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We have developed an improved local move Monte Carlo
(LMMC) loop sampling approach for loop predictions.
The method generates loop conformations based on simple
moves of the torsion angles of side chains and local moves
of backbone of loops. To reduce the computational costs
for energy evaluations, we developed a grid-based force
field to represent the protein environment and solvation
effect. Simulated annealing has been used to enhance
the efficiency of the LMMC loop sampling and identify
low-energy loop conformations. The prediction quality is
evaluated on a set of protein loops with known crystal
structure that has been previously used by others to test
different loop prediction methods. The results show that
this approach can reproduce the experimental results with
the root mean square deviation within 1.8 Å for all the test
cases. The LMMC loop prediction approach developed
here could be useful for improvement in the quality the
loop regions in homology models, flexible protein–ligand
and protein–protein docking studies.
Keywords: implicit solvent/local move Monte Carlo/
potential map/protein loop prediction/simulated annealing

Introduction

Secondary structures of proteins can be classified into
helices, strands and loops. Loops are irregular regions con-
necting two regular secondary structure segments (helices or
sheets) in proteins. Loops are usually variable in both
sequence and structure even in the same protein family,
which makes loops the most difficult regions to model by
comparative modeling approaches. The accuracy of hom-
ology models is generally lowest in loop regions. However,
loops are important for protein functions, and play critical
roles in protein recognition (Bajorath and Sheriff, 1996;
Fetrow et al., 1998), ligand binding (Joseph et al., 1990;
Ragona et al., 2003), and enzyme activities (Wlodawer et al.,
1989; Liu et al., 2004). Consequently, loop modeling has
become one of the important challenges in protein structure
prediction, and has been described as a mini protein-folding
problem (Fiser et al., 2000).

Over the last two decades, many different loop-modeling
approaches have been developed. In general, loop-modeling
methods can be divided into two classes: database search
(Greer, 1980; Jones and Thirup, 1986; Chothia and Lesk,
1987; Fernandez-Fuentes et al., 2006; Peng and Yang, 2007)

and ab initio (Fine et al., 1986; Moult and James, 1986;
Bruccoleri and Karplus, 1987; Rohl et al., 2004; Mehler
et al., 2006; Zhu et al., 2006; Soto et al., 2008; Spassov
et al., 2008) methods. In the database search method, a
protein structure database is searched to find main chain seg-
ments that fit the anchor regions of a loop. In the ab initio
methods, a large number of conformations are generated
from special algorithms, and followed by their energy evalu-
ations based on some particular scoring or energy functions.
These methods have been comprehensively reviewed else-
where (van Vlijmen and Karplus, 1997; Fiser et al., 2000;
Soto et al., 2008).

Recently, ab initio approaches for loop modeling showed
more accurate predictions than database search approaches,
especially for long loops (Xiang et al., 2002; Michalsky
et al., 2003; Jacobson et al., 2004; Zhu et al., 2006; Soto
et al., 2008). The accuracy of ab initio approaches depends
on two factors: (i) the quality of loop conformational
sampling algorithms; (ii) the accuracy of the scoring or
energy functions used for ranking the sampled loop confor-
mations. A number of loop conformational sampling algor-
ithms have been developed, including analytical methods
(Go and Scheraga, 1970; Bruccoleri and Karplus, 1985),
random tweak (Fine et al., 1986; Shenkin et al., 1987; Smith
and Honig, 1994), systematic conformational search (Moult
and James, 1986; Bruccoleri and Karplus, 1987; Brower
et al., 1993), genetic algorithms (McGarrah and Judson,
1993; Ring and Cohen, 1994), bond scaling (Zheng et al.,
1993; Rosenbach and Rosenfeld, 1995; Zheng and Kyle,
1996), and Monte Carlo (MC) (Higo et al., 1992; Carlacci
and Englander, 1993; Collura et al., 1993; Zhang et al.,
1997). Scoring or energy functions that have been used
include molecular mechanics force field (Cornell et al.,
1995; MacKerell et al., 1998) and statistical potentials (Sippl,
1990; Samudrala and Moult, 1998; de Bakker et al., 2003),
combined with different implicit solvent models, such as
distance-dependent dielectric model (Bruccoleri and Karplus,
1987; Das and Meirovitch, 2001), finite difference Poisson–
Boltzmann model (Smith and Honig, 1994), and Generalized
Born (GB) solvation model (Rapp and Friesner, 1999).

