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Abstract
The recent development of real-time 3D ultrasound enables intracardiac beating heart procedures,
but the distorted appearance of surgical instruments is a major challenge to surgeons. In addition,
tissue and instruments have similar gray levels in US images and the interface between instruments
and tissue is poorly defined. We present an algorithm that automatically estimates instrument location
in intracardiac procedures. Expert-segmented images are used to initialize the statistical distributions
of blood, tissue and instruments. Voxels are labeled through an iterative expectation-maximization
algorithm using information from the neighboring voxels through a smoothing kernel. Once the three
classes of voxels are separated, additional neighboring information is combined with the known
shape characteristics of instruments in order to correct for misclassifications. We analyze the major
axis of segmented data through their principal components and refine the results by a watershed
transform, which corrects the results at the contact between instrument and tissue. We present results
on 3D in-vitro data from a tank trial, and 3D in-vivo data from cardiac interventions on porcine
beating hearts, using instruments of four types of materials. The comparison of algorithm results to
expert-annotated images shows the correct segmentation and position of the instrument shaft.
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INTRODUCTION
The recent development of clinical real-time 3D ultrasound (US) enables new intracardiac
beating heart procedures (Cannon et al. 2003; Downing et al. 2002; Shapiro et al. 1998;
Suematsu et al. 2005), avoiding the use of cardiopulmonary bypass with its attendant risks.
Unfortunately, these images are difficult for the surgeon to interpret, due to poor signal-to-
noise ratio and the distorted appearance of surgical instruments within the heart (Cannon et al.
2003). Automated techniques for tracking instrument location and orientation would permit
augmentation of intraoperative displays for the surgeon as well as enable image-based robotic
instrument control (Stoll et al. 2006).
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Image-guided interventions require the simultaneous visualization of instruments and tissue.
In US-guided procedures, metallic instruments hamper the already difficult visualization of
tissue. Since US is designed to image soft tissue, the strong reflections caused by smooth metal
surfaces saturate the image. This places in shadow the structures behind the instrument, while
the location and orientation of the instrument remain uncertain. Reverberations and artifacts
create more confusion in complex in-vivo images (Figure 1).

We are working on developing US-guided cardiac procedures for atrial septal defect closures.
Our project proposed using rigid instruments through the chest wall, demonstrated in animals.
The feasibility of the procedures and their limitations can be found in (Downing et al. 2002;
Suematsu et al. 2005). Reliable visualization of structures within the heart remains a major
challenge to successful beating-heart surgical interventions and robotic-assisted procedures.

Most work in cardiac imaging relates to heart visualization and diagnosis and not to cardiac
interventions. Knowledge-based constraints, similar to a priori shape knowledge, are used to
segment cardiac tissue in level set approaches in (Lin et al. 2003; Paragios 2003). A
combination of wavelets and deformable models is proposed in (Angelini et al. 2005), active
appearance models are exploited in (Mitchell et al. 2002) and Xiao et al. (2002) use tissue
texture analysis to segment cardiac images. However, little work has been devoted to correcting
the distorted appearance of instruments under ultrasound imaging. Tissue and instruments have
similar gray levels in US images, which makes their correct delineation difficult. Shadows,
reverberations and tip artifacts can puzzle even the trained eye, and the fuzzy interface between
instruments and tissue is confusing to the surgeon (Figure 1).

Researchers have recognized that US imaging of existing instruments is problematic. A variety
of techniques have been applied to improve instrument imaging (mostly for needles since US
has been 2D until recently). These techniques have included material selection, surface
modifications and coatings (Hopkins and Bradley 2001; Nichols et al. 2003; Huang et al.
2006). As 3D US becomes widely available, more complex 3D tasks will be performed under
US guidance, such as robotic interventions, and it is recognized that instruments will need to
be modified for improved imaging. Obviously, techniques like applying coatings to existing
instruments are the most economical, but it is also of value to predict how well alternate
materials would perform.

Ortmeier et al. (2005) track instruments for visual servoing in 2D US images. Their
experimental setup consists of graspers made of various materials (PVC, nylon, polyurethane)
in a water tank. The position and shape of their instruments are known a priori. The head of
the grasper is identified using thresholding and morphological operators. Although fast and
simple, the method identifies the tips of the instrument in an in-vitro setting without the
presence of tissue.

