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Abstract
Linkage disequilibrium (LD) plays a central role in fine mapping of disease genes and, more
recently, in characterizing haplotype blocks. Classical LD measures, such as D′ and r2, are
frequently used to quantify relationship between two loci. A pairwise “distance” matrix among a
set of loci can be constructed using such a measure, and based upon which a number of haplotype
block detection and tagging single nucleotide polymorphism (SNP) selection algorithms have been
devised. Although successful in many applications, the pairwise nature of these measures does not
provide a direct characterization of joint linkage disequilibrium among multiple loci.
Consequently, applications based on them may lead to loss of important information. In this paper
we propose a multilocus LD measure based on generalized mutual information, which is also
known as relative entropy or Kullback-Leibler distance. In essence, this measure seeks to quantify
the distance between the observed haplotype distribution and the expected distribution assuming
linkage equilibrium. We can show that this measure is approximately equal to r2 in the special
case with two loci. Based on this multilocus LD measure and an entropy measure that
characterizes haplotype diversity, we propose a class of stepwise tagging SNP selection
algorithms. This represents a unified approach for SNP selection in that it takes into account of
both the haplotype diversity and linkage disequilibrium objectives. Applications to both simulated
and real data demonstrate the utility of the proposed methods for handling a large number of
SNPs. The results indicate that multilocus LD patterns can be captured well, and informative and
nonredundant SNPs can be selected effectively from a large set of loci.
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Introduction
It has been suggested in recent years that patterns of linkage disequilibrium (LD) vary across
the human genome, leading to the concept of haplotype blocks (high LD regions), with its
main characteristic being reduced haplotype diversity within each block. For a block
containing n single nucleotide polymorphisms (SNPs), the number of observed haplotypes
with greater than 5% frequencies is typically much smaller than the 2n potential haplotypes
(Gabriel et al. 2002). SNPs are not only instrumental in the definition of haplotype blocks,
but they also play important roles in genetic studies as they are highly abundant and some
may even be functional variants themselves (which makes them ideal markers for candidate
gene association studies). Thus, it is an important, although highly challenging, task to select
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a minimal subset of SNPs that represent haplotype diversity in the blocks in an optimum
way. One indirect approach of SNP selection is via studying local patterns of LD, which are
thought to contain information about evolutionary history of SNPs. A great deal of research
have been carried out that seek to characterize LD patterns, and to use them for haplotype
block identification and SNP selection (e.g., Abecasis et al. 2001; Daly et al. 2001; Reich et
al. 2001; Gabriel et al. 2002, Clark et al. 2003; McVean et al. 2004; Schaid 2004; Rinaldo et
al. 2005).

Classical pairwise LD measures, such as D′ and r2, are commonly used in LD
characterization, block detection, and SNP tagging studies, including those referenced
above. Despite the popularity of these measures, their pairwise fashion does not provide a
direct measure of joint LD among multiple loci. Moreover, D′ may be biased for small to
moderate sample sizes (Terwilliger et al. 2002), and it may not be sensitive enough to
distinguish between different degrees of LD either (Nothnagel et al. 2002). Other new
pairwise LD measures have also been proposed (Morton et al. 2001; Pritchard and
Przeworski 2001). While those measures have their own merits, they have the same
disadvantage as the classical ones in that they do not provide a single direct measure of LD
for multiple loci jointly.

Measures of gametic disequilibrium for three and four loci were discussed in Weir (1996). A
couple of general multilocus LD measures were proposed in recent years. In Sabatti and
Risch (2002), a multilocus LD measure was developed, but this measure is haplotype
specific and thus it is not clear whether or how it can be used for SNP selection. Nothnagel
et al. (2002) proposed an entropy based multilocus LD measure, ε. It is defined as follows.
For a chromosomal segment containing n SNPs, let pj be the frequency of the major allele of
the jth SNP, j = 1, middot; middot; middot;, n. Suppose that there are m observed haplotypes
with frequencies qi, i = 1, ···, m, then the entropy of this haplotype distribution is defined as

. Under the assumption of linkage equilibrium, the frequency of any

haplotype k can be calculated using the formula , where  is 1 if the
allele on haplotype k at the jth SNP is the major allele, otherwise it is 0. The corresponding

entropy is then . The authors then defined a normalized entropy,

as a multilocus LD measure. Note that 0 ≤ ε < 1, and larger ε is interpreted as indicating a
greater degree of LD. This measure is useful for detecting genomic regions with low LD,
and it can be based upon to find haplotype blocks, as proposed by the authors, and as in
Rinaldo et al. (2005).

