at the 10% FDR level 

even though no peaks should be expected (Supplementary Table 3). This was caused by the 

residual background variation that the negative binomial model was not able to explain 

(Poisson model performed even worse) (Fig. 2b). Systematic evaluation using simulated 

spike-in data shows that, although the one-sample analysis can provide reasonable FDR 

estimates when the overall binding signal is strong, the method may underestimate the real 

FDR significantly when the overall binding in the sample is weak (Supplementary Data 1). 

Fortunately, poor peak reliability and problematic FDR estimation can often be diagnosed 

through several criteria, such as highly repeat-rich predictions, predictions covering low 

percentage of reads, and lack of motif enrichment (Supplementary Data 1). Our current 

recommendation is to use two-sample experiments whenever it is affordable or when little is 

known about the transcription factor. When one-sample experiment is used because of cost 

consideration, negative binomial rather than Poisson background model should be used for 
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excluding background noise, and it is important to evaluate prediction quality using multiple 

criteria as above. CisGenome is designed to support these various types of analyses.

Analysis of a novel motif in Sox2 and Nanog binding regions

The basic functionalities of CisGenome can be used in combination to address many 

different biological questions. For example, de novo discovery from peak regions may yield 

new sequence motifs. Bench biologists can use the motif mapping and statistical summary 

functions to systematically evaluate the functional implications of these motifs. As an 

illustration, we studied a novel motif discovered from a Sox2 and Nanog ChIP-chip dataset 

on human promoter arrays2. This motif (Fig. 4a) was found by de novo motif discovery in 

addition to the Oct4 and Sox2 motifs37. It was highly sequence-specific but did not 

correspond to any known motif stored in TRANSFAC42 (see Supplementary Data 4 online). 

It would be interesting to know whether the motif is functional. To address this issue, we 

asked whether the motif sites are phylogenetically conserved, whether they function in 

clusters, and whether their locations are associated with structural features of genes. We 

applied CisGenome to answer these questions (see Supplementary Fig. 12 online).

Mapping the motif to the human genome yielded a total of 17,740 motif sites, among which 

4,543 (25.6%) were phylogenetically conserved. As a comparison, only 16.3% of the non-

repeat base pairs in the genome had the same conservation level (see Supplementary Table 9 

online).

When motif sites that were physically clustered together were collected, they were >2 times 

more conserved than non-clustered sites. Among the 1,674 sites that were separated from 

another site by ≤500bp, 934 (55.8%) were phylogenetically conserved (vs. 

4,543/17,740=25.6% of the general sites being conserved) (Supplementary Table 9).

There were 705 clustered conserved motif sites (defined as two conserved sites separated by 

≤500bp). Visual examination shows that, for the majority of these sites, strikingly only 

sequences within the sites were conserved, and the conservation dropped sharply at the site 

boundaries (Fig. 4c). Moreover, the most conserved positions coincided well with the most 

informative positions in the motif. Plotting the mean conservation scores for the flanking 

positions of the motif clearly verified the observation (Figure 4b).

Summary of physical distributions of the motif sites revealed a strong correlation between 

the clustered sites and promoters (Table 2). While only 1,920 of all 17,740 sites (10.8%) 

were located within 1kb upstream of a transcription start site, among the 1,674 clustered 

sites, 835 (49.9%) were within this region. This percentage increased to 59.6% for the 

clustered conserved sites (420/705).

Repeating the same analyses on the mouse genome produced essentially the same results 

(Table 2, Fig. 4 and Supplementary Table 9). Thus the motif is highly likely to be a 

functional promoter element. The strong evidence here indicates that future investigation of 

the motif is worthwhile, although the context of the motif's function still awaits further 

exploration (see Supplementary Data 5 and Supplementary Table 10 online).
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DISCUSSION

Compared to commonly used algorithms including MAT11, TAS13 and Tilescope21 

amongst others, CisGenome's internal ChIP-chip peak caller provided competitive or higher 

sensitivity and specificity when applied to the recently published benchmark spike-in 

datasets43 (see Supplementary Data 6, Supplementary Fig. 13-14 and Supplementary Table 

11 online). For the ChIP-seq analysis, the existing tools GeneTrack29 and CPF4 do not 

provide statistical estimates of FDR. QuEST30 provides FDR estimates only when the 

negative control sample is available and when the control has twice as many reads as the 

ChIP sample. SISSRs31 estimates FDR in the one-sample analysis based on a Poisson 

model. Compared to these tools, CisGenome not only provides high sensitivity and 

specificity, but also provides better methods for FDR estimation (see Supplementary Data 

7,8 and Supplementary Fig. 15 online). In the one-sample analysis, the negative binomial 

model provides a better model of background. In the two-sample analysis, the conditional 

binomial model does not pose special requirements on the number of negative control reads.

