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Previous work has shown that ultrasonic waves propagating through cancellous bone often exhibit
a linear-with-frequency attenuation coefficient, but a decrease in phase velocity with frequency
�negative dispersion� that is inconsistent with the causality-imposed Kramers–Kronig relations. In
the current study, interfering wave modes similar to those observed in bone are shown to potentially
contribute to the observed negative dispersion. Biot theory, the modified Biot–Attenborogh model,
and experimental results are used to aid in simulating multiple-mode wave propagation through
cancellous bone. Simulations entail constructing individual wave modes exhibiting a positive
dispersion using plausible velocities and amplitudes, and then summing the individual modes to
create mixed-mode output wave forms. Results of the simulations indicate that mixed-mode wave
forms can exhibit negative dispersion when analyzed conventionally under the assumption that only
one wave is present, even when the individual interfering waves exhibit positive dispersions in
accordance with the Kramers–Kronig relations. Furthermore, negative dispersion is observed when
little or no visual evidence of interference exists in the time-domain data. Understanding the
mechanisms responsible for the observed negative dispersion could aid in determining the true
material properties of cancellous bone, as opposed to the apparent properties measured using
conventional data analysis techniques. © 2008 Acoustical Society of America.
�DOI: 10.1121/1.2953309�
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I. INTRODUCTION

There is considerable interest in the use of ultrasound to
evaluate bone quality, with investigations of cancellous �tra-
becular� bone playing a prominent role. Cancellous bone
consists of a network of �hard� calcified strands �trabeculae�
through which courses �soft� bone marrow. Methods for
characterizing bone tissue using ultrasound often consist of
measurements of the velocity and attenuation properties of
ultrasonic waves transmitted through the trabecular
network.1–5

The intricate structure of cancellous bone tissue can
complicate measurements. The material architecture is aniso-
tropic, with the trabeculae predominantly oriented along the
direction of stresses experienced by the bone. Consequently,
acquired ultrasonic data depend on the angle of insonifica-
tion relative to the predominant trabecular orientation.6–8 A
large number of ultrasonic investigations of cancellous bone
reported in literature are performed on bovine leg bones or
on human calcanei. In bovine leg bones, insonification is
approximately perpendicular to the trabeculae in the medial-
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lateral �ML� and anterior-posterior directions, and approxi-
mately parallel in the superior-inferior �SI� direction. Human
calcanei are typically insonified in the ML direction, corre-
sponding to the perpendicular orientation.

The porous structure of cancellous bone supports the
propagation of two compressional ultrasonic waves, often
denoted as a fast wave and a slow wave.6,9,10 Depending on
experimental circumstances, such as the porosity and thick-
ness of the bone sample and the insonification angle relative
to the predominant trabecular orientation, the two waves are
sometimes separate and visibly distinct in the time-domain
radio frequency �rf� data; in other instances, only one wave is
observed. One possible contributing factor for the observa-
tion of a single wave in certain cases is that the difference in
the arrival times of the fast and slow waves is small com-
pared to the temporal extent of the ultrasonic pulse, resulting
in a rf trace that appears to be that of a single wave but is, in
fact, the sum of interfering fast and slow waves. In their
investigations of anisotropy in bovine cancellous bone,
Hosokawa and Otani noted that the propagation speeds of the
fast and slow waves converge as the incident ultrasonic field
becomes aligned perpendicular to the predominant trabecular

orientation, resulting in overlap of the fast and slow waves in
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the received rf trace.6 Padilla and Laugier identified the over-
lap of fast and slow waves as a complicating factor in their
study of a stratified model for bone.9 Lee et al. reported that
in the ML direction, fast and slow waves in bovine tibia
overlap and “are observed as if one longitudinal wave
propagates.”10 Haiat et al. also noted the difficulties associ-
ated with multiple-mode propagation.11