Despite its potential usefulness, this LD measure has several drawbacks. First, the upper
bound of 1.0 can never be reached (which can be viewed as a sub-measure), and thus its
performance in the special case with two loci cannot be directly compared with classical
pairwise LD measures. Second, for a block in which all SNPs are in complete LD, ε’s
outcome is dependent on the number of SNPs it considered. This is rather undesirable for
haplotype block detection as it may fail to recognize blocks containing a small number of
SNPs. Third, it is not computationally efficient when it is applied to selecting SNPs in a
haplotype block with a large number of loci. With current computing power, the number of
SNPs that ε can handle is limited to about 10 with the accompanying software by Nothnagel
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et al. (2002). As we will show later, the first two issues can be easily resolved by a modified
ε measure. However, the last issue about the computational intensity remains.

In an association study of a candidate region, it is usually too costly to genotype all SNPs
within the region, as the number of SNPs can be very large given their abundant nature. On
the other hand, genotyping only an appropriately selected subset may not lead to much, if
any, reduction in information. This is due to limited diversity within haplotype blocks,
which renders information in some of the SNPs redundant. Thus, the challenge is to select a
minimal subset that retains most of the information provided by the full set. This should
reduce genotyping cost without sacrificing the ability to assess disease association in the
region. Note that the term “information” is used in a loose sense here, as it may mean
different measures from different perspectives, as discussed below.

SNP selection is usually either based on pairwise LD measures (leading to tagging SNPs, or
tagSNPs) or on estimated haplotype frequencies from genotype data (leading to haplotype
tagSNPs, or htSNPs). In this paper, no distinction between tagSNP or htSNP is made; they
are all referred to as tagging SNPs. There is currently no consensus on optimization criteria,
or what the benchmark should be to compare the relative performances of tagging SNPs
selected by different methods/criteria. Discussion on these issues can be found in Weale et
al. (2003) and references therein. Briefly, one of the broad criterion for measuring
informativeness of a selected subset is the proportion of “haplotype diversity” being
explained. Another broad criterion is based on how well the frequencies of the other SNPs
(those not being tagged) can be predicted, an “association” (or LD) criterion.

Regardless of which selection criterion or which measure of informative is being used, most
of the methods in the literature select tagging SNPs using an all-possible-subset approach.
That is, all possible subsets of a given size are considered, and the one that optimizing the
chosen criterion is retained as the best subset of that size. This is a fine strategy if the
number of SNPs in the full set is not too big. However, the number of all possible subsets
simply becomes too large to be practical for large haplotype blocks; there are more than
300,000,000 subsets of size 16 to comb through with a full set of 31 SNPs, for instance.

In this article, we propose a novel multilocus LD measure with generalized mutual
information. Our measure overcomes the drawbacks of ε discussed above. In particular, the
measure is more computational efficient so that it can handle any number of SNPs, and its
value is 1.0 when the SNPs within a haplotype block are completely dependent, regardless
of the number of loci. It is also approximately equal to r2 for the special case with two loci
when there is strong LD. Based on this multilocus LD measure and an entropy measure that
characterizes haplotype diversity, we propose a stepwise tagging SNP selection algorithm.
This represents a unified approach for SNP selection in that it takes into account of both the
haplotype diversity and linkage disequilibrium objectives. Applications to both simulated
and real data demonstrate the utility of the proposed methods for handling a large number of
SNPs. The results indicate that multilocus LD patterns can be captured well, and informative
and nonredundant SNPs can be selected effectively from a large set of loci.

Methods
A Multilocus LD Measure

Information theory provides a natural way to quantify relevant information. Here we
propose a multilocus linkage disequilibrium measure through extending the mutual
information theory to measuring multivariate statistical dependency. This measure uses the
Kullback-Leibler (K-L) distance to quantify the difference between the observed distribution
of haplotype and the expected distribution under linkage equilibrium (LE; independence of
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SNPs). Suppose that there are n SNPs under consideration, with m observed haplotypes. Let
X be the random variable of haplotype, and let Xj be the random variable of alleles at SNP j,
j = 1, middot; middot; middot;, n. Thus X takes the values of xi = (xi1, xi2, middot; middot;
middot;, xin), i = 1, middot; middot; middot;, m, where xij is the allele on haplotype i at locus
j. Furthermore, let p and pj be the probability distribution of X and Xj, j = 1, middot; middot;
middot;, n, respectively. Our LD measure is defined as follows:

(1)

The definition in equation (1) is referred to as relative entropy, or K-L distance, a basic
measure in information theory (Cover and Thomas 1991). In our particular setting here, the

relative entropy measures the distance between two distributions, p and , defined
on the same sampling space of haplotypes over the n loci.