As summarized in Supplementary Table 12 online, most peak detection tools do not support 

both ChIP-chip and ChIP-seq analyses and do not support high-level analyses such as motif 

discovery and peak-gene association. To perform these analyses, traditionally one has to use 

other tools such as MEME44 and MDSCAN25 for motif discovery and Galaxy45 for linking 

peaks to gene annotations. For data visualization, IGB has been developed to visualize 

Affymetrix tiling array data, and SignalMap is a proprietary tool for processing NimbleGen 

data. Both are platform-specific and do not handle ChIP-seq data. Genome browsers at 

UCSC and Ensembl are useful for general purposes but are not optimized for handling ChIP 

data analyses. They do not provide certain functions particularly useful for ChIP data 

analyses such as visualization of array images and motif logos which are currently processed 

by independent tools such as WebLogo46. Furthermore, the need to constantly transfer data 

over the internet makes large-scale interactive data analyses inefficient. Thus, currently to 

integrate different types of data and conduct various upstream and downstream analyses, the 

required tools are distributed in a dozen of programs. A large amount of effort is required to 

reformat output of one piece of software before feeding it to the other. Although web-

services such as CEAS28 try to integrate multiple analysis functions, they usually only 

perform analyses in a pre-defined manner, and there is limited flexibility to customize the 

analysis to answer the questions of most interest to the user (e.g., analysis of the novel motif 

illustrated above). In this context, the development of CisGenome has filled an urgent need 

for a single user-friendly environment with all the basic functionalities for ChIP-chip and 

ChIP-seq analyses. We believe the availability of CisGenome will significantly enhance the 

ability of experimental biologists to extract information from their ChIP datasets and from 

data provided by large-scale efforts such as the ENCODE47 project.

For the interest of space, we only included in the main text the analyses that directly relate to 

the illustration of CisGenome. Many issues not covered are nevertheless important. These 

include (1) what are the likely reasons for the observed differences between the NRSF ChIP-

chip and ChIP-seq data, (2) whether these differences represent a general phenomenon, (3) 

how do they relate to previous comparisons of array and sequencing technologies5,48, and 
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(4) what are the different types of negative controls. Further analyses and discussions of 

these topics are provided in Supplementary Data 9-13 and Supplementary Figure 16 online.

METHODS

Datasets

Data used in this study are summarized in Supplementary Table 1 online. The NRSF ChIP-

chip data (GEO accession #: GSE8489) were obtained by analyzing the bound DNA 

fragments in Jurkat cells with Affymetrix Human Tiling 2.0R arrays. Two independent ChIP 

samples and two mock IPs were profiled. The NRSF ChIP-seq data were collected from a 

previous study4. In that study, DNA fragments bound by NRSF in Jurkat cells were 

sequenced with the next generation sequencer made by Illumina/Solexa. These experiments 

involved sequencing a ChIP'd sample as well as a negative control sample generated from 

reverse-crosslinked genomic DNA that had not undergone immunoprecipitation. The Oct4 

and Nanog ChIP-seq data were collected from [10].

Outline of ChIP-seq data analysis

Mapping sequence reads—Most sequencing platforms will output mapped sequence 

reads up to a specified number of mismatches and will allow elimination of reads that map 

to multiple locations. CisGenome can accept the mapped reads as input. CisGenome also 

accepts mapping output from SeqMap49, a program that allows mapping of sequence reads 

in more customized ways, such as accounting for insertions and deletions (see 

Supplementary Methods online).

FDR computation from ChIP sample only—Genome is divided into non-overlapping 

windows with length w (typically 100bp). The number of reads ni within each window i is 

counted. It is assumed that in non-binding regions, ni|λi ∼Poisson(λi), and λi∼Gamma(α,β). 

This implies that the background read occurrence rate varies across the genome, and 

marginally ni ∼ Negative binomial(α,β). To estimate α and β, a truncated negative binomial 

distribution is fitted to the number of windows with small number of reads (≤2 reads). We 

use this estimated null distribution to compute the FDR for each level of read-counts. In the 

widely used Poisson model, λi is assumed to be a constant λ0 across the genome rather than 

a random variable. To estimate λ0, we fit a truncated Poisson using the windows with ≤1 

reads. The FDR computation and model fitting details are provided in Supplementary 

Methods online. The fitting method assumes that most windows with small read-counts 

represent noise. The assumption usually holds true with sufficient depth of sequencing. For 

studies in which signals cover a large fraction of the genome (e.g., histone modifications) 

but the sequencing coverage is not deep enough, the true targets may be covered by only 1 

or 2 reads in a short window. When this is the case, our model fitting approach may either 

be applicable after increasing the window size or may not be applicable depending on how 

long a typical peak extends.