Novotny et al. (2003; Stoll et al. 2006) localize an instrument in a tank setup, but in the presence
of tissue. The instrument is identified from its principal component analysis (PCA) as the
longest and thinnest structure in the US image. However, the instrument and tissue are not in
contact, which would change the geometry of the connected components in the image. Passive
markers are placed on the instrument to help with its localization. Ding et al. (2003) segment
needles from orthogonal 2D projections for breast and prostate biopsy and therapy applications.
They segment needles placed in turkey breast in this fast technique, but need a priori knowledge
about the needle direction and entrance points.

Our work includes instruments as well as tissue and blood in an intensity-histogram-based
analysis and eliminates false positives (FP) using a priori shape information. The following
section describes the methodology of the instrument segmentation, a combination of
expectation-maximization (EM), principal component analysis (PCA) and watershed
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transform (WT) algorithms. Then, we present results on detecting instruments of various
materials from tank studies and in-vivo interventions that demonstrate the successful
delineation of both the position and orientation of the instrument.

METHODS
The algorithm consists of three major steps to segment surgical instruments in
echocardiographic images. First, it estimates from expert-segmented intracardiac images the
gray level distributions of blood, tissue and instruments. It then builds averaged probability
distribution functions for the three classes and labels image voxels through an iterative EM
algorithm. The next step analyzes the major axis of the labeled connected components of the
image through their principal components. The results are refined by a watershed transform
by immersion, which corrects the errors at the contact between instrument and tissue. Our
method for segmentation of 3D US images distinguishes between three classes of voxels: blood,
tissue, and instruments. Figure 2 presents a schematic diagram of the algorithm.

Expectation-maximization
In the expectation-maximization (EM) algorithm (Couvreur 1996), the maximum likelihood
parameters are computed iteratively starting with the initial estimation. The algorithm
converges to a steady state once a local maximum is reached. At each iteration, there is:

• an expectation step: the unobserved variables are estimated from the observed
variables and the current parameters;

• a maximization step: the parameters are re-evaluated to maximize likelihood,
assuming that the expectation is correct.

We employ the EM algorithm to solve a mixture estimation problem and separate blood, tissue
and instruments. We express the distribution function as a sum of three Gaussians

(1)

where the parameters of the Gaussians are

(2)

The parameters of the three distributions are computed in the expectation step. Let X = (x1,
x2,…,xN) be the sequence of observations from the mixture of three Gaussians and θ = {π1,
π2, π3, σ1, σ2, σ3, μ1, μ2, μ3} the parameters that must be estimated from X. The values of the
parameters π, σ and μ will be updated with each iteration until the algorithm converges. The
likelihood maximization then requires maximizing

(3)

In a simplified presentation, the EM algorithm tries to determine the probability of a voxel
belonging to one of the three defined classes Γ1, Γ2, Γ3. Using the parameters θ and Bayes’s
law we can compute P(xi∈ Γj) as

(4)
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The maximization step will update the values of the parameters

(5)

The initial estimate of the three classes is extracted from expert-segmented images. This
provides the statistical distributions of blood, tissue and instruments, as in Figure 3. Each
observation is then approximated from the neighboring voxels through a smoothing kernel.
The histograms of the three classes are not fully separated, as seen in Figure 3. The main
uncertainty occurs at the overlap between tissue and instrument intensities.

As the separation between blood and the other two classes is straightforward, the final goal of
the algorithm is to split the uncertainty class between tissue and instrument. Voxels are labeled
iteratively until the rate of change between iterations becomes smaller than a given limit. Due
to the larger number of tissue voxels in the observation, the maximum likelihood parameters
tend to give priority to tissue over instrument, if weights π are equal. For that reason, we gave
larger weights to the instrument distribution. Since the percentage of instrument voxels is not
known in advance, the weights are set empirically: 1 for blood, 1 for tissue and 3 for instrument.
The number of iterations for convergence of the algorithm can vary slightly, and more
importantly, the number of voxels correctly classified as instrument is increased.

Neighboring Information
The second stage of the method uses spatial measures based on the shape and size of instruments
to correct for misclassified voxels. The assumption imposed here is that instruments are long
and thin. We employ three kernels around a central voxel (CV), as seen in Figure 4:

• μC : a central kernel (3×3×3), smaller than the size of instruments;
• μN : a larger neighboring kernel (7×7×7 excluding the central kernel);
• μB : a large background kernel (21×21×21 excluding the neighboring kernel).