The properties of K-L distance ensure that the quantity defined in (1) is nonnegative and is
zero if and only if the SNP variables are independent. Larger value of E is taken to indicate
greater degree of LD. This measure is also bounded above. The upper bound can be found in
terms of the entropies Hpj (Xj) of the distributions pj of individual SNP variables Xj (to be
proved in Appendix A):

(2)

Note that the subscript pj is dropped from Hpj (Xj) in the above inequality, and it will
continue to be omitted hereafter where no ambiguity can occur. The upper bound in the
inequality is attainable, which occurs when all the loci are in complete LD. Thus, a
normalized LD measure is defined as

(3)

The properties of equation (3) as discussed above as well as additional ones, to be proved in
Appendix B, are summarized as follows:

a. 0 ≤ ER ≤ 1, with the lower and upper bounds being attained when the SNPs are in
complete LE and LD, respectively.

b. For two loci, this LD measure reduces to mutual information between the two
SNPs, and it is approximately equal to the classical LD measure r2 under certain
conditions to be detailed in the appendix.

Criteria and Algorithms for Selecting Tag SNPs
The relationship between joint entropy (or total information; H(Xj, Xk)) and individual
entropies (H(Xj) and H (Xk)) of two loci (Xj, Xk) can be expressed as follows:
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where I(Xj; Xk) is the mutual information between the two loci. It is easily seen that mutual
information I and total information H are complementary to one another, in that their sum is
equal to the sum of marginal entropies. However, they are not equivalent to one another
since their sum is not a constant; it is dependent on the entropies of individual SNPs.

Extending the concept to multiple loci, we can regard our LD measure as the generalization
of mutual information. More specifically, let S be a subset of the full set of SNPs under
consideration, then

where H(S) is the joint entropy of all SNPs in S, and can be viewed as a measure of
haplotype diversity. On the other hand, E(S), as defined before, is our LD measure prior to
normalization. Since H(S) is maximized when S = X = {X1, ···, Xn}, the full set of SNPs, we
can define a normalized haplotype diversity measure as

By construction, the two measures, HD and ER, belong to the broad categories of selection
criteria based on diversity and association, respectively, according to the classification of
Weale et al (2003). Although one can select tagging SNPs by optimizing one of the two
criteria, it may be advantageous to devise a class of criteria that combine the two objectives,
with either one as a special case. The idea is to find a subset of SNP, S*, that compromises
between the objective of maximizing HD and that of minimizing ER. This is motivated by
the fact that there is currently no consensus as to which criterion is the best for evaluating
the performance of a set of tag SNPs (Weale et al. 2003). Specifically, we maximize the
following criterion among the subsets of the same size:

where λ (0 ≤ λ ≤ 1) is a pre-determined constant that weighs the relative importance of the
two objectives.

With the above proposed criterion ω, both exhaustive search and stepwise selection
algorithms can be implemented. For a dataset with a large number of SNPs, a stepwise
algorithm will be more computationally efficient, although both types of searching schemes
are implemented in our tagSNPfinder software package. In the following, we discuss a
forward selection algorithm. The algorithm will stop when either HD(S) ≥ δ1 or ER(S) ≥ δ2.
We recommend setting δ1 ≥ 0.9 to capture most (a large proportion) of haplotype diversity.
Determining a suitable threshold δ2 is less straightforward, as it should depend on the
amount of LD in the full set of SNPs. From our experience, a stopping rule based on HD
only seems to performed well, therefore, for any weighting scheme λ < 1, we recommend
setting δ2 = 1. In the special case in which only ER is used for SNP selection (i.e., λ = 1), we
suggest setting δ2 to be in the range of 0.5 – 0.7 to have an adequate number of SNPs
selected. One can further restrict the maximum number of SNPs, N, to be selected, if
desired, perhaps due to budgetary consideration. This option was utilized in one of our
comparative studies to be described below.
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Forward Selection Algorithm FSA(λ)
1. Set predetermined constants δ1, δ2, and λ (and the maximum number of tagging

SNPs, N, if so desired).