In the present study, we employ an improved LMMC
sampling approach, combined with grid mapping potentials
for loop predictions. Local move (also referred to as
‘window move’) starts with changing one torsion angle
(called the driver torsion) followed by the adjustment of the
six subsequent torsions to allow the rest of the chain to
remain in its original position while preserving all bond
lengths and bond angles. The pioneering work on local move
was done by Go and Scheraga (1970), who developed a solu-
tion for the system of equations defining the values of the six
torsion angles that preserve the backbone bond lengths and
angles. Hoffmann and Knapp first applied the local move
method in a MC simulation of polyalanine folding that
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included a suitable Jacobian (Dodd et al., 1993), required for
maintaining detailed balance. They demonstrated that this
method samples the conformational space more efficiently
than single move (Hoffmann and Knapp, 1996). The method
has been further tested on proline-containing peptides (Wu
and Deem, 1999a), proteins and nucleic acids (Dinner,
2000). Mezei introduced the ‘reverse proximity criterion’ for
filtering all possible loop closure solutions to select the most
structurally conservative one, and tested it on a solvated lipid
bilayer (Mezei, 2003). Here we present an improved effi-
ciency LMMC sampling for loop prediction, by substituting
the rest of the protein with a grid-based force field, which
includes van der Waals, electrostatics, hydrophobic, hydro-
gen bond potentials and solvation effects. Our loop predic-
tion approach was then evaluated by comparing its
predictions with those that have been published (van Vlijmen
and Karplus, 1997; Deane and Blundell, 2000; Fiser et al.,
2000; Deane and Blundell, 2001). The results show an
improvement in accuracy for loop prediction, which can be
attributed to the powerful LMMC sampling technique and
the accurate grid-based energy function.

Methods

LMMC sampling
The proper execution of a local torsion move that changes
the shortest backbone segment requires the solution of
several problems. First, having changed a torsion angle by a
randomly selected amount, the determination of the
additional six torsion angle values poses a problem in
geometry – several algorithms have been presented for its
solution. This problem may have up to 16 solutions
(Wedemeyer and Scheraga, 1999). The strategies suggested
for choosing among the solutions include random selection
(Dodd et al., 1993), selection weighted by the Jacobian and a
Rosenbluth-type weight, supplemented by generating side
chain conformations with the configurational bias method
(Deem and Bader, 1996; Wu and Deem, 1999b) correspond-
ing to each solution (Hoffmann and Knapp, 1996) or the one
that results in the smallest change (Mezei, 2003). Each strat-
egy has its corresponding acceptance filter to maintain
microscopic reversibility, leading to Boltzmann-distributed
conformational ensembles.

Here we used the reverse proximity acceptance criterion
for LMMC method. In contrast to previous methods, not all
possible loop closures are considered, but only the most
structurally conservative one, selected by filtering local
moves with the ‘reverse proximity criterion’. The method is
ergodic, and was shown to be significantly more efficient
than previous methods when applied to a fully solvated
hydrocarbon chain with bulky side chains as well as a fully
solvated lipid bilayer (Mezei, 2003).

Potential energy maps
To increase the computing speed of energy evaluations for
LMMC loop sampling, we developed a grid-based force
field, which includes van der Waals, electrostatics, hydro-
phobic, and hydrogen bond potentials to replace the protein
structure and solvent effect. For the explicitly represented
loop region, we used the all-atom CHARMM force field
(Brooks et al., 1983) with sigmoidal distance-dependent

dielectric constants (Mehler and Solmajer, 1991), hydrogen
bond and hydrophobic terms (Huey et al., 2007). To increase
the accuracy of energy evaluations, we used a cubic grid box
size of 161 � 161 � 161 with a fine grid resolution of
0.25 Å.

