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Abstract

Neural systems adapt to changes in stimulus statistics. However, it is not known how stimuli with 

complex temporal dynamics drive the dynamics of adaptation and the resulting firing rate. For 

single neurons, it has often been assumed that adaptation has a single time scale. Here, we show 

that single rat neocortical pyramidal neurons adapt with a time scale that depends on the time scale 

of changes in stimulus statistics. This multiple time scale adaptation is consistent with fractional 

order differentiation, such that the neuron’s firing rate is a fractional derivative of slowly varying 

stimulus parameters. Biophysically, even though neuronal fractional differentiation effectively 

yields adaptation with many time scales, we find that its implementation requires only a few, 

properly balanced known adaptive mechanisms. Fractional differentiation provides single neurons 

with a fundamental and general computation that can contribute to efficient information 

processing, stimulus anticipation, and frequency independent phase shifts of oscillatory neuronal 

firing.

Introduction

In response to the sudden change of a stimulus, the firing rate of many neurons undergoes a 

quick, large change followed by slower adaptation to steady state. First described over 75 

years ago 1, this adaptation causes the spike rate to accentuate changes in the input rather 

than constant values, and in this sense the neuronal response resembles a derivative of the 

input. In general, neural systems adapt to a change in stimulus statistics, which may serve to 

maintain maximal information transmission 2–4. Recently many neural systems have been 

shown to respond adaptively to changes not just in mean input, but also in input variance or 

contrast 3–10,11,12, higher-order moments 13, and correlation structure 14. In several 

systems it has also been shown that the time scale of firing rate adaptation is not static but 

depends on the stimulus, such as on the duration of stimulus steps 4,15,16.
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It is often unclear to what extent such adaptation of neural systems results from a property of 

the neural circuit or whether it is a property of single neurons. Neocortical neurons have 

adaptive processes that modify mean firing rate over time scales ranging from tens of 

milliseconds to tens of seconds 17–20, and have been implicated in single neuron adaptation 

to stimulus statistics 7,11. But for single neurons, the time course of firing rate adaptation is 

often taken to be fixed, or at least independent of the history of change in stimulus statistics.

The mean and variance of fluctuating inputs to cortical neurons can be modulated by 

changes in input synchrony 21,22, by changes in network excitability due to changes in 

brain state 23,24, or by stimulus properties. Here, we show that the firing rate in single rat 

neocortical pyramidal neurons adapts to such changes with multiple time scales, as revealed 

by corresponding time scales of change in stimulus statistics. We find that these multiple 

time scales are a signature of a more general property: the neuron’s firing rate encodes 

slowly varying stimulus statistics through fractional order differentiation. This gentle form 

of differentiation emphasizes change in the stimulus while preserving low frequency 

information and produces a power law response to sudden stimulus transitions. The 

fractional differentiation model captures the firing rate response to a stimulus with complex 

time-varying statistics. Surprisingly, this operation can be biophysically implemented 

through a balance of only a few known adaptive mechanisms 17–20.

Fractional differentiation provides single neurons with a form of adaptation in which no 

single time scale is preferred; these dynamics may tune the effective time scale of adaptation 

to the time scales of the stimulus. This operation expands our understanding of the basic 

processing capabilities of single neurons to the encoding of changes in stimulus statistics 

over behaviorally relevant time scales in the range of seconds to tens of seconds.

Results

Recordings were made from 55 neocortical pyramidal neurons using sharp (n=49) and 

whole-cell patch (n=6) electrodes (see also Supplementary Materials). All were layer 2–3 

(L2-3) neurons of the rat sensorimotor cortex except for three of the patch-recorded neurons, 

which were from layer 5; results were not distinguishable from those from L2-3. We probed 

the dynamics of the firing rate with a range of stimulus dynamics.

Multiple time scales of adaptation in single neurons

The responses of L2-3 pyramidal neurons in acute neocortical slices were recorded using 

sharp intracellular electrodes. The neurons were driven with square wave current stimuli, 

which alternated periodically, with cycle period T, between two values (Figure 1a, top 

panel), and with filtered Gaussian noise whose standard deviation (SD) alternated 

periodically between two values while the mean remained constant (Figure 1b, top panel). 

Generally, the binned spike rates adapted upward after a step decrease and downward after a 

step increase (Figures 1a and 1b, bottom panels; see Methods). While the time course of 

adaptation was not necessarily exponential, we fit the averaged firing rates for each half 

cycle by a single exponential to determine an effective adaptation time scale for both the low 

and high mean or variance conditions. As the cycle period T increased, the effective 

adaptation time constant τ increased proportionally for both the noiseless step stimuli 
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(Figure 1c) and the noisy stimuli with a step change in variance (Figure 1d), thus showing 

history-dependent adaptation as a property of a single neocortical neuron.

