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Abstract
A series of nitrofuranylamide and related aromatic compounds displaying potent activity against M.
tuberculosis has been investigated utilizing 3-Dimensional Quantitative Structure-Activity
Relationship (3D-QSAR) techniques. Comparative Molecular Field Analysis (CoMFA) and
Comparative Molecular Similarity Indices Analysis (CoMSIA) methods were used to produce 3D-
QSAR models that correlated the Minimum Inhibitory Concentration (MIC) values against M.
tuberculosis with the molecular structures of the active compounds. A training set of 95 active
compounds was used to develop the models, which were then evaluated by a series of internal and
external cross-validation techniques. A test set of 15 compounds was used for the external validation.
Different alignment and ionization rules were investigated as well as the effect of global molecular
descriptors including lipophilicity (cLogP, LogD), Polar Surface Area (PSA), and steric bulk (CMR),
on model predictivity. Models with greater than 70% predictive ability, as determined by external
validation, and high internal validity (cross validated r2 > .5) have been developed. Incorporation of
lipophilicity descriptors into the models had negligible effects on model predictivity. The models
developed will be used to predict the activity of proposed new structures and advance the
development of next generation nitrofuranyl and related nitroaromatic anti-tuberculosis agents.

1. Introduction
There is an urgent need today for new anti-tuberculosis agents with novel mechanisms of
action. The global incidence of tuberculosis continues to rise, with a third of the world's
population currently infected, yet there have been no new classes of antimycobacterial agents
approved for use in forty years.1 The efficacy of the currently available agents used in standard
Tuberculosis (TB) treatment regimens is severely limited by several factors; including long
treatment regimens, multiple drug treatment regimens, drug interactions, and drug resistance.
The emergence of resistance, particularly Multi-Drug Resistant Tuberculosis (MDR-TB) and
Extensively Drug Resistant Tuberculosis (XDR-TB), is particularly concerning. A recent
report released by the World Health Organization estimated that the incidence of TB drug
resistance (resistance to one drug in standard TB regimen) was as high as 57% in some
countries, while multi-drug resistance was 14%.2 Novel agents are needed that can bypass
resistance mechanisms, that can treat the latent phase of infection shortening the duration of
tuberculosis treatment, and that are compatible with HIV co-therapy by possessing low drug
interaction rates.3, 4
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Toward these goals, our laboratory has been developing a series of nitrofuranyl compounds
with potent wholecell activity against M. tuberculosis.5-11 Figure 1 shows the three major
scaffolds in the nitrofuran series that have been examined so far. The series originated from a
screen for TB cell wall inhibitors that produced a nitrofuran hit with a respectable MIC activity
and low molecular weight.5 Subsequent lead optimization efforts led to compounds with
activity against the tuberculosis bacilli falling into the nanomolar range. Importantly, these
compounds exhibit activity against both actively growing and latent bacilli, which is believed
to be a beneficial attribute of potential new anti-tuberculosis agents.10 Although the in vitro
activity looks very promising for this nitrofuran series, poor solubility and metabolic instability
have necessitated the development of further generations of nitrofuran agents that can
overcome these issues. Because the exact mechanism of action and cellular target of these
compounds remains unclear; ligand-based drug design techniques were employed to guide the
synthesis of future generations of nitrofuran compounds, as described herein.

Quantitative Structure-Activity Relationship (QSAR) techniques are methods used to correlate
physicochemical descriptors from a set of related compounds to their known molecular activity
or molecular property values.12 QSAR models are a useful method of ligand-based drug design
when the molecular target for the compounds being investigated is either unknown or has not
been structurally resolved. The descriptors used to develop QSAR models can range from
molecular descriptors for lipophilicity (cLogP and LogD)13, 14, steric bulk (Molar
Refractivity, volume)15, and electrostatics (polar surface area, Coulombic charges, dipole
moments)16 to 3-dimensional descriptors that involve alignment of the compounds, and
calculating steric and electrostatic values using charged probe atoms at grid lattice points
(CoMFA)17 or 3-D similarity indices (CoMSIA).18 Several quantitative structure-activity
relationship models were developed in this study. Different molecular alignment rules were
investigated in order to obtain models with high predictivity. Compounds with ionizable
functional groups were investigated in their charged and uncharged states. Descriptors
including cLogP, LogD, molar refractivity (CMR), polar surface area (PSA), and 3D CoMFA
and CoMSIA variables were investigated for their ability to predict and correctly rank whole
cell MIC activity using the method of Partial Least Squares, PLS.19