FDR computation when negative control sample is available—In a specific 

location, the counts of the reads from the ChIP sample are subjected to biases that may arise 

during sample preparation, amplification or sequencing procedures. To correct for these 
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biases, one can generate sequence reads from negative control samples in the same 

experiments. Supplementary Figure 5, 17 and Supplementary Table 13 online show that the 

read sampling rates from the ChIP and control samples at the same genomic loci are 

correlated. Therefore, false signals due to unknown systematic bias can be eliminated by 

excluding regions if both the ChIP and the negative control samples show strong signals but 

the former is not significantly stronger than the latter. When reads are also available from a 

negative control sample, we divide the genome into non-overlapping windows with length 

w. For each window i, the number of reads in the ChIP sample k1i, the number of reads in 

the control sample k2i and the total read number ni= k1i+k2i are counted. We assume that 

when there is no IP enrichment in the window, the conditional distribution of the count in 

the ChIP sample (k1i) given the total count (ni) follows a binomial (ni, p0) distribution. We 

estimate p0 based on windows with small total counts and use it to estimate the FDR 

associated with each level of ni and k1i/ni (see Supplementary Methods online).

Binding region detection—We scan the genome with a sliding window of width w to 

detect all windows with FDR smaller than a user-chosen cutoff. Detected windows that 

overlap with each other are merged into one region. If a region contains more than one 

overlapping window, the minimal FDR among the overlapping windows is taken as the FDR 

of the region. In the two-sample analysis, for each sliding window i we also compute a fold 

enrichment ([yi+1]/[r0*zi+1]) where yi is the number of ChIP reads in the window, zi is the 

number of control reads in the window, and r0=p0/(1-p0). One is added to both the 

numerator and denominator to avoid dividing by zero. The biggest fold change among all 

the overlapping windows within a binding region is recorded as the fold change of the 

region.

Peak localization and filtering—CisGenome uses the counts of 5′ reads and 3′ reads 

within each candidate binding region to further pinpoint the location of transcription factor 

binding site within the region (Fig. 2d), and to filter out regions enriched for reads of only 

one direction based on the assumption that these are unlikely to represent real binding 

events. Regions that are retained after the boundary refinement and single strand filtering are 

defined as high quality binding regions (see Supplementary Methods online).

Adjustment for DNA fragment length—CisGenome uses a two-pass algorithm for 

peak detection. High quality peaks detected in the first pass will be used to estimate the 

DNA fragment length, which is computed as the median distance between the modes of the 

coupling 5′ and 3′ peaks. In the second pass, the reads are shifted towards the center of the 

ChIP'd fragments by half of the estimated fragment length, and FDR computation and peak 

detection will be run again on the shifted reads to get the final predictions.

Choice of window size—The default choice of window size w=100bp represents a 

tradeoff between sensitivity and specificity based on the analysis of the NRSF data (see 

Supplementary Table 14, 15 online). With a smaller w, one can get sharper boundaries of 

binding regions. However, more noise will be introduced and fewer regions containing the 

NRSF motif will pass the significance cutoff (FDR≤10%). A bigger w on the other hand 

may dilute the signals, resulting in a lower resolution of binding region call and a lower 
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percentage of regions that contain the NRSF motif. In future transcription factor studies, one 

can fine tune the choice of window size w in a similar fashion by using either the known 

transcription factor binding motifs or motifs recovered from the de novo motif discovery.