In general, investigators have found that the attenuation
coefficient of bone varies linearly or quasilinearly with fre-
quency, and typically report attenuation measurements as the
rate of change in attenuation coefficient with frequency.1,12

This parameter is known as broadband ultrasound attenua-
tion or, if normalized by sample thickness, as normalized
broadband ultrasound attenuation �nBUA�, also known as
slope of attenuation. However, despite the consensus on the
frequency dependence of attenuation coefficient, there is
considerable variation in measurements of the frequency de-
pendence of phase velocity. Many laboratories report that on
average the phase velocity of ultrasonic waves propagating
through cancellous bone decreases with increasing fre-
quency, a phenomenon known as negative dispersion.1,2,4,13

However, an increase in phase velocity with frequency �posi-
tive dispersion� is observed in 10%–20% of investigated
sites.1,2

The observed negative dispersion in the majority of
bone samples analyzed is further confounded when one con-
siders the apparent inconsistencies with the causality-
imposed Kramers–Kronig �KK� relations that relate attenua-
tion to dispersion.12,14–17 According to the nearly local
approximation to the KK relations with one subtraction, an
increase in phase velocity with frequency is expected for
samples exhibiting an approximately linear-with-frequency
attenuation coefficient. If the attenuation coefficient varied
strictly linearly with frequency, the dispersion curve would
be positive and logarithmic.12,15,16 The inconsistencies with
the KK relations are especially troubling in light of evidence
that they are valid even under conditions in which the attenu-
ation coefficient and phase velocity exhibit complicated
behavior.18

Currently, dispersion is not a widely used metric for
clinical bone quality analysis. However, the negative disper-
sion measured in cancellous bone suggests that evaluating
the material properties of bone using current data analysis
techniques may be compromised because they result in the
measurement of “apparent” material properties instead of the
underlying “true” material properties. Consequently, a better
understanding of the dispersion characteristics of cancellous
bone, including the mechanisms responsible for the observed
negative dispersion, could aid in determining the true mate-
rial properties of cancellous bone, as opposed to the apparent
properties measured using conventional data analysis tech-
niques.

In a previous letter, our laboratory proposed that nega-
tive dispersion in cancellous bone can arise when rf signals
consisting of overlapped fast and slow waves are analyzed as
if they are a single longitudinal wave.19 In the current inves-
tigation, we extend and enhance this proposed mechanism by
using theoretical and experimental results of ultrasonic wave

propagation in bone obtained by previous investigators as a
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basis to generate simulated fast and slow waves that are con-
sistent with the nearly local approximation to the KK rela-
tions. We then use the simulated fast and slow waves to
create a “mixed” wave form consisting of overlapping fast
and slow waves, and then demonstrate that analyzing the
mixed wave forms may contribute to the observed negative
dispersion in cancellous bone.

II. THEORY

We considered theories of wave propagation in bone to
aid in determining appropriate input values for the param-
eters used in our simulations. Ultrasonic wave velocity in
bone has been extensively modeled using Biot theory,7,8,20–28

modified Biot–Attenborough theory,7,10,29,30 and stratified
media theory.7,9,31–34 Each of these models predicts the exis-
tence of fast and slow waves; however, the stratified model
predicts that only the fast wave propagates at perpendicular
insonification. Because our simulations involve two propa-
gating compressional waves, we elected not to explore the
stratified model in this study. We note, however, that actual
bone structures are unlikely to be rigorously perpendicular to
ultrasound wave propagation at any orientation, resulting in
the presence of multiple modes even for nominally perpen-
dicular orientations.

The Biot and modified Biot–Attenborough models are
typically used to predict the phase velocities of fast and slow
waves as functions of porosity, defined as �1−volume frac-
tion of bone�. Each model has been empirically extended to
include angle-dependent parameters to account for the aniso-
tropy of cancellous bone.7 Because the existing literature in-
cludes slightly different implementations of each theory, de-
tails of the theoretical formalisms we use to calculate phase
velocities are included below.