2. Choose the first SNP Xj that maximizes HD(Xj). Then set t = 1 and St = {Xj}.

3. Let j = argmaxk{ω({St, Xk};, λ), Xk ∈ X–S
t}, where X–S

t contains the remaining
SNPs not in the selected set St already. Set S* = {St, Xj}. If HD(S*) ≥ δ1, or ER(S*)
≥ δ2 (or t + 1 = N if N is specified), then the algorithm is terminated and S* is the
selected set of tagging SNPs. Otherwise, increase t by 1 and set St = S*, then go
back to step 3.

Clearly the selection algorithm described above is in a forward fashion. Backward selection
and stepwise selection algorithms have also been similarly devised. The backward selection
algorithm eliminates SNPs one by one, while a stepwise algorithm selects SNPs in a back
and forth fashion in which only one SNP is removed or added sequentially. The program
implementing all these algorithms can be downloaded freely from our website.

Results
In this section, we first examined the performance of our LD measure, ER, on two sets of
data. We compared the results with those obtained using the ε measure of Nothnagel et al.
(2002), and a modified measure of ε that will reach the upper limit of one under complete
LD. These results were also compared to those given by the classical LD measure r2 for the
special cases with two loci, demonstrating the similarity between ER and r2 empirically.
Then we evaluated the proposed SNP selection algorithm and conpared it with four other
methods in the literature using two real datasets with 20- and 50-SNPs, respectively. Further
comparative studies were performed on simulated data based on various coalescent models.

Comparisons of multilocus LD measures
Our first dataset depicts 10 loci in complete linkage disequilibrium among them, with the
frequencies of haplotypes 1111111111 and 2222222222 set to be 0.9 and 0.1, respectively.
For this full set of data with 10 loci, ER gave a value of 1.0, correctly reflecting the nature of
complete LD. However, ε yielded a LD measure of 0.9, a value hard to be interpret. More
serious problems were seen when one further evaluated ε with various window sizes. With a
window of size 2 (i.e., considering every two consecutive loci), ε gave a value of merely 0.5.
Since 0.5 is much smaller than 0.9, it might lead to the interpretation that the degree of LD
for the two-locus case is less than that for the 10-locus situation, when in fact both cases
contain loci in complete LD. ER, on the other hand, still yielded a value of 1.0 to signify
complete LD of the two loci involved. Note that the pairwise measure r2 also led to a value
of 1.0. Both ER and ε were also calculated for window sizes of 3–5, and their results,
together with those from sizes 2 and 10, are given in table 1. As can be seen from the table,
ER always produced a value of 1.0 regardless of the number of loci. However, the value of ε
was dependent on the number of loci considered, even when there was complete LD in each
case. Since ε gives smaller value for fewer number of loci, small haplotype blocks may be
missed when the measure is used for block identification. A modified measure, defined as

, where n is the number of loci considered, can easily overcome this problem, as it
now gives a value of 1.0 regardless of the window size (Table 1).

Our second dataset, consisting of 19 SNPs in the gene CYP19, is from Table 3 in Stram et
al. (2003), which was used there for a different purpose. There were a total of 12 observed
haplotypes, with five having frequencies above 5% (.36, .32, .12, .10, .05), while the
remaining seven haplotypes all having frequencies at or less than one percent. We used ER,
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ε and ε′ to examine multilocus patters of the data. Specifically, we calculated LD for the first
n loci, n = 2, middot; middot; middot;, 19, if a measure can be computed. In figure 1(a),
each multilocus LD value is plotted above the number of loci over which the LD is
computed, whereas the log-CPU time is plotted in figure 1(b) in the same fashion. All
computations were carried out on a Pentium 4, 3.2Ghz computer with 1GB of memory,
running on Red Hat Enterprise Linux 4. Several features of these two plots are apparent yet
noteworthy. First, ε is consistently below ER due to its sub-measure nature, whereas ε′, the
modified measure, is much closer to ER. Second, the computational time needed for ER is
rather constant regardless of the number of loci (for the entire range from 2–19 loci) being
evaluated, while that for both ε and ε′ grows exponentially (i.e., log-CPU time is linear, at
least for large number of loci). This difference is dramatic, but not surprising: the number of
haplotypes needed to be considered in computing ER is at most 12 (the number of observed
haplotypes in the data), regardless of the number of loci, n, whereas that involved in the
calculation of ε (or ε′) is 2n. Due to the computational intensity, Nothnagel et al.’s software
package in fact limits the number of loci to be nine. With our own Matlab version, we could
manage up to 17, which took more than 2 hours to compute, whereas ER required only
0.001 second for the same number of loci. We estimated the computational time for ε to be
around 18 hours with an additional locus, and days for two more loci, due to the nature of
exponential growth, and thus they were not attempted. This computational intensity limits
the usefulness of ε (or ε′) for evaluating LD in large haplotype blocks.