Since the activity data utilized in this 3D-QSAR study is whole cell activity expressed as the
Minimum Inhibitory Concentration (MIC, see experimental section), it is assumed that the
activity reflects several processes in addition to compound binding to the biomolecular target.
Compound solubility, mycobacterial cell entry (i.e. passive diffusion or active transport), and
stability to TB metabolism may all contribute to the whole cell activity. Additionally, these
nitro-aromatic compounds are pro-drugs and must be metabolically activated by TB nitro
reductase enzymes as already demonstrated for nitroimidazole agents PA824 and OPC67683
that are currently in clinical development.20-22 The activated form is then believed to interact
with its ultimate molecular target. Because of this multistep process, the development of
reliable QSAR models using whole cell activity is considered to be a difficult undertaking.
However, several groups have reported success in the development of 3D-QSAR models using
whole cell antimicrobial and antitubercular activity recently.23-26 We have attempted to
account for some of the processes mentioned above by investigating the addition of molecular
descriptors that may be important factors for cell entry including lipophilicity and steric bulk
to our 3D-QSAR models and testing the effects of ionized versus neutral compounds on the
3D-QSAR model's validity and predictive power.

2. Training and Test Set Preparation
Figure 2 graphically illustrates the general method followed for the development of the QSAR
models in this study. We began with an initial set of 110 nitrofuran compounds with activity
against M. tuberculosis (as determined by carefully standardized micro broth dilution MIC
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determination method, see experimental section). A test set of 15 compounds was selected
from the remaining compounds for use in external validation. These test set compounds were
selected such that their activity and physical properties (MW and cLogP) were broadly
reflective of the training set characteristics (see experimental section). Tables 1 and 2 list the
training set and test set nitrofuran compounds used in this study, respectively, along with their
calculated molecular descriptors and biological activity. MIC activity originally determined in
μg/mL were converted to micromolar values (μM/mL) and then converted to a pMIC value by
taking Log (1/MIC). The pMIC values were used as the dependent variable in all PLS models
subsequently developed. As a general rule, for a reliable 3D-QSAR model the spread of activity
should cover at least 3 log units and there ideally should be a minimum of 15 to 20 compounds
in the training set.27 The activity range of the nitrofuran compounds ranged from 0.73 to 5.73
pMIC units (see Table 1), a full 5 log activity distribution, and there were 95 compounds in
the training set. Figure 3 shows the training set and test set compounds distributed by their
lipophilicity (cLogP) and molecular weight. The compounds are colored by activity.
Importantly, it should be noted from this preliminary analysis that there is a correlation of
increasing activity with molecular weight but no correlation with increasing cLogP, which may
be expected for mycobacterial entry. We attribute the correlation with increasing molecular
weight to the non-random nature of the data set, as these compounds result from the systematic
medicinal chemistry development of the series from a low molecular weight, lower potency
screening hit to high potency, higher molecular weight optimized compounds.

When designing a 3D-QSAR model using Comparative Molecular Field Analysis (CoMFA)
or Comparative Molecular Similarity Indices Analysis (CoMSIA) the compounds in the
training and test sets must share a common alignment, assumed to be the active conformation,
and have the atomic charges loaded by a reliable method.28 The compounds used in this study
were built using the Sybyl Molecular Modeling Package of Tripos, Inc.29 The charges were
loaded on all compounds in the training and test sets using the PM3 semi-empirical method
contained in the MOPAC suite.30 Several of the nitrofuran compounds contained ionizable
functional groups that would be expected to carry a charge at physiological pH. In order to
account for this and to investigate the effect of protonating or de-protonating these functional
groups on model predictivity, two sets of models were built for each alignment rule utilized.
The first set of PLS models used all nitrofuran compounds in their neutral state and the cLogP
molecular descriptor for lipophilicity (when a lipophilicity descriptor was used), the second
set of PLS models used ionized nitrofuran compounds, as determined by a major microspecies
calculation (discussed in the experimental section), and LogD as the lipophilic descriptor.