A. Biot theory

Biot theory considers the motions of the fluid and solid
components of a porous material. Input parameters consist of
physical and mechanical properties of the fluid and solid
components of the propagation medium. The input param-
eters are used to predict fast and slow compressional waves
corresponding to in-phase and out-of-phase motions between
the fluid and solid. Energy losses are due to viscous interac-
tions at interfaces.

Biot theory gives rise to three elastic parameters P, Q,
and R given by

P =

�por�Ks

Kf
− 1�Kb + �por

2 Ks + �1 − 2�por��Ks − Kb�

D

+
4�b

3
, �1a�

Q =
�1 − �por −

Kb

Ks
��porKs

, �1b�

D
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R =
Ks�por

2

D
, �1c�

where D=1−�por− �Kb /Ks�+�por�Ks /Kf� and Ks is the bulk
modulus of the solid material, Kf is the bulk modulus of the
fluid, Kb is the bulk modulus of the elastic frame, �b is the
shear modulus of the elastic frame, and �por is the porosity
�volume fraction of fluid�.

If the solid material is assumed to be isotropic, the bulk
modulus Ks can be related to the intrinsic elastic parameters
of the solid by

Ks =
Es

3�1 − 2�s�
, �2�

where Es and �s are Young’s modulus and Poisson’s ratio for
the solid. Young’s modulus of the elastic frame of the porous
structure Eb is determined from the porosity and Es through
the power law relationship

Eb = Es�1 − �por�n. �3�

If the frame is assumed to be isotropic, its bulk and shear
moduli Kb and �b can be written as

Kb =
Eb

3�1 − 2�b�
, �4�

�b =
Eb

2�1 + �b�
, �5�

where �b is Poisson’s ratio for the frame.
Although Biot theory assumes an isotropic medium, it

has been empirically extended to apply to anisotropic porous
materials through exploitation of the power law relationship
between Eb and Es. The exponent n in Eq. �3� depends on the
angle of insonification relative to trabecular alignment.
Hosokawa and Otani found n=1.46 in the parallel orientation
and n=2.14 in the perpendicular direction.6 Williams found
that n has a value of 1.23 when cancellous bone is insonified
parallel to the trabeculae, and a value of 2.35 when insonifi-
cation is perpendicular to the trabeculae.26 Those values for n
were adopted by Lee et al. to construct an angle-dependent
Biot model.7 In the current study, we elected to use the val-
ues established by Williams and later employed by Lee et al.,
so we set n=1.23 and n=2.35 for the parallel and perpen-
dicular directions, respectively.

Biot theory also includes mass coefficients to allow for
viscous and inertial drag effects. These coefficients are given
by

�11 + �12 = �1 − �por��s, �6a�

�22 + �12 = �por� f , �6b�

�12 = − ��tort��� − 1��por� f , �6c�

where � f and �s are the densities of the fluid and solid com-
ponents and �tort��� is a structural factor known as the dy-
namic tortuosity. We have used the subscript tort to distin-

guish the tortuosity ��tort���� from the attenuation coefficient
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������. The dynamic tortuosity was introduced by Johnson
et al. as

�tort��� = ���1 +
2

�
� i	

�� f
�1/2� , �7�

in which � is the viscous characteristic length and 	 is the
fluid viscosity.35 The tortuosity parameter �� is given by

�� = 1 − s�1 − 1/�por� , �8�

where s is a parameter derived from a microscopic model of
a frame moving in a fluid. Other investigators have consis-
tently let s=0.25.6,7,25,26

The elastic parameters and mass coefficients are used to
construct a characteristic equation given by

	�2�11 − k2P �2�12 − k2Q

�2�12 − k2Q �2�22 − k2R
	 = 0, �9�

whose roots are the wave numbers of the fast and slow
waves. The solutions are

k2 = �2�B 
 
B2 − 4AC

2A
� , �10�

where

A = PR − Q2, �11a�

B = R�11 + P�22 − 2Q�12, �11b�

C = �11�22 − �12
2 . �11c�

The phase velocities for the fast and slow waves are then
calculated by vphase=Re�� /k�, resulting in

vfast = Re�� 2A

B − 
B2 − 4AC
�1/2� , �12a�

vslow = Re�� 2A

B + 
B2 − 4AC
�1/2� , �12b�

where Re� � returns the real component of a complex num-
ber.