Electrostatics. Coulomb potential f(r), with a sigmoidal
distance-dependent dielectric function was used to model
solvent screening, based on the work of Mehler and Solmajer
(1991):

fðrÞ ¼ Q

4p1ðrÞ � r ;

1ðrÞ ¼ Aþ B

1þ ke�lBr
;

where Q is partial charge; B ¼ e0 2 A; e0 ¼ 78.4 (the dielectric
constant of bulk water at 258C); A ¼ 6.02944, l ¼ 0.018733345
and k ¼ 213.5782 are parameters (See Supplementary data
available at PEDS online). The original parameter set has been
modified to produce better results comparing with the GB
model. When the distance between two charges is ,1.32 Å, a
dielectric constant of 8 is used.

van der Waals. A 12-6 Lennard-Jones potential was used:

fðrÞ ¼ C12

r12
� C6

r6
;

where the C12 and C6 Lennard-Jones parameters of five atom
types (united atoms C, N, O, S and polar H) are from the
AUTODOCK program (Morris et al., 1998).

Desolvation. The general approach of Wesson and Eisenberg
(1992) was used, and the atomic solvation parameters were
calculated based on the absolute partial charge on the atom:

DGdesolv ¼ Wdesolv

X
i;j

ðSiVj þ SjViÞe�r2
ij=2s2

;

where i = index of atoms in the ligand; j = index of atoms in
the receptor; Wdesolv= linear regression coefficient or weight
for the desolvation free energy term; Si = solvation term
for atom i; Vi = atomic fragmental volume of atom i; rij =
distance between atom i and atom j (in Å); s = Gaussian
distance constant = 3.5 Å. The parameters are obtained from
the AUTODOCK4 program (Huey et al., 2007). Only non-
polar carbon atoms (the absolute value of charge is ,0.2)
were used for desolvation energy calculations.

Hydrogen bond. A 12-10 potential was used:

fðrÞ ¼
�C12

r12
� C10

r10

�
cosðuÞ;

where C12 and C10 are 12-10 parameters. We developed the
hydrogen bond parameters based on different donor and
acceptor types (See Supplementary data available at PEDS
online). The hydrogen bond energies are angle-dependent
(the angle (u) of acceptor atom-polar hydrogen-donor atom),
and were calculated only when the distance between hydro-
gen and acceptor atoms was between 1.65 and 3.00 Å, and
908 ,u �1808.

M.Cui et al.

730



System setup
The coordinates of the protein are partitioned into two sets:
the loop, with a few anchoring atoms (that will be kept
fixed) and the bulk of the fixed atoms. The list of loop atoms
is used to generate the list of torsions, both side chain and
backbone. The maximum possible extent the loop confor-
mations can sample also has to be established to define the
limits of the grid box. In a preparatory calculation the elec-
trostatic, van der Waals, desolvation and hydrogen bond
acceptor energies are calculated at every grid point.
However, hydrogen bonds where the loop hydrogen is the
donor depend on the bond orientation between the donor
hydrogen and its heavy atom, and thus they have to be calcu-
lated explicitly. This necessitated the generation of a list of
hydrogen bond acceptors on the fixed part of the protein, and
a link list, based on a �3 Å grid, listing the possible hydro-
gen bond acceptors for loop atoms falling into each of these
grids. For the calculations designed to reproduce the crystal
structure of the loop the mobile loop atoms were removed
and regenerated by the Modloop server (http://modbase.
compbio.ucsf.edu/modloop///modloop.html) (Fiser and Sali,
2003) to provide an initial configuration independent of the
crystal structure.

MC loop sampling and simulated annealing
To improve the efficiency of LMMC loop sampling, we used
a simulated annealing approach to identify the local minima
on the energy surface. First, we sampled loop conformations
at the high temperature of 5000 K to explore the loop confor-
mational space. In order to lower the energy barriers and
thereby speeding up the sampling of the conformational
space we used reduced map potentials in this phase of the
calculations: every grid point potential .2 kcal/mol was set
to 2 kcal/mol. The loop conformations with the lowest total
energies were recorded over every 50 000 MC steps. The
saved conformations were clustered with the SIMULAID
program (http://inka.mssm.edu/~mezei/simulaid) using the loop
backbone root mean square deviation (RMSD) as the dis-
tance measure. The clustering algorithm used picks the
element that has the largest number of conformations within
the distance cutoff and makes it a cluster. This cluster is then
removed and the procedure is repeated on the remaining con-
figurations until no more configurations are left. The lowest
energy loop conformation in each cluster was selected as the
representative loop structure. Each cluster-representative loop
structure was used as the initial structure to conduct simu-
lated annealing simulations from 5000 to 20.68 K by using
the Exponential Cooling Scheme (also called geometric
cooling scheme) with scaling factor 0.95, for 5.35 million
MC steps; followed by Linear Cooling Scheme from 20.68
to 0.68 K for 200 000 MC steps, and each segment took
50 000 MC steps. Unlike during the initial loop sampling
stage, we used a non-reduced potential map to accurately cal-
culate the interaction energies between the loop and the rest
of the protein. In general, the more clusters we use, the
better prediction results we expect to get. However, compu-
tational costs will be increased in proportion to the number
of clusters. We also found that a slower cooling process can
improve the accuracy of loop predictions; similarly, it will
increase the computational costs as well.