Because the molecular target of the nitrofuran compounds is unknown and the active
conformation remains unclear, multiple alignments for these compounds were studied in an
attempt to generate the optimal PLS model in terms of activity prediction. The first alignment
method specified all nitrofuran compounds be aligned in the same orientation: a sterically
unhindered trans-amide conformation shown in figure 4A. The second alignment method
specified that the compounds were aligned to the minimum energy conformations of several
of the more active nitrofuran compounds. Due to differences in the side chains and steric
hindrance factors, the second method actually consisted of separate alignment rules for phenyl
substituted, benzyl substituted, and hindered tertiary amide nitrofurans. Figures 4B and 4C
show the alignment rules adopted for unhindered phenyl and benzyl substituted nitrofurans.
Sterically hindered tertiary amide nitrofurans were aligned using the rules shown in Figure 4A,
which conform more closely to the minimum energy conformation seen with these compounds
and is the same rule adopted for all compounds in the first alignment method. We note that the
selected conformation of our nitrofuran compounds in 4B and 4C very closely aligns with the
structure of PA824 determined in a recently solved crystal structure.34
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Global molecular and 3D physicochemical descriptors were calculated for all compounds in
the training and test set and used to develop the QSAR models (see experimental section).
Lipophilicity descriptors included cLogP, LogD, and Polar Surface Area (PSA). Molecular
volume and steric bulk were also investigated using molar refractivity (CMR) as a molecular
descriptor. 3D-QSAR methods utilized were CoMFA and CoMSIA. The performance of the
3D models before and after the addition of various combinations of molecular descriptors was
investigated.

3. QSAR Model Building and Validation
The QSAR models investigated in this study were built using the Molecular Spreadsheet tool
in the Sybyl 8.0 suite of Tripos, Inc.29 3-dimensional descriptors were generated using both
CoMFA and CoMSIA methods as described in the experimental section below. The effect of
outlier removal, number of components, and incorporation of molecular descriptors in the 3D
models were investigated for the CoMFA and CoMSIA models generated. The program
SAMPLS was used to gauge the optimum number of components for each model during model
development.35 In order to avoid overfitting the models, a higher component was only accepted
and used if it resulted in an increase of greater than 10% to the cross-validated r2 (q2) values.
Progressive scrambling was performed to confirm the optimum number of PLS components
and dependent variable scrambling was done to check for chance correlation within the models
generated.36-38 The best model was obtained using the following methodology: First, models
were generated for each alignment and ionization rule using both CoMFA and CoMSIA fields
without the addition of molecular descriptors or the removal of any outlier compounds. Next,
the molecular descriptors cLogP, LogD, CMR, and PSA were investigated for their ability to
improve the best CoMFA and CoMSIA models. Following this, the best performing CoMFA
and CoMSIA models at this stage was optimized by the successive removal of outlier
compounds (see discussion below) and finally by region focusing.39

The strength of all the models developed was evaluated by a number of validation methods,
including internal cross-validation, and external test set predictions. The cross validation
methods of Leave-One-Out (LOO) and Leave-Group-Out (10 compound groups) were chosen
to generate cross validated r2 (q2) values and Standard Errors of Prediction (SEP).
Bootstrapping (10 runs) was utilized to calculate confidence intervals for the r2 and Standard
Errors of Estimate (SEE). The equations for q2 and standard errors are given below. Models
generated were used to predict activity for the test set compounds and generate activity
correlated r2 values. Coefficient of determination, r2, values and standard errors were generated
for the final models developed. Models were considered questionable if the difference between
cross-validated r2 (q2) and non-validated r2 was > 0.3.40

[Eq 1]

where:

Ypred = predicted activity

Yactual = experimental activity

Ymean = the best estimate of the mean

[Eq 2]
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where:

n = number of compounds

c = number of components

[Eq 3]