B. Modified Biot–Attenborough model

The modified Biot–Attenborough model, proposed by
Roh and Yoon, is a phenomenological approach for modeling
wave propagation through a medium with cylindrical
pores.7,10,29,30 It allows for both viscous and thermal energy
dissipations but requires empirically determined input pa-
rameters. We follow the formulation given by Lee et al.7 The
equation of continuity for one-dimensional wave propagation
through a circular cylindrical pore is

− � f
��v�
�x

=
��

�t
, �13�

where � f is the fluid density and �v� is the average particle
velocity over the cross section of the pore. The equation of

motion is given by
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�p

�x
= �c���

��v�
�t

, �14�

where p is the acoustic pressure and �c��� is the complex
density given by

�c��� = � f�1 − 2��ei�/2�−1T���ei�/2��−1, �15�

where

T���ei�/2� =
J1��ei�/2�
J0��ei�/2�

, �16�

in which J0 and J1 are the zeroth-order and first-order cylin-
drical Bessel functions. The dimensionless parameter � is
related to the size of the viscous boundary layer at the pore
wall and may be written as

���� = as1��/��1/2, �17�

where a is the pore radius, � is the kinematic viscosity of the
fluid, and s1 is a boundary condition parameter representing
the pore frame rigidity.

When thermal effects are considered, the complex com-
pressibility of the fluid Cc��� is given by

Cc��� = �
� fcf
2�−1�1 + 2�
 − 1�

��NPr
1/2�ei�/2�−1T��NPr

1/2�ei�/2�� , �18�

where cf, 
, and NPr are the compressional speed, specific
heat ratio, and Prandtl number of the fluid, respectively.
When the model is extended to a material consisting of an
ensemble of cylindrical pores, the wave number for the fast
wave is given by

kfast = �tort� kc
2ks

2

�1 − �por�s2kc
2 + �por

s2 ks
2�1/2

, �19�

where �tort is the tortuosity, �por is the porosity, ks=� /cs is
the wave number of the pore frame, s2 is a phase velocity
parameter, and kc is the complex frequency-dependent wave
number of the pore fluid given by

kc��� = ��Cc����c����1/2. �20�

The wave number for the slow wave is constructed in a simi-
lar fashion, under the assumption that the slow wave velocity
tends to zero at low porosities. This wave number is given by

kslow = �tort� kc
2kg

2

�1 − �por�s2kc
2 + �por

22 kg
2�1/2

, �21�

where kg=� /cg is the wave number of a hypothetical fluid
with an extremely low �approaching zero� wave velocity.
The phase velocities for the fast and slow waves are found
using vphase=Re�� /k�, resulting in

vfast = Re� �

�tort
� �1 − �por�s2kc

2 + �por
s2 ks

2

kc
2ks

2 �1/2� , �22a�

vslow = Re� �

�tort
� �1 − �por�s2kc

2 + �por
s2 kg

2

kc
2kg

2 �1/2� . �22b�

The phase velocity parameter s2 in Eqs. �19� and �21� deter-

mines the functional form of the phase velocity as a function
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of porosity. Lee et al. introduced an empirical anisotropy to
this parameter and found that s2=0.5 at parallel insonifica-
tion and 1.7 at perpendicular insonification.7 We adopted
those values for s2 in the current study.