The close to linear stimulus dependence of the adaptation time scale suggests that the 

observed rate adaptation was generated by a scale-invariant (no preferred time scale), 

multiple time-scale process rather than a single exponential mechanism. This is consistent 

with power-law dynamics, as has been observed in some primary sensory receptors 25,26 

and references therein. Power-law response to a step is one example of an input-output 

relationship for a system implementing fractional order differentiation. We tested whether 

the adaptive mechanisms of single neurons allow them to function as fractional 

differentiators of the somatic input current.

Fractional differentiation 27, see also supplemental Materials is a linear operation that can 

be written in the time (t) or frequency (f) domain as:

(1)

where r(t) is the firing rate response to a time-varying input x(t), h(t) is the fractional 

differentiating filter in the time domain, and H(f) is the Fourier-transformed filter in the 

frequency domain (Figure 2). The constants k and r0 account for the filter gain and the 

overall mean firing rate; these constants can be fixed by the mean and standard deviation of 

the observed firing rate. In the frequency domain, the filter H(f) is (i2πf)α, where α is the 

order of fractional differentiation. If a neuron functions as a fractional differentiator, the gain 

of the frequency response will be proportional to (2πf) α and each frequency component of 

the rate response will have a frequency-independent phase lead of απ/2 with respect to the 

stimulus (see Appendix and Supplementary Equations). For comparison, a single 

exponential filter leads to a frequency-dependent gain of 1/(1+4π2f2τ2) and phase of 

arctan(−2πfτ). If these conditions hold, the order α of fractional differentiation can be 

determined from the gain-frequency relationship and phase leads. For example, when x(t) = 

sin(2πft), then the fractional derivative with order α is: dαx/dtα = (2πf)α sin(2πft + (απ)/2). 

Finally, fractional differentiation differs from integer order differentiation in that it is non-

local. While integer order differentiation depends instantaneously on the input function, the 

result of fractional differentiation depends upon the history of the stimulus, as seen in the 

slow (power-law) decay of h(t) with time as in Figure 2a.

Single neurons as fractional differentiators

We tested this functional model of the neuronal response through linear analysis. We 

recorded firing rate responses of L2-3 neurons to injected sine wave (noiseless) currents and 

sine-modulated noise (constant mean) (Figures 3a and 3b). While previous work has focused 

on sudden stimulus changes and response characterization for high input frequencies (~1–

1000 Hz)28,29, here we focused on low frequency responses (~0.03–1 Hz), for which 

stimulus periods are large compared to typical inter-spike intervals.

The average gain over all neurons in response to sine wave current and sine wave modulated 

noise decreased with increasing T in a power-law-like manner (Figure 3c). The exponent α 

can be determined from the slope of the gain-period relationship on a log-log curve. In 
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response to both sine wave current and sine wave noise, the phase leads were close to 

frequency-independent (Figure 3d), and the value of α extracted from the phase shift was 

consistent with that estimated from the gain. The increased phase leads in response to sine 

wave currents for T = 1–2 sec may reflect a voltage-dependent activation of a conductance 

with a short time scale, because the mean membrane potential was relatively depolarized 

relative to that observed during the sine wave noise.

Our data show that mean firing rate responses to stimuli that change slowly relative to the 

inter-spike intervals are consistent with a model of fractional differentiation. In these 

experiments, we showed that slowly varying, noiseless currents and modulated noise with 

constant mean are transformed into firing rate according to the fractional differentiation 

model. In subsequent experiments, we focused on the responses to sinusoidally modulated 

noise currents with constant mean.

Because fractional differentiation, Eq. (1), is linear, we tested whether the neuronal response 

to single sine waves predicts the response to signals constructed as a sum of sine waves. 

Neurons were given noisy stimuli modulated by an envelope consisting of a sum of sine 

waves (Figure 4a). These responses were compared to those observed when each period of 

sine wave noise was presented individually (Figure 4b). We found that the gain curves and 

phase leads derived from responses to individual sine waves or a sum of sine waves were 

not significantly different, suggesting that the firing rate of these neurons depends linearly 

on the input within the tested ranges of stimulus parameters.

A further test of linearity is given by the responses to square waves that we have already 

shown. While these curves were fit with single exponentials in order to extract a 

representative time scale for each curve (Figure 1), the existence of multiple time scales of 

adaptation implies that this is not an optimal procedure: both faster and slower time scales 

are apparent during some individual stimulus steps. Therefore, spike responses to square 

waves were fitted with the multiple time-scale response predicted by fractional 

differentiation, Eq. (1).

Fractionally differentiating a step function yields a symmetric power-law increase and 

power-law decrease governed by the parameter α (see Appendix and Supplementary 

Equations). In Figure 5a, we show the response (solid line) of a neuron to square wave 

current stimuli, for three different periods, overlaid with the predicted response (dashed line) 

derived from the linear filter with amplitude and exponent α derived from the sinusoidal 

experiments as in Figure 3c. In Figure 5b, we show the response to a more complex stimulus 

in which the standard deviation changed periodically between three different values. This 

induced upward adaptation when the stimulus stepped from the high to the medium 

variance, and downward adaptation when the step was from the low to the medium variance. 