The relations between the three kernels aim to correct for voxels labeled incorrectly. The
kernels are applied to the labeled image, which consist of labels for blood, tissue and
instrument. We compute median values for each kernel, to represent the majority of classified
voxels. For instance, if μC is close to tissue, μN to instrument and μB to blood, this corresponds
to instrument voxels misclassified as tissue on the instrument shaft placed in the blood pool.
Based on observations of in vivo images, there are three situations to consider:

• small volumes misclassified as tissue within the instrument shaft or tip (an instrument
is more likely to be surrounded by blood)

IF μC ~=tissue AND μN ~=instrument AND μB ~=blood THEN CV ==instrument;
• small volumes mislabeled as blood within volumes labeled as instrument (there is no

blood in instruments and not likely in large tissues)

IF μC ~=blood AND μN ~=instrument THEN CV ==instrument;

IF μC ~=blood AND μN ~=tissue AND μB ~=tissue THEN CV ==tissue.
• small volumes misclassified as instrument within large volumes of tissue (instruments

are bigger and not fully covered by tissue)

IF μC ~=instrument AND μN ~=tissue AND μB ~=tissue THEN CV ==tissue.

This neighboring information step was designed for in vitro data.

Linguraru et al. Page 4

Ultrasound Med Biol. Author manuscript; available in PMC 2008 December 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Principal Component Analysis
Next, principal component analysis (PCA) (Jackson 1991) is used to detect candidates for the
instrument shaft. A practical way to compute principal component is by extracting the
eigenvalues from the covariance matrix of the data. Eigenvalues represent the projected
variances corresponding to principal components. For a matrix Im, the covariance matrix
CIm is computed as

(6)

In our application, the image is separated in connected components (CC) before performing
PCA. Voxels must share at least one corner with their neighbors to be part of the same connected
component (3D 26-connected neighborhood). For each CC, we extract the spatial information
of its p voxels in a p×3 matrix ICC for which we compute a 3×3 covariance matrix CCC. Under
the assumption that an instrument is long and thin, its first principal component would account
for most of its variation. Hence, if the instrument eigenvalues are calculated as

(7)

The first eigenvalue λCC1 will be dominant and the ratio F would have a maximal value, where
λCC2 is the second eigenvalue.

The objects with the highest ratio F are instrument candidates. If there is only one instrument
in the image, it will have the maximal F. Due to estimation errors in EM at the contact between
instrument and tissue, we prefer to keep more candidates and discard the remaining false
positives (FP) in the next stage.

Watershed Transform
To account for errors at the contact between instrument and tissue, we use a watershed (WT)
by immersion algorithm (Grau et al. 2004; Roerdinck et al. 2000; Vincent et al. 1991) that
assumes that there is only one instrument in every image. WT is a morphological tool that
analyses the topography of the image based on its gray level. It presumes that water penetrates
minima and floods all areas below the water level to form basins. Eventually basins start
merging at watershed lines.

WT is applied to the instrument candidates resulting from the previous PCA and using the
estimate of instrument statistics from EM. First, the Euclidean intensity distances to the upper
quartile of the instrument intensity are calculated, then a gradient of the newly computed image
is used to initialize local minima.

(8)

The computation of watershed lines is done through two topographic measures: the lower slope
(LS) and the lower neighborhood (LN).

(9)

(10)

LS maximizes the relation of voxels y in the neighborhood Nx of voxel x, where d(x,y) is the
Euclidian distance between the locations of voxels x and y. LN identifies the neighborhood of
x that satisfies equation (10). The process iteratively expands the water basins. For every basin,
the value of ratio F (see equation (7)) is evaluated. If F decreases below a limit with the water
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expansion at the next level, then the process is stopped and the basin becomes an instrument
candidate. A substantial decrease of F happens at the level where instruments and tissue are in
contact and parts of the tissue mislabeled as instrument are included in the instrument body.
Otherwise the transform continues until the entire topography is flooded. Finally, the candidate
with maximum F is labeled as instrument.