4. Results and Discussion
Descriptions of the 3D-QSAR models built are given in Table 3; the validation data and
predictive ability are shown in Table 4. PLS models which used CoMFA generated 3D
descriptors generally outperformed models using CoMSIA 3D descriptors. It should be noted
that all 5 CoMSIA fields were used in the PLS (steric, electrostatic, hydrophobic, h-bond donor,
and h-bond acceptor) built in this study. The rules of alignment and ionization had a strong
influence on the final performance of the models generated. Models using ionized nitrofuran
compounds, Figure 5, generally performed worse than the neutral compound models, with the
exception of model 2 and 10, both of which had higher test set r2 and non-validated r2 values,
but lower internal validation, q2, values. This may be reflective of the need for neutral
compounds to passively diffuse into the mycobacterial cell, or possibly the binding of the
nitrofuran compounds to their biomolecular target in a neutral state. Models generated using
alignment 1, in which all nitrofuran compounds adopted the sterically unhindered trans-amide
conformation, also performed significantly worse than those built using alignment 2, in which
compounds adopted one of three minimum energy conformations. Test set activity predictions
were particularly poor for the alignment 1 QSAR models, and the cross-validation also
demonstrated that these were much weaker models compared with alignment 2 models. In light
of this data, the decision was made to advance model 3 (CoMFA, alignment 2, neutral
compounds) and model 7 (CoMSIA, alignment 2, neutral compounds) into the next stage of
model development, which involved the investigation of molecular descriptors ability to
improve the model's predictivity.

Global molecular descriptors were added to the 3D-QSAR models developed in an attempt to
account for factors contributing to the MIC including, solubility and cell entry. The addition
of cLogP to Model 3 led to a significant improvement in the cross-validated r2 (internal
validation), but a lower non-validated and bootstrapped r2 (model 9). A similar result was seen
when cLogP was added to CoMSIA fields in a reflective PLS analysis (model 17); the cross
validated r2 values were significantly higher, but the non-validated and test set r2 values were
not an improvement over model 7. The addition of LogD values to model 4 (in order to
investigate ionization) had negligible effect on the internal validity or test set prediction of that
model. Polar Surface Area (PSA) values added to model 3 had a negligible effect on internal
validity of the model and worsened the predictivity, as seen by the decreased performance
against the test set. The addition of CMR as a measure of steric bulk of the nitrofuran
compounds led to slight improvements in the cross-validated r2 values, but again, lower
bootstrapped and test set r2 values. Similarly, various combinations of the molecular
descriptors, as shown in models 13 through 16, did not improve model 3 to any significant
extent Ultimately, the models selected to proceed to step 3 (outlier investigation) were models
3 and 7, which do not incorporate any global molecular descriptors.

Figure 6 shows outlier nitrofuran compounds, the removal of which improved the CoMFA and
CoMSIA models discussed herein. Outlier compounds removed from each model were
determined by analysis of a QQ plot generated by the QSAR analysis tool of Tripos, Inc. The
QQ plot is essentially a normal probability plot of residuals, which is a validated method
specifically developed to detect outliers.40, 41 Compounds with residuals that did not follow
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normal distribution were removed sequentially from the models developed, starting with the
highest deviation from normal distribution. Model 18 was generated by removal of compounds
L6, L64, and L79, all with under-predicted activity. Model 19 was generated by removing 3
more compounds; L4, L53, and L49. Subsequent outlier removal (model 20 and model 21) did
not result in the improvement of the CoMFA models to a significant extent. It can be seen from
the data given in Table 4 that the removal of 6 outliers was optimal in terms of predictive ability
of the CoMFA models as demonstrated by the test set r2 values. Although there was modest
improvement in the internal validity (seen by cross-validated r2 values for CoMFA) by removal
of additional outlier compounds, there was negligible improvement to bootstrapping and non-
validated r2 values. CoMSIA model 22 was generated by removal of six compounds from
CoMSIA model 7 again based upon the residual distribution. The CoMSIA outlier compounds
are shown in Figure 6. Four of the six outlier compounds removed to generate CoMSIA model
22 were also outlier compounds from the CoMFA models (model 18 and model 19). CoMSIA
model 22 showed significant improvement to both cross-validated and non-validated r2 values
but had little effect on the test set r2 values, indicating an improvement in validity without
affecting external predictivity. This model had comparable internal validity and test set
predictivity to our best CoMFA model (model 19), but the bootstrapped and non-validated r2

values were significantly lower. For this reason, model 19 (CoMFA, 6 outliers) was chosen to
take to the final step in the 3D-QSAR development, region focusing.