Given appropriate scale factors, these dynamics were well captured by the fractional 

differentiator model without fitting (see Methods).

Thus, the dynamics of neuronal responses to complex stimuli were well predicted by the 

differentiating filter. We then least squares fit the square wave responses from Figures 1c 

and 1d with the response predicted by Eq. (1) using the parameter α. In this case, the best α 
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was found for each neuron in response to square wave current or square noise. For square 

wave current and noise, α = 0.163 (SD = 0.034) and α = 0.137 (SD = 0.048), respectively 

(Figure 5c). The difference in error between fitting each curve with a different exponent and 

fitting all with a single fractional differentiating filter was small. For square wave current, 

the difference in the mean of the absolute error was 0.18 Hz/bin, while for square wave 

noise the difference was 0.06 Hz/bin, where errors were slightly smaller with exponential 

fitting. Differences in squared errors were significant for square wave noise (two-way 

ANOVA, F(1,3938) = 7.94, P = 0.005), but not for square wave current (two-way ANOVA, 

F(1,2864) = 2.92, P = 0.087). Thus, scale-invariant fractional differentiation provides an 

accurate description of the data, with fewer parameters, compared to fitting separate 

exponential time scales.

We can now compare the value of α as estimated in eight ways, Figure 5c. The overall mean 

was found to be α = 0.15 (SD = 0.06). These data show that the neuronal firing rate response 

to time-varying stimulus statistics is compactly approximated as fractional differentiation of 

order 0.15.

Implementation of fractional differentiation

It remains unclear how power-law dynamics are implemented biologically, although 

previous theoretical work suggests several possibilities 25,26,30–32. For single neurons, 

several mechanisms are known to underlie rate adaptation, including slow sodium channel 

inactivation18 and after-hyperpolarization (AHP) currents17,19,20, which decay with a 

mixture of time scales33. Because slow AHP (sAHP) currents are distinct from the spike-

generating mechanism, in contrast to slow sodium inactivation, it is relatively 

straightforward to manipulate these currents experimentally. Here, we experimentally 

manipulated slow AHP (sAHP) currents, as we expected that these currents contribute to the 

adaptation time scales as measured by the phase lead; increasing sAHP currents should 

increase phase leads, while decreasing sAHP currents should decrease phase leads.

First, a sAHP conductance with a decay τ = 3 sec was artificially added to patch-clamped 

neurons (L2-3 and L5) using spike-triggered dynamic current clamp (Figure 6a; 

Supplementary Materials). Without the artificial conductance, phase leads were frequency-

independent, but with the artificial conductance, phase leads increased for T = 4–16 sec with 

a frequency dependence consistent with the analytical work of Benda and Herz 34. Thus, the 

addition of a sAHP conductance disturbed the balance of underlying adaptive mechanisms.

Next, again using sharp electrodes (L2-3 neurons), we pharmacologically partially blocked 

the early sAHP current (τ ~ 1 sec) using the 5-HT2 receptor agonist α-methyl-5-HT6,7, 

reducing it by 63% (SD = 13%) (see Figure 6 legend and Supplementary Figs S5 and S6). 

This manipulation decreased phase leads for T = 4–16 sec (Figure 6b). However, the 

magnitude of the pharmacologically induced reduction of the sAHP was only weakly 

correlated with the magnitude of reduction in phase leads (Pearson correlation coefficients = 

[0.51, 0.21, 0.33] with P = [0.13, 0.55, 0.36] for T = [4, 8, 16] sec). Based on this and 

previous data showing that other mechanisms also contribute to spike frequency adaptation 

18,19, we do not believe that sAHP currents are solely responsible for the observed phase 

leads. Rather, it is likely that a combination of mechanisms gives rise to fractional 
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differentiation in these neurons. Here we have shown that manipulating the sAHP current 

affects phase leads, as expected if this current at least partially underlies multiple time-scale 

adaptation.

We examined whether a few AHP currents with different time constants are sufficient to 

generate the observed multiple time-scale adaptation. To examine this, we added to a 

standard, single-compartment Hodgkin-Huxley model neuron with no slow adaptive 

processes, first, 2–3 AHP currents and, second, two time scales of slow sodium inactivation 

(Figure 6a; see Supplemental Materials). AHP currents were added with time constants that 

roughly span the range of observed sAHP currents in neocortical pyramidal neurons 20. The 

amplitudes of these currents were precisely balanced with respect to one another to 

approximate fractional differentiation. For slow sodium inactivation, sodium current 

dynamics were augmented with slow inactivation gates having two time scales and with 

kinetics as measured in neocortical neurons18.