Selection of tagging SNPs
20-SNP dataset—We first considered a 20-SNP dataset downloaded from www-
rcf.usc.edu/~stram. This dataset contains the derived haplotypes and the associated
frequencies based on the first 20 loci of the 51-SNP genotype data posted at
http://www-gene.cimr.cam.ac.uk/clayton. There are a total of 31 haplotypes, with five
having frequencies above 5% (0.31, 0.24, 0.09, 0.07, and 0.06). We analyzed this dataset
using our forward selection algorithm with several values of the weight parameter: λ ∈ {0,
0.3, 0.5, 0.8, 1}. For each λ < 1, FSA(λ) was stopped when either threshole δ1 = 0.9 or δ2 = 1
was exceeded. This effectively inactivated the role of ER in the number of SNPs selected, as
discussed in the Methods section. On the other hand, for λ = 1, since the set of SNPs selected
was dependent on ER only, we required δ2 = 0.6 to have an adequate number of SNPs
selected, as HD would not play a role in this case.

For comparison purpose, we also analyzed the same data using four other existing methods
in the literature. They are: the coefficient of determination measure, , of Stram et al.
(2003); the H-clust method of Rinaldo et al. (2005), and the proportion of diversity

explained (PDE; Pi) and the Haplotype  measures given in Table 1 of Weale et
al. (2003). The programs used for these four measures were all downloaded, respectively,
from each of the authors’ websites. To facilitate these comparisons, we limited the
maximum number of tagging SNPs to be up to N = 10, as the programs downloaded (except
H-clust) can handle only a small number due to the all-possible-subset implementations of
their algorithms. More specifically, for each of the algorithm considered in the comparison,
we selected N sets of tag SNPs, each of size N, for N from 1 to 10. To compare the
performances of the tag SNP sets of the same size selected from the different algorithms, we
evaluated them using both the PDE and the RSQ criteria, which represent the general broad
categories of diversity and association, respectively, as discussed in Weale (2003).

Table 2 shows the results with FSA(λ), λ ∈ {0, 0.3, 0.5, 0.8, 1} For each value of the weight
parameter, λ, we report the SNP selected at each iteration and the corresponding HD (for λ <
1) or ER (for λ = 1) value for the set of tag SNPs selected thus far. Also shown in the table
are the RSQ and PDE values of the selected subsets after each iteration. For the case with λ=
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0.5, which gives equal weights to the two optimization objectives, the stopping rule HD(S) ≥
0.9 was achieved at iteration 10. The results show that the selected subset gives satisfactory
performance evaluated under the RSQ and the PDE criteria, as both have reached a high
threshold value of 0.95. The results for the other λ (< 1) values are very similar. For each of
these cases, the stopping rule was reached after 10 iterations, and the RSQ and PDE values
of the selected subsets all reached the high threshold value of 0.95. In fact, although the
orders in which the SNPs were selected were all different among the settings, the final sets
of selected tag SNPs for the various λ values were all the same. The reason for different SNP
selection orders with different λ values is due to the different emphasis on the relative
importance of the two objectives, but it is heartening to see that the different weights all led
to the same final selected set. For the setting with λ = 1, 10 iterations were also needed
before the stopping rule ER(S) ≥ 0.6 was reached. However, the selected set included a SNP
that was not in the common set of SNPs selected with the other λ values, and the
corresponding RSQ and PDE values were slightly lower than the rest.