Results and discussion

To evaluate the performance of our newly developed grid-
based LMMC loop prediction approach, we applied it to a
test set of protein loops, which was originally used by van
Vlijmen and Karplus (1997), and later by Fiser et al. (2000),
and by Deane and Blundell (2000; 2001), Michalsky et al.
(2003), and Rohl et al. (2004).

Loop test set
The loop test set contains 14 protein loop crystal structures,
with the loop lengths ranging from four to nine residues.
We subjected all the protein structures in the test set to 1000
steps of Steepest Descent (SD) energy minimization by
using CHARMM program with GB solvation module (Im
et al., 2003). Then the loops were removed from the protein
structures. Since we have not developed a loop generation
program, we regenerated each loop by the Modloop web
server (Modloop generates only one loop for each structure)
(Fiser and Sali, 2003) to obtain an initial conformation for
our high-temperature run. Note, however, that any available
program can be used to generate the initial loop structures
with reasonable bond lengths and bond angles. Since we will
sample the entire loop conformational space by LMMC
method at very high temperature, the initial loop confor-
mations are not be expected to affect the final loop prediction
results. Each newly generated loop region in proteins was
refined by the same method and protocol for energy mini-
mization described earlier.

Crystal packing
Protein structures in the test set were determined by x-ray
crystallography. Thus it is possible that loop conformations
could be affected by crystal packing. We have reconstructed
the crystal packing protein structures for all the proteins in the
test set by using Swiss PDB Viewer program (http://www.
expasy.org/spdbv/) (Guex and Peitsch, 1997). We found that in
six out of the 14 crystal structures, loops are located at the
interface between subunits in the crystal, and thus native loop
conformations could be affected by the crystal packing. So the
related monomers in these structures need to be included in
loop predictions if the goal is to model the loop conformation
in these crystals. However, the effect of crystal packing in this
loop test set has not been considered in previous studies. We
expect that this will improve the prediction due to the
additional restraints imposed on the loops. In this work we
included the crystal packing information by introducing
additional related monomer structures for loop predictions. A
typical crystal packing example is shown in Fig. 1, in which
the protein (3grs) forms a trimer in the crystal packing, the
loops to be predicted are very close, and located at the
interface of the two monomers. This crystal packing is thus
critical to the formation of this conformation observed in
the experiment, and it must be included for the evaluation of
loop predictions.

Loop sampling and clustering
Two additional N- and C-terminal residues are included as
fixed anchors of each loop structure for MC local move
sampling. During the LMMC sampling, the loop side chain
torsion angles and backbone torsion angles phi (f ) and psi
(c) are allowed to change by any amount, while the
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backbone torsion angles omega (v) are allowed to change
,908 from their original values (�1808). Two types of MC
moves are performed: simple moves (single torsion angle
rotations) and local moves.

We sampled each loop in the test set at 5000 K for 100
million MC steps, and recorded the lowest total energy loop
conformations over every 50 000 MC steps. We found the
use of the reduced maps at this stage of the calculation was
essential to enable crossing the high-energy barriers between
separate local minima during loop conformation sampling.