These models displayed multiple time scales of adaptation (Figure 7a) and approximately 

frequency-independent phase leads (Figure 7b), as was observed in the real neurons (Figures 

1 and 3). The observation that only a few adaptive processes can underlie rate adaptation 

over a wide range of time scales is consistent with theoretical analysis showing that a single 

adaptive process affects the neuronal response over a wide range of frequencies34. 

Together, these results demonstrate that fractional differentiation can be implemented 

biophysically with known adaptive mechanisms.

Discussion

While single neurons respond to current fluctuations on very short time scales35, the mean 

firing rate can be considered to encode slowly varying statistical properties of the stimulus 4 

or the stimulus envelope 36, acting as an additional channel of information 37. Here, we 

have shown that the dynamics underlying spike rate adaptation to stimulus steps in single 

cortical neurons functionally approximate fractional differentiation. This provides a general 

model for the firing rate response to time-varying stimulus statistics or envelope encoding. 

Far from simply accommodating to a new state, these adaptive dynamics convey detailed 

information about stimulus components. Further, this rate response is a linear function of the 

stimulus mean or envelope. Although extracting a stimulus envelope requires a nonlinear 

operation36, here the dynamics of spike generation and adaptation provide this operation, 

while retaining the neuron’s ability to represent high frequency fluctuations. We considered 

responses to variations in mean and variance separately. Further work is required to evaluate 

the encoding of simultaneous and potentially correlated change in both statistics.

We have focused on the slower time scales that are relevant for time-varying firing rates. 

One could combine this approach with methods of capturing fast time scale dynamics e.g. 

38,39 to give a model that captures both specific stimulus components causing single spikes 

and slower-varying components relevant for the firing rate. The simplest possibility is that 

the rate dynamics r(t) act as a multiplicative gain on the fast dynamics of spike generation. 

Consider for example the case of a slowly time-varying standard deviation σ(t). For a given 

σ, the occurrence of single spikes is determined by a gain function gσ, which acts on the 
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input after convolution with a filter fσ Decomposing the input into an envelope and a fast-

varying component as σ(t)η(t), this multiplicative model for the spike probability is

where the rate r is determined by the envelope σ(t), as we have explored here. Such a 

description may hold when there is a separation of time scales between the short time scale 

action of fσ and gσ and the slowly time-varying stimulus parameter σ, and allows for 

changes in the instantaneous coding of inputs due to statistical properties of the stimulus, 

such as gain normalization4.

Previous work has shown that slow adaptation currents in neocortical neurons have multiple 

time scales 17,18,20. La Camera et al. 19 found that in vitro data from rat L5 pyramidal 

neurons could be modeled by a leaky integrate-and-fire (LIF) model neuron modified to 

include two spike-dependent adaptation currents and one facilitation current. The average 

fitted time constants for these currents were 48 ms, 5.8 s, and 580 ms, respectively. Due to 

the facilitating current, this modified LIF model 19 does not generate results consistent with 

fractional differentiation. However, a modified LIF model with an early sAHP current (τ ~ 1 

s)20, instead of a facilitating current, can give results similar to Figure 7. Since the LIF and 

HH models can give similar results, it is likely that the fractional differentiation model does 

not depend on the details of spike generation. Other mechanisms of adaptation, such as slow 

sodium inactivation, cannot be readily implemented in an LIF model.

A fractional differentiator has a power-law response to stimulus steps. Power law responses 

have been observed in a range of neural systems, from single ion channels 15 to cognitive 

behavior 32,40. The presence of power law adaptation to a step and fractional differentiation 

are not synonymous; it is possible to exhibit power law response without the frequency-

independent phase property of the fractional differentiator. Fractional order dynamics have 

been observed in the vestibular-ocular system 30,41,42 and in the fly motion sensitive 

neuron H1 43. However, these results were from neural systems rather than single neurons. 

A range of mechanisms may contribute to fractional order dynamics and power laws, 

including circuit30 and synaptic 40 mechanisms, geometrical properties of cells 25 and 

dendrites 42, and the multiple inactivation states of sodium channels 31. Our results show 

that this computation can be carried out by single cortical neurons and can be implemented 

by known adaptation mechanisms in a spatially restricted region of the neuron.

Unlike a full derivative, fractional differentiation enhances responses to stimulus change but 

does not entirely remove information about very low frequency stimulus fluctuations. 

Retaining information about both the signal magnitude and the signal rate-of-change is a 

property of fractional order derivatives that leads to dependence on stimulus history. Unlike 

integer order derivatives, fractional orders are non-local. We found the fractional order to be 

α ~ 0.15. This gentle differentiation may reflect a requirement for the neural system to 

encode only a modest amount of rate-of-change information by a single neuron. Increasing 

the effective value of α to greater than 0.15 could be accomplished by a neural circuit 
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through the sequential adaptation effects of multiple neurons and intervening synaptic 

dynamics 30,44.