Analysis of phylogenetic conservation

To characterize the conservation level of binding regions, CisGenome allows users to first 

choose a t such that x percent of the whole genome has a phastCons41 score ≥t. For each 

peak, positions with phastCons score ≥t are picked up, and the average phastCons score for 

these positions is computed to serve as the peak's conservation level. If a peak has no 

position with phastCons score ≥t, its conservation level is zero. A high cutoff t (or a small x) 

will help users focus on the most conserved part of each binding region. To generate Figure 

3e, the default value x=10 was used. Peak conservation levels within a tier were averaged. In 

CisGenome, phastCons score was transformed linearly from [0, 1] to [0, 255] so that each 

computer byte can store the score for a single genomic position.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The basic framework of CisGenome
CisGenome contains three core components: a graphic user interface (GUI), a built-in 

browser (CisGenome browser), and a set of underlying data analysis algorithms. The GUI 

allows users to load raw data and choose specific analysis functions. Core programs will be 

called to perform the analysis. Results are displayed in the CisGenome browser and can be 

exported in various formats. Pre-compiled genome databases are required to support 

analyses involving sequence and gene annotation information. CisGenome contains 

functions to construct such databases from standard external data resources. Databases for a 

few commonly used species can be downloaded directly from the CisGenome website.
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Figure 2. ChIP-seq data processing
(a) Users can use GUI to explore and analyze ChIP-seq data.

(b) In data exploration, parametric models are fitted to describe the distribution of read count 

n in background windows. Both negative control samples and the lower end of ChIP 

samples can be fitted well by the negative binomial model, while the poisson model 

generally fails to provide satisfactory fitting. Fitting to the NRSF data is shown as an 

example.

(c) In one-sample analyses of NRSF4, Oct410 and Nanog10 data, FDR estimates based on 

the negative binomial and poisson models were compared to model-independent reference 

FDRs. The reference FDRs were obtained by incorporating information from negative 

control samples. They were defined as (No. of predictions in the control sample / No. of 

predictions in the corresponding ChIP sample with equal amount of reads).

(d) Peak detection results can be visualized using CisGenome browser. 5′ reads that are 

aligned to the forward strand of genome (pink) and 3′ reads aligned to the reverse 

complement strand of the genome (blue) are usually shifted away from each other and form 

two separate peaks due to the nature of sequencing38 (Supplementary Fig. 1). CisGenome 

uses the modes (red vertical lines) of the 5′ and 3′ peaks to refine the boundaries of binding 

regions (boundary refinement) and reports the center (black vertical line) as well. 

CisGenome can also filter out low-quality binding regions if 5′ and 3′ peaks did not show up 

as a pair (single strand filtering).
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Figure 3. Comparisons between NRSF ChIP-seq and ChIP-chip
(a) Overlap among ChIP-chip and ChIP-seq binding regions before applying boundary 

refinement and single strand filtering. ‘*’: Since a peak from one dataset can overlap 

multiple peaks from another dataset, the intersection involved 1,385 one-sample and 1,387 

two-sample ChIP-seq peaks. ‘**’: 10 ChIP-chip peaks, 22 two-sample ChIP-seq peaks. 

‘***’: 1,587 ChIP-chip peaks, 1,677 one-sample and 1,671 two-sample ChIP-seq peaks.

(b) Overlap among ChIP-chip and ChIP-seq binding regions after applying post-processing 

to ChIP-seq data. (*) 1,378 ChIP-seq and 1,379 ChIP-chip peaks overlapped.

(c) A visual comparison of ChIP-seq and ChIP-chip signals in CisGenome browser.

(d) Using CisGenome, the NRSF motif was mapped to the human genome, and log2 (IP/

control) fold changes were extracted for the motif sites from both ChIP-chip and ChIP-seq. 

Ji et al. Page 15

Nat Biotechnol. Author manuscript; available in PMC 2009 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Comparison of these site-level signals revealed a strong correlation between ChIP-chip and 

ChIP-seq (ρ=0.73). The CisGenome functions used here can be applied to construct 

genome-wide tissue-specific activity maps of transcription factor binding motifs in future 

studies.

(e) The conservation levels of ChIP-chip and ChIP-seq binding regions were higher than the 

corresponding conservation level of randomly chosen non-repeat genomic regions (dotted 

line). The ranked binding regions were grouped into tiers (tier size = 300). Mean 

phastCons41 conservation score was computed for each tier (see Methods). The figure 

characterizes the conservation at the binding region level rather than motif site level. Results 

were obtained before post-processing. Applying post-processing to ChIP-seq produced 

similar results (data not shown).
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Figure 4. Analysis of a novel motif
(a) Sequence logo of the motif visualized using CisGenome browser.

(b) Mean phastCons scores for the motif and flanking positions were extracted using 

CisGenome (Supplementary Fig. 12d). The score drops sharply at the motif boundaries 

which are indicated by two dotted vertical lines.

(c) A typical example of clustered motif sites. Sites are indicated by the black blocks in the 

novel motif track. They coincide well with conserved genomic elements. The example is 

shown using UCSC genome browser to illustrate that CisGenome allows users to link to 

external web resources (Supplementary Fig. 12c).
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