C. Biot and modified Biot–Attenborough model
predictions

The input parameter values for each model are listed in
Table I, and the resultant phase velocities at 500 kHz for the
fast and slow waves as functions of porosity for both perpen-
dicular and parallel insonifications are shown in Fig. 1.

As indicated in Fig. 1, the angle-dependent Biot and
modified Biot models predict that when insonification is par-
allel to the trabecular orientation, corresponding to the SI
direction in bovine leg bones, the velocities of the fast and
slow waves remain distinct and moderately different over a
wide range of porosities, including those within physiologi-
cal ranges, and eventually converge toward the same value
only at extremely high porosities. At a porosity of 0.85, Biot
theory predicts that in the parallel orientation the difference
in the velocities of the fast and slow waves is about
1180 m /s, whereas the modified Biot model predicts a dif-
ference of approximately 1320 m /s. Experimentally, the ve-

TABLE I. Input model parameters used to generate the curves in Fig. 1.

Parameter Biot Modified Biot

Solid density ��s� 1960 kg /m3 1960 kg /m3

Fluid density �� f� 1000 kg /m3 1000 kg /m3

Young’s modulus
of solid �Es� 20 GPa
Bulk modulus of
fluid �Kf� 2.28 GPa
Poisson’s ratio for
solid ��s� 0.32
Poisson’s ratio for
skeletal frame ��b� 0.32
Tortuosity ��tort� Equation �7� 1
Fluid viscosity �	� 10−3 Pa s
Viscous characteristic
length ��� 5 �m
Exponent �n� 1.23 �parallel�

2.35 �perpendicular�
Fluid compressional
speed �cf� 1500 m /s
Solid compressional
speed �cs� 3800 m /s
Kinematic viscosity
of fluid ��� 1�10−6 m2 /s
Specific heat ratio
of fluid �
� 1.004
Prandtl number of
fluid �NPr� 7
Pore radius �a� 0.5 mm
Boundary condition
parameter �s1� 1.5
Phase velocity
parameter �s2� 0.5 �parallel�

1.7 �perpendicular�
locities at parallel insonification were sufficiently different to
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permit Hosokawa and Otani to observe and measure the ve-
locities of distinct fast and slow waves at porosities above
0.8 in samples approximately 9 mm thick.6

The Biot and modified Biot model predictions differ for
the porosity-dependent behavior of the velocities when bone
is insonified in the clinically relevant perpendicular direc-
tion. In that orientation, and at a porosity of 0.85, Biot theory
predicts a velocity difference of 865 m /s, whereas the modi-
fied Biot model predicts a difference of about 200 m /s. Ex-
periments performed while insonifying in the perpendicular
orientation have generally not resulted in the observation of
distinct fast and slow waves. Investigations of the anisotropy
of cancellous bone have demonstrated that the fast and slow
waves become more and more overlapped as the angle of
insonification proceeds from parallel to perpendicular.6

III. SIMULATED WAVE PROPAGATION IN BONE

We simulated the propagation of ultrasound through
bone by generating fast waves and slow waves indepen-
dently using phase velocity and attenuation coefficient pa-
rameters, and then combined the two waves to form a simu-
lated received signal. The input to the simulation consisted of
a simulated broadband reference pulse with a center fre-
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FIG. 1. Predictions of Biot theory �dashed lines� and modified Biot–
Attenborough model �solid lines� for fast and slow wave velocities at
500 kHz as functions of porosity. The top panel shows predictions at parallel
insonification, and the bottom panel shows predictions at perpendicular in-
sonification. The shaded regions indicate the approximate range of physi-
ological porosities for bovine and human cancellous bone measured by other
investigators �Refs. 6, 10, and 25�.
quency of 550 kHz and a −6 dB bandwidth of approximately
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250–850 kHz �see Fig. 2�. An output wave form correspond-
ing to ultrasonic wave propagation through bone was pro-
duced by applying linear transfer functions to the input

output��� = input����Hfast��� + Hslow���� , �23�

where output��� and input��� are the complex frequency-
domain representations of the input reference wave form and
output mixed wave form. We have assumed that wave propa-
gation through bone and bonelike materials is linear, with
speeds of sound and attenuation coefficients independent of
amplitude. Hfast��� and Hslow��� are the transfer functions
for the individual fast and slow waves given by