We find that the fractional differentiation model for spike rate changes holds over time 

scales from ~1–30 sec, a range that is behaviorally relevant for fluctuations in input 

statistics. It has been suggested that fractional order differentiation may be an important 

property of motor control systems that compensates for fractional order integration 

dynamics of muscle and tissue, resulting from their viscoelastic properties42. Here, we find 

that single neurons in the sensory-motor cortex have this property. This kind of rate 

encoding may also allow neurons to process information efficiently by matching response 

time scales to input time scales 16,45 or to temporally decorrelate, or whiten, the stimulus 

envelope46. The power law form of the gain may be related to the typical power-law spectra 

of natural stimuli 47,48, which would facilitate stimulus whitening. The constant phase shift 

allows phase to be modulated independently of frequency, which may be significant for the 

interaction of neocortical neurons with slow oscillatory frequencies in the brain 49. Finally, 

representing an input’s derivative could allow neural circuits to predict future stimuli, 

similar to a Taylor approximation44.

Our results suggest that fractional differentiation is a fundamental and elementary 

computation of L2-3 neocortical pyramidal neurons, and provides a general model of the 

response of adapting neocortical neurons to time-varying stimuli. These intrinsic dynamics 

provide a substrate for a form of short-term memory, retaining stimulus information over the 

intermediate time scales of seconds to tens of seconds. While we have focused on L2-3 

neurons distributed throughout the sensorimotor cortex, we found similar results among a 

small sample of L5 neurons. Fractional differentiation may be a general property of adapting 

neurons in the neocortex. A subset of L5 neurons show minimal slow firing rate adaptation 

7, and these cells may not show fractional differentiation. While it may seem surprising that 

these dynamics have not been discovered previously, it is likely that the experiments that 

reveal these dynamics were not performed at the slow time scales investigated in the present 

study. The appearance of these dynamics in single neurons and our ability to disrupt them 

suggest that adaptation currents and slow sodium inactivation, among other adaptive 

mechanisms, may be finely tuned to contribute these multiple time scales. This tuning may 

achieve a balance between providing rate-of-change information and preserving a 

continuous response in the face of negative feedback.

Methods

Preparation of cortical slices

Five- to twelve-week-old Sprague Dawley rats were deeply anesthetized in a chamber filled 

with 4% isoflurane in oxygen and quickly decapitated. The rostral, caudal, and ventral 

portions of the brain were removed, and the remaining block was attached to the stage of a 

Vibratome tissue slicer (TPI, St. Louis, MO) using cyanoacrylate glue (Loctite 404; Loctite, 

Rocky Hill, CT), and immersed in ice-cold cutting solution containing (in mM) 220 sucrose, 

3 KCl, 1 CaCl2, 5 MgCl2, 26 NaHCO3, 1.25 NaH2PO4, and 10 D-glucose. The cutting 

solution was bubbled with 95% O2/5% CO2 to maintain pH at 7.4. Coronal slices (300 μm 

thick) were cut (~ +1 mm to −1 mm relative to Bregma) and transferred to a holding 
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chamber filled with artificial CSF (ACSF) containing (in mM) 125 NaCl, 3 KCl, 2 CaCl2, 2 

MgCl2, 26 NaHCO3, 1.25 NaH2PO4 and 20 D-glucose, bubbled with 95% O2/5% CO2. The 

temperature of the holding chamber was maintained at 34°C for ~ 60 min and then allowed 

to cool to room temperature.

Recording

Slices were transferred to a recording chamber and perfused at ~ 2 mL/min with warmed 

ACSF (~ 33 ± 1°C). For pharmacological experiments, the control recording solution also 

contained 6,7- dinitroquinoxaline-2,3(1 H,4 H)-dione (DNQX) (20 μM), ±3-(2-

carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) (5 μM), and picrotoxin (100 μM) to 

block AMPA/kainate, NMDA, and GABAA receptors, respectively. Recordings were 

obtained from cells in layer 2/3 (sharp electrodes) and layers 2–3 and 5 (whole-cell patch 

electrodes) in the dorsal neocortex ~1–4 mm from the midline using an Axoclamp 2-A 

amplifier (Molecular Devices, Foster City, CA) in continuous bridge mode. Sharp electrodes 

were filled with 3 M KCl and had resistances of ~60–100 MOhm. Patch pipettes were filled 

with solution containing (in mM) 127 KCH3SO4, 10 myo-inositol, 2 MgCl2, 5 KCl, 10 

HEPES, 0.02 EGTA, 6 Na2 phosphocreatine, 2 Na2ATP, and 0.5 Na3GTP, pH 7.2–7.3. 

Access resistances during whole-cell recording were ~10–20 MOhm. Data were filtered at 

10 kHz and sampled at 10–20 kHz using ITC-16 and ITC-18 data acquisition boards 

(Instrutech, New York, NY). Data acquisition was controlled by custom macros written in 

Igor Pro (WaveMetrics, Lake Oswego, OR).