The compounds in Figure 6 are sorted by whether their activity was over-predicted or under-
predicted. Failure of these compounds to perform well in the QSAR models can be due to
several factors, including inability to align correctly with the training set, inaccurate activity
values, other processes not accounted for (i.e. active transport, prodrug activation, alternate
metabolic routes, increased metabolic stability). Compounds with over-predicted activity may
be subject to metabolic inactivation that can't be accounted for in the QSAR models. Further,
we have demonstrated that L4 has poor solubility that may account for its over-predicted
activity.9 Additionally, as can be seen from Figure 3, compound L4 has extreme values of
molecular weight and lipophilicity which may explain the inability of the generated QSAR
models predict its activity. The trifluoromethyl groups on compounds L49 and L6, both with
under-predicted activity, block metabolism at this site and also increase lipophilicity of these
compounds. This leads to enhanced metabolic stability and facilitated passive diffusion across
the lipophilic mycobacterial cell wall. These factors may have resulted in an improved MIC
for these compounds which the QSAR model was not able to predict. Compounds L64 and
L79 (CoMFA and CoMSIA outliers) both contain a metabolically labile carbamic ester
functionality, cleavage of which could result in an active metabolite. This process may account
for the under-predicted activity of these two compounds. Compound L84 is unique in that it
had a high residual when activity predictions were performed using the CoMSIA model (model
7), but residuals that did not result in outlier removal from any CoMFA model. As can be seen
from Figure 6, for the most part the CoMFA and CoMSIA activity predictions were reasonably
comparable; compounds L84 and L53 were the notable exceptions. The reason for the poor
activity prediction of this compound by the CoMSIA model is not readily apparent.

One method of 3D-QSAR optimization is known as region focusing.39 It involves giving
additional weight to the lattice points in a given CoMFA region to increase the contribution of
those points in a further analysis. Region focusing is used to suppress PLS contributions from
minor descriptors. The result is a new model with increased q2 (cross-validated r2), tighter grid
spacing, and greater stability at a higher number of components. In this study, discriminant
power was used to weight the lattice points by their contribution to the original model's
components (see experimental). Figure 7 shows the CoMFA fields for one of the more active
nitrofuran compounds before and after region focusing. As can be seen from the data for Model
23 in Table 4, the application of region focusing to Model 19 resulted in a significant
improvement to the internal validity of the model, with small to negligible effect to the non-
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validated r2 and test set activity predictions. Relative steric and electrostatic contributions were
calculated from regression coefficients of the PLS models generated. Steric contributions
played a larger role than electrostatic in the final model (model 23). The steric and electrostatic
field contributions to the final model were 74% and 26%, respectively. Model 23 was selected
as the best performing model in this 3D-QSAR study and will be used to predict the activity
and guide future synthetic efforts on next generation nitrofuranyl compounds. Figure 8
graphically represents the biological activity predictions of Model 23. Figure 9 shows the
CoMFA steric and electrostatic contour fields for the final model with the active compound,
L37, overlaid. Figure 10 displays the CoMSIA fields for our best performing CoMSIA model
(model 22). The CoMFA fields indicate that the steric effects are mostly limited to the side
chain, with clear areas seen where bulk is favored and disfavored.

The CoMFA electrostatic fields show regions where positive and negative charge are favored
on both the nitrofuran scaffold as well as the side chain. The blue field near the nitro group
seems to indicate that compounds with less negative charge near the one of the nitro oxygens
are favored; this is most likely due to the contribution of the aryl sulfone and aryl sulfoxide
substitutions at this position in our training set. There is also a clear preference for a positively
charged group at the terminal end of the side chain, which appears to correspond to basic amine
groups at this position in several of the more active compounds in the training set. The CoMSIA
fields (Fig. 10) show steric regions and electrostatic fields that correlate well with what is seen
in the CoMFA fields. Additional fields for hydrophobicity and H-bond donors and acceptors
are shown; this information will be used for optimization of further generations of nitrofuran
compounds.