RESULTS
We used instruments of various materials for our experiments to prove the flexibility of our
method. The distributions of blood and tissue were calculated from an arbitrarily selected US
image of a porcine heart and kept constant throughout the experiments. The image was acquired
with a Philips Sonos 7500 Live 3D ultrasound machine (Philips Medical Systems, Andover,
MA, USA). All the experimental protocols were approved by the Children’s Hospital Boston
Institutional Animal Care and Use Committee. We then estimated the distributions of
instrument materials by manual segmentation, as shown in Table 1. The distributions in US
images are close to Rayleigh. At this point we approximated the pdf by a Gaussian distribution,
as Table 1 shows small RMS errors between the Gaussian approximation and the real
distribution of objects. We used instruments made of acetal, wood, threaded stainless steel
coated with fiber glass, and threaded stainless steel coated with epoxy. Figure 5 shows the
approximate Gaussian distributions of blood, tissue and instrument materials. Note the
consistent overlapping of distributions. Wood and cardiac tissue have the best separation, while
the distribution of acetal is almost completely superimposed over that of tissue. There is no
ambiguity between the distributions of blood and instruments.

In-Vitro Experiments
The algorithm was first tested using 3D in-vitro data from a water tank trial. The training sets
and test data were acquired under similar imaging conditions using the same type of instrument.
All data was acquired with a Sonos 7500 Live 3D Echo scanner (Philips Medical Systems,
Andover, MA, USA). An acetal rod was placed in the tank in the proximity of a flat bovine
muscle tissue sample approximately 2 cm thick. There was no contact between the instrument
and the tissue. Figure 6 shows detection results at various algorithm stages in 2D slices. In
Figure 7 we present the 3D volumes showing in-vitro instrument detection.

In-Vivo Experiments
The second segmentation example detects a wooden instrument during an intracardiac
operation on a porcine beating heart. This in-vivo US image shows the wooden rod in contact
with the cardiac tissue. Figure 8 shows the detection stages in in-vivo images. After PCA, the
instrument is generally well detected, but FPs occur at the contact with tissue. WT eliminates
the residuals and segments the instrument correctly. Figure 9 presents the 3D US segmentation
results.

For illustration, we compared the segmentation results of the EM framework to that of basic
thresholding into three classes: dark, mid-gray and bright. We took into consideration the
computed distributions of blood, tissue and instrument and present the results that reflect best
the segmentation of instrument. Some comparative results are shown in Figure 10. While our
EM scheme outperforms thresholding, the figure also reflects that EM plays a limited role in
the segmentation algorithm.

More results from in-vivo intra-cardiac interventions are presented in Figure 11. We segment
two instruments made of threaded stainless steel: one coated with fiber glass and the second
coated with epoxy. The fiber glass rod has a clean appearance with very small reverberations
and tip artifact. Although the epoxy instrument has better separated distribution from that of
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tissue, the presence of reverberations and the contact with tissue on the length of the rod, make
this case more challenging. Comparison with expert-annotated images shows the correct
segmentation and position of the instrument shaft in all situations. The instrument orientation
is extracted from its principal components.

In all our in-vitro data, the tip was correctly segmented with no error. The golden standard was
provided by expertly segmented instrument tips, which were selected as the voxels (one voxel
for each instrument) at the inner end of the instrument facing the US probe (the correctly visible
surface of the instrument is oriented towards the probe in US images). The algorithm segmented
tip is the end voxel of the segmented instrument facing the US probe and the segmentation
error is the Euclidean distance between the expert and algorithm segmented tips. The
combination of intensity and shape analysis finds the tip of the instrument in in-vivo images
without contact between the instrument and tissue with very small errors. The segmentation is
more difficult when the instrument rod touches the heart tissue. We used 50 in-vivo 3D US
images with instruments placed in porcine hearts: 25 threaded steel rods coated with epoxy
and 25 threaded steel instruments coated with fiber glass. Overall, the tip segmentation error
in in-vivo data was of 1.77+/−1.40 voxels.

DISCUSSION
We presented a multi-step algorithm for the detection of instruments in 3D US images. It begins
with finding an estimate of the statistical distributions of the classes of objects we aim to
segment. Our database consists of images acquired at different times and locations, but on the
same type of US machine and probe. The method is not sensitive to image acquisition
conditions. It suffices to determine the distribution functions of blood and tissue once for all
the subsequent segmentations, presuming that the clinician adjusts the scan parameters to
derive a good image of the tissue, as it is customary in clinical practice. However, the instrument
probability distribution function (pdf) is unique to the type of material it is made from. Hence,
for each type of instrument material, there will be a different pdf and the method requires a
small database of material types and statistics. The instrument material may be standardized
for a particular procedure, or the user interface may allow the selection of the instrument
material used.