Current stimuli

Single neurons were stimulated with time-varying current stimuli in current clamp. Square 

waves were generated to switch between values of 1 and 2 with a range of oscillation 

periods. Similarly, standard sine waves were generated to vary between 1 and 2 with a range 

of periods. A positive holding current was applied to depolarize each neuron to within 10% 

of rheobase, near the threshold for firing. The basic periodic waveforms were scaled by a 

factor between 50 and 250 pA chosen individually for each cell such that the neuron fired 

throughout the stimulus block. In trials using noise stimuli, the simple periodic waveforms 

were multiplied by exponentially filtered (1 msec time constant) Gaussian white noise to 

give periodically modulated noise, with a standard deviation given by the square or sine 

wave. To produce current stimuli, these noise sequences were again DC shifted to near 

rheobase and scaled as described above. During the noise stimuli, this scaling produced 

membrane potential fluctuations with SD = ~ 2–8 mV. These stimulus sets were presented in 

blocks with periods T = [1, 2, 4, 8, 16, 32] sec, where each period was presented for 96 sec, 

giving a total stimulus length of 576 sec, following which periods were presented in reverse 

order. On every individual cycle repetition, the particular noise sequence differed. Finally, 

modulated noise stimuli were created where the modulation envelope was generated as a 

sum of sinusoids. Four sine waves with periods T = [4, 8, 16, 32] sec and phase shifts φ = [0, 

1, 2, 3] rad were summed, and the result was used to multiply a Gaussian white noise 

sequence as above. In this case, the block length was 192 sec. Control blocks consisting of 

individual sine waves with T = [4, 8, 16, 32] sec and block length 96 sec were presented to 

the same cells. Stimuli were scaled prior to injection, as described above.
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Cell acceptance criteria and firing rates

Neurons were considered healthy and stable if their resting membrane potential was < −70 

mV, spikes were > 65 mV in height, and resting membrane potential and rheobase (the 

current at which the neuron first began to spike) did not fluctuate by more than 10% 

between stimulus blocks (except during pharmacological or dynamic clamp manipulations). 

Spike times were recorded when the membrane potential crossed −10 mV and reached its 

peak, and subsequent upward crossings within 2 msec were not considered. Time-varying 

firing rates were found by taking a histogram of spike times.

Fitting exponentials to firing rates

Firing rate time courses, as in Figures 1A and 1B, were least-squares fit with the two-

parameter exponential A exp(−t/τ), where the steady state was defined to be the last three 

bins of each half-period and 30 bins were used for each period. Cells for the square wave (n 

= 8) and square noise (n = 11) experiments were included if firing was >1 Hz throughout 

and firing rates did not show upward adaptation after a step increase. Upward adaptation in 

the high condition was observed in ~ 10% of neurons, and was usually seen in cells with 

unusually high firing rates, signs of poor cell health, or unstable recordings. Thus, 

experiments showing this type of response were excluded from the present analyses. 

Exponential τ’s were not considered if the amplitude of the exponential relaxation, A, was 

less than 10% of the steady-state firing rate. This criterion excluded 14 of the total 228 

measurements of τ.

Fitting sine waves to firing rates

The amplitude and phase lead of the response with respect to the stimulus were found by 

least-squares fitting the mean firing rate response, determined as previously by taking a 

histogram of spike times, of each neuron with A sin (2πt/T+φ), with the two parameters A 

and φ. Identical results were obtained via Fourier transform of the firing rate response, 

represented as a vector of zeros and ones designating bins in which there was not or was a 

spike; the dominant frequency amplitude and corresponding phase were easily identified. 

The gain for each T was found by dividing A by the stimulus scaling factor used for a given 

neuron, which ranged from 50–250 pA. For the sum of sines experiment, a vector of 0’s and 

1’s to signify no spike or spike, respectively, was created with a sampling rate of 500 Hz; 

amplitudes and phases were found from the Fourier transform of this vector, with results 

nearly identical to those from least-squares fitting of the mean firing rate histogram, or from 

the Fourier transform of the histogram. Neurons were included if at least four blocks (12.8 

min) of data in response to the sum of sines stimulus were obtained, in order that phases 

could be determined with sufficient accuracy. Neurons were excluded if they did not fire 

throughout T.

Fitting square wave data with fractional differentiator responses

The shapes of the firing rate curves were fit with the response that a fractional differentiator 

with order α has to a square wave stimulus. The fractional-differentiating filter was found as 

follows: In the frequency domain the filter was defined as A (i2πf)α for frequencies −960/T 

to 960/T with Δf=0.01/T. In the time domain, this filter was convolved with step functions of 
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period T with a sample rate of 1920/T, where the non-zero-padded result was taken. 