Cross-validation values must be interpreted with caution when building 3D-QSAR models
with large training sets. This is because redundancy in the data sets can confuse the Leave-
One-Out and Leave-Group-Out validation techniques.37 The Progressive Scrambling method
was developed to overcome this problem.36-38 This method checks the sensitivity of the PLS
model developed to small changes in the dependent variable. The values of Q2, cSDEP, and
dq2/dr2

yy′ are returned and can aid in interpreting the predictivity of the model without the
potentially confusing redundancy.

The Q2 statistic returned is an estimate of the predictivity of the model after removing the
effects of redundancy. It is calculated by fitting the correlation of scrambled to unscrambled
data (r2yy′) to the cross-validated correlation coefficient (q2) (calculated after each scrambling
performed) using a 3rd order polynomial equation. The cSDEP statistic is an estimated
crossvalidated standard error at a specific critical point (0.85 default used in this study) for
r2

yy′, and is calculated from a 3rd order polynomial equation which fits the scrambled results.
The slope of q2 with respect to r2

yy′ is reported as dq2/dr2
yy′, and is considered the critical

statistic. It indicates to what extent the model changes with small changes to the dependent
variable. In a stable model, dq2/dr2

yy′ should not exceed 1.2 (ideally 1). This method was
employed against the final model to verify the number of components used to build the model
and to check the cross-validation against the possibility of such a redundancy in our training
set. Table 5 lists the results of the progressive scrambling of Model 23. For a valid model, as
additional components are added, values of Q2 should be increasing while cSDEP is decreasing,
the slope should fall near unity. While the value of the Q2 statistic may seem low in comparison
to the crossvalidated r2 (q2) value, it must be noted that the introduced noise from scrambling
renders this statistic very conservative. Q2 values above 0.35 are reported to indicate that the
original, unperturbed model is robust.36

Another validation method that was employed in this study was Dependent Variable
Scrambling (Y-scrambling). This method involves scrambling the dependent data in the
training set and then building a PLS model using this scrambled data. The method is used to
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verify that the correlation in the original, unscrambled model is accurate and not a chance
correlation. Ideally, the cross-validated r2 (q2) values returned from the scrambled PLS will
be very low, even negatively correlated. Table 6 shows the results of the Y-scrambling test run
against model 19. This model was chosen because model 23 was built by region focusing model
19, which was been built using unscrambled data. Therefore, Y-scrambling results against
model 23 would not have been easily interpreted.

5. Experimental
Training and Test Set Preparation

All nitrofuranyl compounds investigated in this QSAR study were originally synthesized and
tested for activity in our lab.5-7 Compounds were built using the Sybyl 8.0 molecular modeling
package and charges were loaded using the PM3 semi-empirical method available in the
MOPAC suite. The compounds were minimized using the Powell method with an initial
Simplex optimization and gradient termination of 0.01 kcal/mol (500 maximum iterations).
The global molecular descriptors cLogP and CMR were calculated using ChemBioOffice
2008.32 Polar surface area was calculated using the molecular spreadsheet application in Sybyl
8.0.29 LogD was calculated for compounds at pH 7.4 using the calculator plugin tool in Marvin
4.1.13.33 Ionized compounds were identified by performing a major microspecies calculation
on all compounds in the training and test set at pH 7.4 using the calculator plugin tool of Marvin
4.1.13.33 All compounds were aligned manually as discussed above. The 15 test set compounds
were chosen from the 110 nitrofuran compounds by selecting for diversity using the program,
Selector.42 Selector is an application available in the Sybyl 8.0 molecular modeling suite.29
Atom pairs and 2D fingerprints were used to form 15 diversity clusters by hierarchical
clustering. 1 compound was selected from each cluster, chosen to maximize the spread of
activity data.

QSAR Model Validation
SAMPLS was used to initially select the optimum number of components used in the PLS
models generated35; with the exception noted above that a higher component was selected
only if it resulted in an increase in q2 values of at least 10%. Group cross-validation used 10
groups in all cases. Bootstrapped results were obtained using 10 bootstrapping runs. The
progressive scrambling stability test was performed up to 10 components using 50 scramblings,
10 maximum bins, and 2 minimum bins. The critical point was 0.85 and the seed was 12080.