Next, the image voxels are assigned to three classes: blood, tissue and instrument. The statistical
classification converges to three stable classes of voxels, but the uncertainty at the overlap of
the Gaussian distributions of instrument and tissue brings labeling errors. Hence, some spatial
information is required. A neighboring information step improved the segmentation results of
in vitro data, but was not essential in the in vivo experiments. This is due to the simpler image
information in the tank trials (no contact between instrument and tissue and simpler shapes)
and the superimposed distributions of acetal and cardiac tissue. For complex in-vivo data, this
type of simple spatial information improves the segmentation of the instrument, but introduces
errors in tissue.

US enables guided interventions, but instruments have not been designed for US. We used
wood in our initial experiments, as some surgeons use wood for manipulation for the good
visibility in US imaging, but not in surgery. Wood also has the best pdf separation from tissue,
which helped designing our algorithm. For the rest of our experimental in-vivo results, we used
coated threaded steel. These newly developed instruments have an enhanced surface visibility
in ultrasound images, due to the reduction in specularity. The echo amplitude mean and
standard deviation of the instrument is also better separated from that of the tissue, for these
classes of instruments.
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PCA is employed as a statistical measure of shape. The analysis is based on the assumption
that instruments are shaped like rods, long and thin. We analyze the connected components in
the image and keep only the candidates that satisfy the shape requirements. The major source
of remaining errors is the contact area between instrument and tissue. Finally, WT separates
the instrument from tissue in critical areas in a fine to coarse approach. This WT-PCA hybrid
approach uses first PCA to reduce the computational expense and speed up the algorithm. WT
then reduces the segmented volume of instrument to the portion of the instrument shaft oriented
towards the US probe. This produces smaller errors in the approximation of the instrument
axis. To this extent, we assume that there is only one instrument in every image.

Calibrated systems would aim for instrument mean and standard deviation to be constant, given
a certain depth. The visual adjustment of TGC settings helps and we kept this in mind during
image acquisition, although the system was not truly calibrated. This was possible in our
cardiac applications, where the depth range of the instrument does not vary much when the US
probe is placed on the atrial wall. We computed the statistics only once for tissue, blood and
each type of instrument and included voxels from the entire instrument shaft over the depth-
range. Although there would be some difference in the appearance of an instrument from one
acquisition to the next, the relation between the three distributions (blood, tissue and
instrument) does not change, as demonstrated by our segmentation results. This relation was
enhanced by the use of instruments designed to separate the echo amplitude mean and standard
deviation of the instrument from that of the tissue (Huang et al. 2006).

The implementation of the algorithm is done in Matlab version 7 (The MathWorks, Inc.) on a
Pentium 4 machine with 1GB RAM and 2.40 GHz processor. Running the algorithm on a
128×48×208 3D US volume takes approximately 70s. Our segmentation results are for single
3D images, but a potential major application is tracking instrument movement in 4D US clinical
images. Clinical applications will clearly require considerable speed improvements; the present
implementation was not optimized, and considerable acceleration may be achieved, especially
in the iterative portions of the algorithm, by initializing each new image with the result of the
previous image.

For surgical guidance purposes, it would be useful to fit the instrument shape into the 3D US
volume at the location of the surgical instrument. This is beyond the scope of this paper, which
focuses the first step of this process, segmentation of instruments in US data. In 3D US,
instruments appear as irregular clouds of voxels, where reverberations and tip artifacts are
visible, but do not exist. For this reason, our algorithm detects the region of the instrument
shaft oriented toward the US probe, which is the brightest part of the instrument in the 3D US
volume. Following segmentation, a priori information on the size of the instrument (length and
diameter), combined with the closest image boundary to the instrument and an estimation of
the instrument tip, can be used to superimpose in the image a model mimicking the ideal
appearance of the instrument. An example is presented in Figure 12, where a 2D slice of a 3D
volume with a fiber glass coated rod is segmented. Note that part of the area of the instrument
as appearing in US is left labeled as tissue (in gray). The area labeled as instrument gives the
best estimate of the real instrument axis and position, as approximated by the white rectangle.