Neighboring bins of this finely sampled response were averaged to match the bin number of 

the firing rate responses. As we simply wished to evaluate the exponent α for the population, 

we fixed the amplitude A by normalizing each response such that input and output had the 

same mean and standard deviation. For each experiment, which consisted of six periods, the 

single best α was found by least squares fitting to the firing rate response. Thus, fitting 

responses from a single experiment required 3 parameters (α plus normalization of mean 

and variance) instead of 36 parameters (six parameters for two exponential fits per T) as 

previously.

Using dynamic clamp to add sAHP currents

When the membrane potential crossed −10 mV, a pulse generator injected a 1 msec negative 

current pulse into an RC circuit, the voltage VRC of which relaxed with a 3 sec time 

constant. The RC circuit provided input to a custom-made analog dynamic-clamp circuit that 

produced an output GasAHP(Vmembrane − EK), where GasAHP = kVRC = 0.05 nS/spike and 

EK=−100 mV. This was summed with the stimulus current.

Biophysical modeling

The single-compartment, conductance-based Hodgkin-Huxley (HH) model neuron 50 was 

used with standard parameters (Supplementary Methods), except as noted. For each AHP 

current, an additional current, or term, was added to the equation for dV/dt of the form 

−GAHPa(V − Ereversal), where a was incremented by one after each spike and decayed 

according to da/dt = −a/τ, with τ = [0.3,1, 6] sec and GAHP = [0.05, 0.006, 0.004]GLeak with 

the time scales used as indicated. To implement slow sodium inactivation with two time 

scales, two extra gating variables, S1 and S2, were added to the sodium current so that it 

became: GNam3hS1S2(V − ENa). The kinetics for these additional gating variables were 18: 

ds/dt = k[αs(1 − s) − βsS] with αs = 0.001 exp((−85 − V)/30) and βs = 0.0034/(exp((−17 − 

V)/10) + 1), where k was used to modify the time constant τs = 1/(αs + βs) of s. Specifically, 

given these kinetics, τs is voltage-dependent with a peak of ~2300 msec at −50 mV, tapering 

off to ~500 msec by 0 mV. To approximate AHP currents with time constants of 0.3 sec and 

6 sec as in Figure 7, k was set equal to 2/0.3 and 2/6, respectively. Equations were solved 

numerically using fourth-order Runge-Kutta integration with a fixed time step of 0.05 msec, 

and spike times were identified as the upward crossing of the voltage trace at −10 mV 

(resting potential = −65 mV) separated by more than 2 msec. For these data, the mean of the 

exponentially-filtered (τ = 1 msec) Gaussian white noise stimulus was 5.5 μA/cm2, and the 

SD of the square and sine waves varied between 20 and 32 μA/cm2.

Magnitude and phase of a fractional differentiating filter

Because complex numbers can be written in terms of amplitudes and phases, the response 

R(f) to a signal X(f) = Cf exp(iθf) through a fractional-differentiating filter may be written as:
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where it can be seen that the magnitude of R(f) is fαXf and the phase of R(f) has a frequency-

independent phase shift of απ/2. If the signal x(t) is a step function, the resulting response 

after the step will be a power law decay, as the Fourier transform of a power law is a power 

law.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The time constant of rate adaptation increases with step duration, or period T.
In response to many repeats of (a) square wave current (top panel) or (b) square wave noise 

(top panel) with a period T, injected into the soma, the neuron fires action potentials (bottom 

panels), (c, d) The neuron’s mean firing rate adapts both upward and downward (solid lines, 

bottom panels; 30 bins per period, see also Supplementary Materials). The upward and 

downward adaptation time courses were each least-squares fit by an exponential of the form 

A exp (−t/τ) (dashed lines). The upward and downward responses were separately fitted with 

a time constant τ for each stimulus period T. As T increased, τ similarly increased for both 

the (e) noiseless current (n = 8) and (f) constant mean, noisy (n = 11) stimuli. Data in (a) and 

(c) are from one example neuron while data in (b) and (d) are from another.
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Figure 2. The effect of the fractional differentiating filter H(f) = (i 2πf)α

(a) In the frequency domain, the absolute amplitude response is a power law, and the phase 

response is constant (top). The inset shows the magnitude as a function of period rather than 

frequency. The filter h(t) is also shown in the time domain (bottom, see Supplemental 

Materials). For these examples, α = 0.15 with sampling rate of 200 Hz. (b) When α = 0, the 

response waveform is equivalent to that of the input, whereas when α = 1 a full derivative of 

the input is taken. Values of α between 0 and 1 are fractional derivatives, and contain 

similarities to both the waveforms resulting when α = 0 and α = 1.
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Figure 3. The gain of the neuronal firing response can be described by a power law, and the 
phase lead is frequency-independent
Sine wave current (a) or sinusoidally modulated noise (b) was injected, and elicited a 

sinusoidal response (60 bins per period) with a phase lead with respect to the stimulus. Data 

are from two example neurons, (c) The average gain of the response decreased with period T 

(n = [8,11] for sine wave currents and sine modulated noise, respectively), similar to a 

power law with exponent α, as seen from the log-log gain curves; the slope of the best-fit 

line is −α. (d) In response to sine wave current, the phase lead was frequency-independent 
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for T = 4–32 sec (n = 8, one-way ANOVA, F(3,28) = 1.63, P = 0.204) with mean 11.9° (α = 

0.13), and in response to sinusoidally modulated noise was frequency-independent for T = 

1–32 sec (n = 11, one-way ANOVA, F(5,60) = 0.51, P = 0.766) with mean 12.3° (α = 0.14). 