QSAR Model Development
3-D CoMFA descriptors were generated using c.3 probe atom with a +1 charge and a grid
spaced at 2 Å and extending 4 Å beyond the compounds in all directions. Tripos Standard
CoMFA steric and electrostatic fields were generated using a distance dependent dielectric, no
smoothing, and cutoffs of 30 kcal/mol for each. CoMSIA similarity fields were calculated for
steric, electrostatic, hydrophobic, h-bond donor, and h-bond acceptor using the default
attenuation factor of 0.3. Partial Least Squares analysis was used to build models correlating
descriptors to the dependent variable, pMIC. Optimum number of components was determined
by SAMPLS, cross validation methods, and progressive scrambling. A column filtering value
of 0.5 and CoMFA standard scaling was used in all PLS analyses. Region focusing was
performed by applying a discriminant power weighting factor of 0.3 and new grid spacing
equal to the original.

Antituberculosis Activity Testing
MIC values were determined using the microbroth dilution method and were read by visual
inspection. Two-fold serial dilutions of test compound were prepared in 96-well round bottom
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microtiter plates (Nunc, USA) in 100 μL of the 7H9 broth media (Difco Laboratories, MI,
USA) supplemented with 10% Albumin-Dextrose Complex and 0.05% (v/v) Tween80. An
equivalent volume (100 μL) of broth inocula containing approximately 105 CFU/mL of M.
tuberculosis H37Rv was added to each well to give final concentrations of test compound
starting at 200 μg/mL. The plates were incubated aerobically at 37°C for 7 days and the MIC
was recorded as the lowest concentration of drug which inhibited 90% of growth with respect
to the no-drug control.

6. Conclusions
Using a series of nitrofuranyl compounds with known anti-tuberculosis activity, a predictive
3D-QSAR model has been developed. The effects of compound ionization, multiple
alignments, and the incorporation of global molecular descriptors for lipophilicity, polar
surface area, and steric bulk were investigated for their ability to improve QSAR model
predictivity. Our expectation was that the addition of a lipophilicity descriptor (cLogP or LogD)
and steric bulk descriptor could improve the model's predictivity by accounting for the cell
entry contribution to the MIC of a given compound. We also theorized that polar surface area
and ionization could model the effects of solubility. Interestingly, the addition of molecular
descriptors for lipophilicity, polar surface area, and steric bulk did little to improve the
predictive ability of the model. While in most cases, the addition of the global molecular
descriptors didn't weaken the models significantly, they did little to benefit them either. This
may be due to the fact that most of the compounds in the training set had suitable
physicochemical properties (cLogP 1-5) to penetrate the TB cell wall. As can be seen from
Figure 3, although there is a clear trend of increasing activity with increased molecular weight,
there is little correlation with cLogP in the range that our active compounds fall into. This is
reflected in the QSAR models built in this study.

We noted above that the CoMFA steric field contribution of the final model (74%) greatly
outweighed the electrostatic field contribution. As can be seen from the CoMFA fields shown
in Figure 9 as well as the CoMSIA fields shown in Figure 10, the steric effects were isolated
to the side chain while electrostatic effects were contributed from both the side chain and the
nitrofuran scaffold. We believe this can be explained by the two processes discussed above,
activation of the compounds by a nitro reducing enzyme (electrostatic effects, low steric
contribution) and binding of the compound to its ultimate biological target (electrostatic and
steric contribution). The CoMFA and CoMSIA fields clearly indicate regions of interest (both
to avoid and to target) that will be used when performing CoMFA and/or CoMSIA guided
activity predictions of nitrofurans for proposed synthesis and testing.

Another interesting result that we note is the improved performance of the QSAR models both
in terms of internal validity and external (test set) predictivity when using alignment 2 versus
alignment 1. In alignment 2, the side chains of the tertiary amide nitrofuran compounds adopted
a conformation that was significantly different when compared to the unhindered nitrofurans
and fell into a region not occupied by the unhindered compounds (see Fig. 4A). It is possible
that this is reflecting the dual processes of compound activation and binding to the ultimate
biomolecular target. While it may seem from initial inspection of the CoMFA and CoMSIA
fields in Figures 9 and 10 that these tertiary amide compounds contributed little to the final
model, we point out that the test set included two such compounds whose activity was predicted
with a fair degree of accuracy (within .5 pMIC units).