Hfast��� = Afast exp�− �fast���l�exp�i�
l

vfast���� , �24a�

Hslow��� = Aslow exp�− �slow���l�exp�i�
l

vslow���� ,

�24b�

in which Afast and Aslow are frequency-independent amplitude
compensation factors that correspond to relative initial am-
plitudes of the fast and slow waves upon encountering the
sample, l is the sample thickness, and �fast��� and �slow���
are the attenuation coefficients given by

�fast��� = �fast
�

2�
, �25a�

�slow��� = �slow
�

2�
, �25b�

where �fast and �slow are the values for nBUA. The phase
velocities vfast��� and vslow��� are given by

vfast��� = vfast��0� + vfast��0�2�fast
2 ln� � � , �26a�
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FIG. 2. The time-domain representation of the artificially generated refer-
ence pulse used as input to the simulations is displayed in the upper panel,
and the power spectrum of the pulse is shown in the lower panel.
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vslow��� = vslow��0� + vslow��0�2�slow

�2 ln� �

�0
� , �26b�

where �0 is a chosen reference frequency of interest. The
linear-with-frequency functional form of the attenuation co-
efficients �Eqs. �25a� and �25b�� is taken from the consensus
of the published literature. The phase velocities �Eqs. �26a�
and �26b�� are obtained by applying the nearly local form of
the KK relations to the linear-with-frequency attenuation co-
efficients �Eqs. �25a� and �25b��, under the assumption that
this form of the KK relations is valid for the fast and slow
waves. These expressions for the phase velocities are valid
for small dispersions.

In all simulations, the parameter l was set at 1 cm, a
typical thickness of bone samples investigated in vitro. The
value for the reference frequency �0 /2� was set to 300 kHz,
and vslow��0� was held constant at 1500 m /s, a velocity near
that of sound in water. Based on measurements by Waters
and Hoffmeister, the input values for �fast and �slow were set
to 20 and 6.9 dB /cm MHz, respectively.12 Input values for
vfast��0�, Afast, and Aslow were systematically varied. Based
on the theoretical predictions displayed in Fig. 1, and the
experimental observations of overlapping fast and slow wave
modes, we varied vfast��0� between 1550 and 2100 m /s,
covering a wide range of velocities that result in the overlap
of the fast and slow waves. When vfast was varied, Afast and
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FIG. 3. Results of independent fast and slow wave propagations when the ve
left column to the right column. The top panels display the resultant mixed rf
curves and attenuation coefficients obtained when the mixed wave form is a
vslow �far left panels�, the mixed wave form exhibits positive dispersion and
vslow �middle panels�, the dispersion becomes negative. When vfast is signi
coefficient have complicated frequency-dependent behavior.
Aslow were held constant at 0.3 and 0.7, respectively, so that
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the relative amplitudes of the fast and slow waves were com-
parable to those observed by other investigators.6,12 Deter-
mining appropriate values for Afast and Aslow is challenging,
given the complexity involved in calculating transmission
coefficients specific to individual fast and slow waves. We
therefore created a second set of simulations in which
vfast��0� was held constant at 1600 m /s and Afast and Aslow

were varied between 0 and 1 to determine the effects of those
parameters on the resultant mixed wave form.