Figure 2(a) plots the RSQ values for the subsets selected based on RSQ, PDE, FSA(0.5), H-
clust, and , for each N from 1 to 10. Note that the RSQ values for the subsets selected
under RSQ constitute the gold standard (upper limits). As can be seen from the figure, the
RSQ value (0.959) for the 10 SNPs selected under FSA(0.5) matches up almost exactly with
that (0.960) from RSQ, the gold standard. In fact, nine of the 10 selected SNPs from the two
FSA algorithms are in common with those selected under RSQ. For smaller subset sizes
(before our selection criteria were reached), there are greater discrepancies, but our selected
subsets with at least five SNPs still almost achieve the optimal values. On the other hand,
the RSQ value for the 10 SNPs selected under PDE is considerably lower than the gold
standard, explaining only about 80% of the variability. For the 10 SNPs selected under ,
the corresponding RSQ value is yet lower than that achieved by PDE. We are surprised by
the performance of H-clust evaluated with the RSQ criterion, which might be explained by
the amount of missing genotype data present in the dataset. Figure 2(b) shows the results
when PDE is treated as the gold standard. Our results show that all algorithms (except H-
clust) performed well (all close to the optimum) for subsets containing at least five SNPs.
There are much improvements for the H-clust tag SNP sets evaluated under PDE than under
RSQ, but their PDE values are still much lower than the rest, which is again hypothesized to
be (at least partially) due to the missing genotypes.

51-SNP dataset—We have also analyzed the full data with 51 SNPs using FSA(λ) for the
same set of λ values considered for the 20-SNP dataset. The results (not shown, but are
available as Supplementary Information) support our finding from the smaller dataset that
the selected tag SNP sets for all λ values in the mid-range perform satisfactorily with both
the PDE and the RSQ criteria. Furthermore, there is a large degree of consistencies across
the SNP sets selected, with most of the SNPs being common across the sets.

Six simulated datasets—Six datasets, downloaded from
http://www.biostat.umn.edu/~nali/software/data/hotspot60.tar.bz2, were used to further
evaluate the performance of our SNP selection method under various models and to compare
with other methods. Specifically, each of the six datasets represents a different coalescent
model, with the incorporation of a single recombination hotspot. More detailed descriptions
of the models can be found in Hudson (2002) and Li and Stephens (2003), and in the
footnote of table 3 in the current paper. For each dataset, there are 60 haplotypes, arising
from approximately 50 SNPs, with the exact number given in table 3 (column #SNP). Note
that these SNPs are not necessarily within a single haplotype block. Both FSA(0.5) and H-
clust were applied to each of the six datasets to select tag SNPs. We first selected tag SNPs
using H-clust by setting the threshold to correspond to the pairwise r2 value of 0.95 (Rinaldo
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et al. 2005). Based on the number of SNPs in the above selected set, we then used FSA(0.5)
to select its SNP set of the same size. Since there were no missing genotypes in these
simulated data, we were also interested in exploring our hypothesis that the performance of
H-clust in the 20-SNP real dataset was affected by the missing genotypes. We note that the
other three algorithms used for analyzing the 20-SNP data, RSQ, PDE, and , could not be
used for comparisons here as the numbers of SNPs in the datasets were too large to be
amenable with the programs downloaded from the authors’ websites.

The selected SNP sets of the two algorithms evaluated under the RSQ and the PDE criteria,
for each of the six datasets, are given in table 3. The numbers of tag SNPs selected were all
11 or 12 (column N), with both FSA(0.5) and H-clust performed similarly for five of the
datasets, although FSA(0.5) achieved higher values of the criteria in most cases. However,
in the dataset “Expansion(t=500)”, compared to H-clust, FSA(0.5) captured almost twice as
much as the variability, evaluated under both of the criteria. In summary, FSA(0.5)
performed reasonably well for the datasets simulated from various coalescent models. In the
only case in which both the RSQ and the PDE criteria were below 90%, it actually
outperformed H-clust the most. Overall, the results seem to be consistent with our
hypothesized effect of missing data on H-clust, as it performed quite well for five out of the
six datasets without missing genotypes. It would be of interest in a future study to
investigate the underlying causes for the diminishing performance of the algorithms
(especially the H-clust algorithm) on the dataset simulated under the “Expansion(t=500)”
model.