Further experiments are ongoing to investigate if our best performing models can be expanded
to examine the nitroimidazole class of anti-tuberculosis agents. Preliminary evidence indicates
that CoMFA model 23, discussed here, is suitable to predict MIC activity of these compounds
as demonstrated by the reasonably accurate predictions of MIC's for PA824 (predicted 1.2

Hevener et al. Page 9

Bioorg Med Chem. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



μg/mL, actual 0.5 μg/mL) and OPC67638 (predicted 0.0075 μg/mL, actual 0.006 μg/mL). This
suggests that steric and electronic requirements for entry and nitroactivation are shared by the
nitrofuran and nitroimidazole anti-tuberculosis agents and are major contributors to this QSAR
model.

The final model was optimized by outlier removal and region focusing and validated by a
variety of methods; including cross-validation, progressive scrambling, and test set predictions.
The model developed has high internal validity (cross-validated r2 {q2} above 0.5) and high
predictive ability (test set r2 above 0.7). It is being used to predict the anti-tuberculosis activity
of proposed new compounds and to prioritize their synthesis by activity ranking. We believe
this is an new important tool for the development of next generation nitrofuranyl and related
nitroaromatic anti-tuberculosis agents.9
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Figure 1.
Major scaffolds of the nitrofuran compounds.
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Figure 2.
QSAR Project Flowchart
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Figure 3.
Nitrofuran Training (Diamonds) and Test (Squares) sets distributed by physical properties
cLogP and Molecular Weight and colored by activity (pMIC).
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Figure 4.
Nitrofuran alignment rules used for QSAR studies.
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Figure 5.
Nitrofuran compounds with predicted charge at physiological pH.a,b

a. As determined by major microspecies calculation using MarvinSketch, v. 4.1.13. 33 b.
Physiological pH, 7.4
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Figure 6.
Structures of outlier compounds. a. Outliers from CoMFA Model 19. b. Outliers from CoMSIA
Model 22.
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Figure 7.
Region Focusing. The CoMFA field calculations are shown for L7 before (upper) and after
(lower) region focusing. Electrostatic fields (Left): Blue fields indicate electropositive groups
favored, red fields indicate electronegative groups favored. Steric fields (Right): Green fields
indicate steric bulk favored, yellow fields indicate steric bulk disfavored.
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Figure 8.
Model 23 results: Actual vs. Predicted Activity
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Figure 9.
CoMFA field contour maps for Model 23 and active compound, L37. Electrostatic fields (Left):
Blue fields indicate electropositive groups favored, red fields indicate electronegative groups
favored. Steric fields (Right): Green fields indicate steric bulk favored, yellow fields indicate
steric bulk disfavored.
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Figure 10.
CoMSIA Fields. The CoMSIA Fields from Model 22 are shown below with active compound
L37. A. Steric Fields, Green indicates steric bulk favored, Yellow indicates bulk disfavored.
B. Electrostatic fields, blue indicates positive charge favored, red indicates disfavored. C.
Hydrophobic fields, Yellow indicates favored, gray indicates disfavored. D. H-bond donor and
acceptor fields, Cyan indicates donor favored, Magenta indicates acceptor favored, and red
indicates disfavored.a
a. H-bond donor disfavored fields were negligible at default energy values used for field
generation and are not shown here.
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Table 5
Progressive Scrambling Results, Model 23

Components Q2 cSDEP dq2′/dr2yy′

2 0.337 0.776 0.13
3 0.387 0.750 0.52
4 0.430 0.726 0.78

5 0.432 0.728 1.15

6 0.381 0.763 1.47
7 0.424 0.741 1.48
8 0.393 0.766 1.55
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Table 6
Dependent Variable Scrambling Results, Model 19

Components LOO q2 SEP

1 -0.260 1.210
2 -0.546 1.349
3 -0.498 1.335
4 -0.833 1.486
5 -0.863 1.507
6 -0.827 1.501
7 -0.765 1.485
8 -0.791 1.505

Bioorg Med Chem. Author manuscript; available in PMC 2009 September 1.