Phase velocities were calculated using a phase unwrap-
ping algorithm previously shown to be valid for experimen-
tal data.36

IV. RESULTS

The resulting attenuation coefficients and phase veloci-
ties when vfast��0� was varied between 1550 and 2100 m /s
are shown in Fig. 3. The relative contributions of the fast and
slow waves, Afast and Aslow, were held constant at 0.3 and 0.7,
respectively. The left column of Fig. 3 was created with
vfast��0� set at 1550 m /s, a velocity only 50 m /s faster than
that of the slow wave. Under such conditions, a visual in-
spection of the rf signal reveals no explicit evidence of the
presence of a second wave; furthermore, the attenuation co-
efficient and phase velocities do not exhibit suspicious be-
havior, despite interference taking place in the simulated ul-
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becomes more pronounced, as in the remaining columns of
Fig. 3, a negative dispersion becomes apparent, in spite of
the fact that the frequency-dependent behavior of the attenu-
ation coefficient could be approximated by a linear-with-
frequency fit. When vfast��0�=1600 m /s, the magnitude of
dispersion �difference in phase velocity� for a twofold in-
crease in frequency is approximately −4 m /s, based on a
linear least squares fit over the bandwidth from
400 to 800 kHz, as in the second column of Fig. 3. When
vfast��0�=1700 m /s, the dispersion magnitude is approxi-
mately −15 m /s over the same bandwidth, with a local mini-
mum in phase velocity appearing around 650 kHz. Addition-
ally, the mixed wave form begins to show some evidence of
interference under visual inspection. By the time the fast
wave velocity reaches 2100 m /s �right panel�, the fast and
slow waves are sufficiently separated in time that the disper-
sion curve obtained by analyzing the mixed wave form using
a conventional phase spectroscopy algorithm has large fluc-
tuations, with analogous behavior appearing in the attenua-
tion coefficient.

Results for varying Afast and Aslow are shown in Fig. 4. In
the leftmost panel, the only contribution to the mixed wave
form is the slow wave, and the resulting attenuation coeffi-
cient and phase velocity corresponding to this wave form are
representative of the slow wave input parameters with posi-
tive dispersion. As the contribution of the fast wave increases
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FIG. 4. Results of independent fast and slow wave propagations when the re
fast wave increases from the left column to the right column. The top panels
the corresponding dispersion curves and attenuation coefficients obtained w
left-hand panels display only slow wave propagation �Afast=0, Aslow=1�, resu
right-hand panels show only fast wave propagation �Afast=1, Aslow=0�, aga
middle panels represent mixed wave forms �nonzero amplitudes for both
approximately linear attenuation coefficient.
�that is, Afast becomes proportionally more important com-
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pared to Aslow�, the behavior of the phase velocity changes
and begins to decrease with frequency �demonstrates a nega-
tive dispersion� over portions of the bandwidth. When
�Afast ,Aslow�= �0.7,0.3�, the magnitude of dispersion is
−4 m /s over the 400–800 kHz bandwidth, but the attenua-
tion coefficient can still be described as reasonably linear.
The dispersion becomes approximately −11 m /s over the
same bandwidth when �Afast ,Aslow�= �0.6,0.4�, with the at-
tenuation coefficient beginning to exhibit a modest degree of
not-linear-with-frequency behavior. In each case, the indi-
vidual fast and slow waves each exhibit a logarithmically
increasing �positive� dispersion and a linear-with-frequency
attenuation coefficient. Furthermore, the time-domain rf data
�top panels� do not show explicit evidence of two-wave in-
terference upon visual inspection. The far right column of
Fig. 4 shows the resultant mixed wave and its properties
when �Afast ,Aslow�= �1,0�, corresponding to only fast wave
propagation. As expected, the phase velocity and attenuation
coefficient of the mixed wave form return to mimicking
those of the fast wave with positive dispersion.

V. DISCUSSION

This study uses a linear system approach, in conjunction
with established experimental and theoretical evidence for
multiple-wave propagation in cancellous bone, to generate a
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signals that exhibit negative dispersions similar to those ob-
served in cancellous bone. The frequency-domain linear sys-
tem model has the advantage of simplicity and ease of com-
putation, but this heuristic approach may not adequately
account for all features of ultrasonic propagation through
cancellous bone. Alternative approaches, including those that
take advantage of finite difference time-domain techniques,
may prove better for relating the fast and slow waves to the
material properties of bone.