Error bars represent standard error.
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Figure 4. 
Neuronal response to sine wave noise envelopes is similar when periods T = [4, 8,16, 32] 

sec are presented simultaneously (with phases ϕ = [0, 1, 2, 3] rad) or individually. (a) The 

stimulus noise envelope is a sum of four sine waves; the amplitude of the neuronal response 

can be obtained from the Fourier transform of spike responses. Data is from an example 

neuron. (b) Gain curves were similar (n = 12, two-way ANOVA, F(1,88) = 0.02, P = 0.902) 

as were (c) phase leads (F(1,88) = 1.37, P = 0.245). For individually presented sine wave 

noise, the mean phase lead was 13.1° (α = 0.14), and for sum of sine wave noise the mean 

was 11.9° (α = 0.13). Error bars represent standard error.
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Figure 5. Responses can be predicted using fractional differentiation with the parameter α, 
which was estimated by several methods to be ~0.15
(a,b) The responses of two neurons (solid line; 0.2 sec bin width) are consistent with the 

output predicted by a fractional differentiator (dashed line), Eq. (1), with α as derived from 

other experiments, as in Figures 3c and 3d. In (a), the gain amplitude and α for the predicted 

response from the fractional differentiator was determined for this neuron using individual 

sine waves as in Figure 3c; the mean of the predicted response was matched to the firing rate 

response. In (b) the predicted response was normalized to the mean and SD of the firing rate 

response. Average firing rates are shown in response to (a) square wave current with T = [4, 

8,16] sec, and (b) square wave noise with T = 24 sec and three levels of SD = [3, 2, 1, 2] 

presented for [8, 4, 8, 4] sec, respectively. We also show the response obtained from α = 

0.05 and α = 0.25. (c) Bar graph shows the mean (and standard error) for α calculated in 8 

ways in response to square and sine wave current (3 data sets) as well as to square and sine 

wave noise (5 data sets), where the method of finding α is in parentheses. n is the number of 

α’s that contribute to the mean, and is equivalent to the number of contributing neurons. The 

overall mean was α = 0.15 (SD = 0.06), where none of the obtained values were 

significantly different (one-sample t-test, P = 0.05). Sine wave current data from T = [1 2] 

were excluded, as these phases were frequency-dependent (Figure 3d).
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Figure 6. Fractional differentiation depends on a balance of multiple adaptation mechanisms 
with different time scales
Artificially increasing or pharmacologically blocking sAHP currents led to opposite changes 

in phase leads, (a) sAHP currents were added to patch-clamped neurons (n = 6) using 

dynamic clamp (1 msec pulse, τ = 3 sec, ΔG = 0.05 nS/spike, Er = −100 mV). Without the 

artificial sAHP conductance, phase leads were frequency-independent (one-way ANOVA, 

F(5,30) = 1.60, P = 0.190). With the artificial sAHP conductance, phase leads were strongly 

frequency-dependent (F(5,30) = 7.48, P = 0.000). The two conditions were significantly 

different (two-way ANOVA, F(1,60) = 27.9, P = 0.000), and phase leads increased for T = 

4–16 s. (b) Application of α-methyl-5-HT reduced sAHP currents with τ ≈ 1 sec by 63% 

(SD = 13%), as measured 450–550 msec after a train of 30 spikes at 50 Hz from a pre-train 

membrane potential set to −65 mV by injection of positive holding current. Drug application 

(n = 10) altered phase leads (two-way ANOVA, F(1,108) = 9.39, P = 0.003), by reducing 

them for T = 4–16 sec. Error bars indicate standard error, and asterisks indicate significant 

differences (paired t-tests, P<0.05).
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Figure 7. Single-compartment Hodgkin-Huxley (HH) model neurons with two adaptation time 
scales can approximate a fractional differentiator over a 30-fold range of stimulus period T
(a) A standard HH neuron with two sAHP currents or two time scales of slow sodium 

inactivation shows multiple time scales of adaptation similar to Figures 1c and 1d; as period 

T is further increased, the time scales become constant (insets), (b) Adding a single, 

exponential adaptive mechanism can increase phase leads over a wide range of time scales, 

and two such mechanisms yield a roughly constant phase lead over approximately a 50-fold 

change in T when the amplitudes of the adaptation mechanisms are properly balanced. 

Additional currents can lead to responses that vary less over T.
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