This work considered a simple statistical model of the tissue, blood, and instrument classes.
While it achieves good segmentation, more sophisticated treatment may improve performance.
Image normalization is known to reduce the deviation of the point-spread functions of object
classes. We will investigate the impact of normalization to make the statistical classification
more robust. Neighborhood analysis and connectivity through Markov Random Fields should
also help to correct segmentation errors. More spatial and statistical information using the
instrument shape and principal factor analysis (Gonzalez Ballester et al. 2005) will be
implemented for a larger variety of instrument materials. Our segmentation results can be used
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as an initialization step for tracking instruments in 4D echocardiography. The computational
speed will be a priority for real-time interventional applications.
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Figure 1.
A 2D US image of an instrument of stainless steel coated with tape in a water tank. The
appearance of the metal rod is distorted by the presence of reverberations and tip artifacts.
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Figure 2.
The algorithm for instrument segmentation in 3D ultrasound images. The neighboring
information step is optional, as explained in the Results section.
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Figure 3.
The normalized histograms of blood (dashed-left), tissue (solid-middle) and instrument
(dashed-right). The example shows the histogram of a wood instrument. Note the overlap
between the tissue and instrument histograms, the main source of uncertainty in the EM
algorithm.
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Figure 4.
The kernel used for neighboring information. μC is the central kernel, μN is the neighboring
kernel, while μB is the background kernel. This is a 2D representation of the 3D kernels.
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Figure 5.
The normalized approximate Gaussian distributions of blood, tissue and instruments from
Table 1. From left to right: blood (□□□), cardiac tissue (——), acetal (***), fiber glass (---),
epoxy (+++) and wood (– – –). The distribution of wood is best separated from that of tissue,
while the distribution of acetal is superimposed over that of tissue.
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Figure 6.
Tank data: (a) a 2D slice of a 3D US image of an acetal rod approaching a tissue sample in a
water tank; (b) detection results after EM, where the instrument is shown in white, the tissue
in gray, and the blood in black; (c) detection results employing neighboring information; (d)
detection results after PCA.
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Figure 7.
3D in-vitro data: (a) the US image of an acetal rod approaching a tissue sample in a water tank;
(b) detection results where the instrument is shown in white, the tissue in gray, and the blood
in black.
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Figure 8.
In-vivo data: (a) a 2D slice of a 3D US image of a porcine heart with a wooden rod inside
acquired during an intracardiac beating-heart procedure; (b) detection results after the analysis
of intensity distributions, where the instrument appears white, tissue gray and blood black; (c)
the segmentation of instrument and tissue after PCA: the instrument appears correctly
segmented, but this is not the case for the whole 3D US image; (d) a slice of the 3D US image
at a different location, where the tip of the instrument touches the tissue; (e) detection results
after PCA at the new location showing FP; (f) improved results employing the watershed
algorithm.
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Figure 9.
3D in-vivo results: (a) a 3D US image of a porcine heart with a wooden rod inside (in contact
with the tissue); (b) 3D segmentation results for image (a) with the instrument shown in white,
blood in black and tissue in gray (the gray scale appearance is an effect of the rendering
algorithm).

Linguraru et al. Page 19

Ultrasound Med Biol. Author manuscript; available in PMC 2008 December 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Comparative segmentation results: (a) a 3D US image of a porcine heart with a wooden rod
inside; (b) results of EM segmentation; (c) results of thresholding segmentation.
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Figure 11.
3D in-vivo results: (a) a 3D US image of a porcine heart with threaded stainless steel rod coated
with fiber glass; (b) 3D segmentation results for image (a); (c) a 3D US image of a porcine
heart with threaded stainless steel rod coated with epoxy; (d) 3D segmentation results for image
(c).
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Figure 12.
Instrument orientation and position: (a) a 2D slice of a 3D volume with part of a threaded steel
rod coated with fiber glass; (b) the segmented instrument shaft (white=instrument,
gray=tissue); (c) the superimposed true shape of the instrument over the segmented result, as
it appears in the 2D slice; the rectangle wraps the segmented result along its main principal
axis.
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Table 1
The distributions of blood, tissue and instruments estimated from expert segmented images. For each category we
present the mean value and standard deviation of the intensity (0–255), and RMS error from a Gaussian distribution
of the same mean and deviation. Fiber glass refers to threaded steel coated with fiber glass and epoxy refers to threaded
steel coated with epoxy. The mean gray level of instrument materials is always greater than that of tissue.

Mean Standard deviation Error
Blood 16.1 14.6 0.028
Cardiac Tissue 91.5 38.0 0.003
Acetal 100.2 13.4 0.013
Wood 175.8 30.9 0.002
Fiber glass 119.3 21.9 0.002
Epoxy 130.1 28.7 0.017
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