We have examined the parameter space for this model,
specifically the relative amplitudes and velocities of the fast
and slow waves, in the limited manner outlined in Figs. 3
and 4. The dispersions become more extreme, and more
negative, as the fast and slow waves become closer in mag-
nitude and more disparate in velocity. The detailed nature of
the dispersion, however, depends on complicated interdepen-
dencies among all the parameters in the model, and a rigor-
ous determination of what regions of the parameter space
generate negative dispersion is beyond the scope of this pre-
liminary study.

We have assumed that the attenuation coefficients of
cancellous bone rise linearly with frequency. This approxi-
mation appears to be adequate for frequencies in the hun-
dreds of kilohertz range currently employed in many clinical
devices and is consistent with the general consensus in the
published literature. However, this model may not be rigor-
ously valid for bandwidths extending far into the megahertz
range, especially if longitudinal-to-longitudinal scattering
becomes a significant contributor to the attenuation coeffi-
cient at higher frequencies.

The primary focus of this study is simulated propagation
of multiple longitudinal waves through cancellous bone. Ex-
perimental confirmation of the results presented here would
presumably involve analyzing data from bone samples that
exhibit a negative dispersion when analyzed under the as-
sumption that one wave was present and recovering two
waves when the data are analyzed in a way that permits
distinguishing between fast and slow waves. However, dif-
ferentiating the fast and slow waves can be difficult when
they are strongly overlapped temporally. Our laboratory has
proposed a Bayesian approach for recovering the properties
of each wave and has experimentally confirmed that negative
dispersion can arise from two-mode propagation in a simple
phantom.37,38 A better understanding of the physical proper-
ties of cancellous bone that contribute to the attenuation and
velocity properties of the fast and slow waves may also
prove advantageous in predicting the degree of overlap of the
two signals, which in turn could provide insight about the
dispersion properties of a signal analyzed as if only one wave
were present. To that end, Haiat et al. investigated the effects
of anisotropy and bone volume fraction on the degree of
separation between the fast and slow waves.11

VI. CONCLUSION

Simulated ultrasonic wave propagation of fast and slow
waves with phase velocities and attenuation coefficients,
similar to those predicted and observed in bone, yielded re-

sultant wave forms consisting of interfering waves that ex-

1788 J. Acoust. Soc. Am., Vol. 124, No. 3, September 2008
hibited a decrease in phase velocity with frequency when
analyzed conventionally under the assumption that only one
wave was present. The underlying “true” ultrasonic charac-
teristics of the fast and slow waves were obscured when
analyzed in such a manner. Although the individual wave
modes exhibited strictly linear-with-frequency attenuation
coefficients and positive logarithmic-with-frequency phase
velocities, conventional analysis of the mixed wave forms
frequently resulted in complex frequency dependencies of
attenuation coefficient and dispersion. In fact, the two-
independent mode model used in these simulations produced
resultant mixed wave forms characterized by negative dis-
persion despite the fact that the individual fast and slow
waves exhibit positive dispersions in accordance with the
Kramers–Kronig relations for attenuation and dispersion. In
some simulations, negative dispersion was produced without
substantially changing the coarse visual characteristics of ei-
ther the time-domain signal or the linear-with-frequency be-
havior of the attenuation coefficient. Although further study
is required to determine the validity and role of independent
mode simulations for characterizing bone, the interference of
multiple waves appears to be a possible source for an appar-
ent negative dispersion of the kind observed in cancellous
bone. If the material and structural properties of cancellous
bone give rise to multiple interfering wave modes, recover-
ing the ultrasonic characteristics of the individual wave
modes, instead of those of the mixed wave form, could pro-
vide more robust ultrasonic determinations of bone quality.
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