Discussion
In this paper, information theory is employed to study linkage disequilibrium and to select
tagging SNPs in haplotype blocks. Specifically, we propose a multilocus LD measure based
on relative entropy, which is a quantity between 0 and 1, with 0 corresponding to linkage
equilibrium while 1 signaling complete linkage disequilibrium. Furthermore, a larger value
of the measure indicates greater distance between the true (observed) haplotype distribution
and the expected haplotype distribution under linkage equilibrium, signifying greater degree
of linkage disequilibrium.

We compared and contrasted the properties and performances of our proposed measure ER
with those from two other LD measures, ε and r2, and a modified measure of ε, ε′. We
showed, both analytically and empirically, that in the special case with two loci, ER matches
up well with r2. The multilocus LD measure ε, on the other hand, is demonstrated clearly to
be lacking some of the desirable properties. The measure being dependent on the number of
loci considered rather than just on the degree of LD among the loci is a major defect.
However, as we have also shown, a slight modification of ε can lead to a measure that
effectively eliminates these problems.

The improved properties of ε′ notwithstanding, ER is computationally more efficient than ε
or ε′. By expressing the relative entropy as shown in equation (1), which makes use of the
convention that 0 log 0 = 0 (see Appendix A), the formula can deal with as many loci as
needed. This is because, in practice, the number of observed haplotypes (especially if the
loci are within a haplotype block) is much smaller than the number of all possible
haplotypes 2n. On the other hand, both ε and ε′ consider all 2n haplotypes, severely limiting
their computational feasibility.

Note that since our “true” and “expected” haplotype distributions are estimated from the
observed data, our LD measure is thus only an estimate, whose accuracy is dependent on the
amount of data available. It should also be noted that haplotypes are usually not observable
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in most studies; they (and their frequencies) are in fact estimated from genotype data.
Hence, another level of uncertainly is added. It would be important to investigate the
statistical properties of the estimate from the observed data, although this is not within the
scope of the current paper.

As a second major focus, we also propose an information-based measure for selecting tag
SNPs. Combining two broad criteria discussed in the literature for SNP selection, namely,
haplotype diversity and association, we seek to devise a unified approach that takes both
criteria into account. This offers a greater degree of flexibility, as this approach presents a
class of optimization criteria, including the haplotype diversity and association criteria as
two special cases. More importantly, it is hoped that more information is being utilized by
combining both objectives. Knowledge of a scientific investigator can be incorporated
through the specification of the weighting parameter. The threshold values for terminating
the selection process can also be set by the investigator to reflect the degree of tolerance for
the amount of information loss. In particular, one may set δ2 = 1 if there is a great deal of
uncertainly about a suitable level of LD before termination, as we have done for all the
analyses performed in the current paper with λ < 1. This amounts to relying completely on
the more easily managed index of haplotype diversity for terminating the selection process,
although note that LD still plays an important role in which SNPs are being selected unless
the weighting parameter λ is set to be 0.

Our limited experiments with the forward selection algorithm for various weights indicate
that taking both haplotype diversity and linkage disequilibrium into account seems to yield
more satisfactory results than observing either one alone. By satisfactory results, we mean
the final selected tagging SNPs attaining near optimal values under two different evaluation
criteria in the literature. Since a consensus on what should be the best criterion for
evaluating a set of SNPs selected is lacking, our algorithm's ability to compromise between
two different objectives, yet still achieving near optimal results in either one, seems to be
quite a desirable one. This is a strength unmatched by some other selection methods, as we
note that the tagging SNPs selected under the proportion of diversity explained criterion is
far from reaching the optimal value set by the haplotype R-square criterion. Furthermore,
despite different selection orders of SNPs with different weights, the final tagging sets show
a large degree of consistencies as long as the parameters are in the mid range. Not only that
the sizes of the sets are similar, but most of the SNPs selected are also common across the
sets. Based on these results, we would recommend against setting λ = 0 or λ = 1 (i.e., based
solely on the haplotype diversity or the association criteria), or a value close to one of the
two extremes.

Extensive evaluations of the proposed SNP selection method and comparisons with four
other methods in the literature seem to demonstrate the value of our algorithm, as it
outperformed the others in most cases. However, we note that the comparison with H-clust
in the 20-SNP dataset might not be completely fair, as H-clust is based on SNP genotypes,
some of which were missing in the data. Furthermore, as with other heuristic methods, such
as those based on principal component analysis (Meng et al. 2003; Horn and Camp 2004;
Lin and Altman 2004), H-clust was not designed to optimize either of the two broad
categories of criteria, and thus the performances of the selected SNP sets are harder to
evaluate under our framework.

In addition to the flexibility and the potential efficiency that our proposed selection method
may offer, another major advantage of the proposed approach is its computational
feasibility. The stepwise fashion of the proposed algorithms can handle a much larger
number of loci (such as our 51-SNP dataset or the six simulated datasets) than any all-
possible-subset algorithm, the type of approach adopted by most of the current tag SNP
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selection methods. Although we note that this is not an inherent problem, as most other
tagging SNP selection algorithms can easily be implemented in a stepwise fashion. As
mentioned before, in addition to the forward selection algorithm, backward selection as well
as forward and backward stepwise algorithms have also been implemented in our software.
Although satisfactory results for all datasets explored were achieved using the forward
selection algorithm, it is possible that a backward or a stepwise selection one may yield
better results with other data. Regardless of which of the four types of algorithms are used,
their greedy nature may lead to suboptimal selected sets, although optimum/near optimum
subsets have been selected in the cases that we have investigated. Thus, we have also
implemented the all-possible-subset selection option in our software, which may be used
when the number of SNPs in the full set is small, say less than 25.
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Appendix A: Proof of inequality (2)
Note that the definition of relative entropy in (1) is equivalent to

(A1)

where xj denotes the allele of the jth SNP. This expression is simplified to the definition in
(1) by noting the convention that 0 log2 0 = 0. This simplification leads to computational
efficiency, as most of the 2n terms under the summations are zero and thus do not need to be
considered in the computation. However, the definition in (A1) lends itself easily to proving
the following two facts:

where H(X1, ···, Xn) is the joint entropy of the n SNP variables under the haplotype
distribution p. From these facts, it is then easily seen that
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Appendix B: Proof of properties of equation (3)
a. From the properties of K–L distance and the definition of ER, it is obvious that 0 ≤

ER ≤ 1. The lower bound 0 is obtained when , which is
the necessary and sufficient condition for LE. On the other hand, under complete
LD, there are only two haplotypes with nonzero probabilities, and they are the same
as the allele frequency at each locus. Thus, H(X1, ···, Xn) = H(Xj), 1 ≤ j ≤ n, and
consequently, H(X1, ···, Xn) =maxj H(Xj).

b. For two loci Xj and Xk, E(Xj, Xk) = H(Xj)+ H(Xk) − H(Xj, Xk), which is usually
referred to as mutual information, I(Xj; Xk), between the two variables. This
relationship (among individual entropies, joint entropy, and mutual information) is
illustrated in figure 1. Let us denote by j and k the alleles of the two loci, both of
which take values in {1, 2}. Furthermore, let pjk, pj. and p.k denote respectively the
probability of haplotype jk, alleles j and k, j, k =1, 2. Then

Let Djk = pjk − pj.p.k, j, k = 1, 2. Applying Taylor series expansion, we have

where the coefficients are

When |Djk/pj.p.k| ≤ 1 for all j, k = 1, 2, the second term of the above formula (triple sums) is
much smaller compared to the first term, and thus . This condition is met when
there is evidence of LD with the haplotype composed of the two minor alleles being absent.
Since both ER and r2 are 1 under complete LD, we have

thus Emax ≈ 1/2 ln 2. Consequently, ER ≈ r2 under the conditions discussed above. Note that
this is a sufficient condition, although it may not be necessary for the two measures to yield
similar values.
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Figure 1.
Comparison of multilocus LD measures for the first n SNPs, n = 2, ···, 19: (a) LD values,
and (b) Logarithm of CPU times in seconds. Note that for ε and ε′, due to the computational
intensity, the LD values and CPU times were evaluated only to up 17 loci.
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Figure 2.
Evaluations of tagging SNP sets of size N, N = 1, ···, 10, selected from the 20-SNP dataset
with FSA(0.5), H-clust, , RSQ, and PDE; (a): evaluated under the RSQ criterion; (b):
evaluated under the PDE criterion.
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Table 1

Outcomes from four LD measures with various number of loci (window sizes). Note that for r2, only pairwise
LD value is available.

No. Loci ER ε ε′ r2

2 1.0 0.50 1.0 1.0

3 1.0 0.67 1.0 -

4 1.0 0.75 1.0 -

5 1.0 0.80 1.0 -

10 1.0 0.90 1.0 -
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