The loop conformations extracted were first clustered to
yield 100 clusters. If the backbone RMSD cutoff resulting in
100 clusters exceeded 1 Å then the clustering was repeated
for better results with 1 Å cutoff, resulting in more clusters.
We selected one representative loop structure with the lowest
total energy from each cluster as the initial loop structure for
the following simulated annealing simulations. A typical
example of loop sampling is shown in Figs 2 and 3. From
Figs 2 and 3 we can see that although the initial loop struc-
ture is 6.0 Å (RMSD based on the backbone atoms of loops)

away from the crystal loop structure [5cpa (231–237)],
LMMC sampling can cover large conformational space that
includes the vicinity of the crystal loop conformation (as
demonstrated in Fig. 2). The largest RMSD between any two
sampled loop conformations is 8.77 Å.

MC simulated annealing
The loop structure with the lowest total energy generated by
each MC simulated annealing simulation was saved as a
putative prediction of loop structure. For each system the
loop conformation with the lowest total energy was selected
as the final predicted loop structure. Beside the RMSD
between the final prediction and the crystal structure, the
quality of a scoring function is usually characterized with the
plot of the total energy versus RMSD. A typical example
[8tln (248–255)] is shown in Fig. 4 (RMSD was based on
backbone atoms). The RMSD difference of predicted loop
configurations of 8tln (248–255) before and after LMMC
simulated annealing is shown in Supplementary Figure 5
available at PEDS online, and the average RMSD before
and after MC simulated annealing for all cases is listed in
Supplementary Table I available at PEDS online. From
Fig. 4 we can see that the loop conformation with the lowest
total energy also corresponds to the lowest RMSD from the

Fig. 2. Loop structures of 5cpa (231–237) produced by LMMC method at
5000 K and followed by clustering to generate 100 representative
conformations. Black stick represents the crystal loop structure, and gray
wires represent the 100 representative loop conformations.

Fig. 1. Protein (3grs) forms trimer in the crystal packing. The loops to be
predicted are located at the interface of two monomers. The gray wires
represent the protein structures in trimer form; black sticks represent loops
[L1, L2 and L3 (83–89) are from different monomers] to be predicted.

Fig. 3. Total energies versus RMSD of the 100 representative loop
conformations of 5cpa (231–237) from LMMC sampling (before simulated
annealing). The RMSD calculations are based on the backbone atoms of the
crystal and representative loop structures.

Fig. 4. Total energies versus RMSD [100 predicted loop conformations (the
energies .27 900 kcal/mol are not shown) of 8tln (248–255) from LMMC
simulated annealing]. The RMSD calculations are based on the backbone
atoms of the crystal and predicted loop structures.
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crystal loop structure. We also calculated the correlation effi-
cients between the interaction energies and the RMSD, and
listed in Supplementary Table I available at PEDS online,
which shows that there are no correlations. The crystal,
initial and predicted loop structures in the protein of 8tln
(248–255) are shown in Fig. 5. As can be seen from the
figure, this loop is located at the interface of two monomers
and is thus interacting with both monomers; therefore the
crystal packing information was included for our MC loop
prediction. The RMSD of the final predicted loop is 0.67 Å
from the crystal loop structure.

Energy minimization
We also tested whether further energy minimization will
improve the accuracy of predicted loop structures. We per-
formed energy optimization on the lowest energy structures
for 1000 steps SD (loop only) by using GB implicit solvent
model in CHARMM program, and found that nine out 14
structures have been slightly improved comparing with
crystal structures while the remaining five became slightly
worse (Table I).

Comparison of loop prediction results
We predicted the loop structures for the entire test set by
using LMMC simulated annealing method with the same
protocol as described earlier. The predicted loop results
together with the results from others are listed in Table I. It
should be stressed that, unlike in our calculations, crystal
packing was not considered by in the other prediction
methods, which could have some potential effect on these
prediction results (more likely positive effect due to the
additional constraints for loops). Six out of 14 native loop
conformations in this test set could be affected by crystal
packing. From Table I we can see that 12 out of 14 of the
loop predictions in our study are better than those from van
Vlijmen and Karplus method; 10 out of 13 are better than
those from the CODA method; 10 out of 11 are better than
those from PETRA method; eight out of 14 are better than
those of Fiser; nine out of 14 are better than those from LIP
method; 11 out of 14 are better than those from Rosetta
method. The worst RMSD of loop predictions from our
method is 1.73 Å comparing with 5.16 Å from van Vlijmen
and Karplus method; 3.1 Å from CODA method; 3.2 Å from
PETRA method; 4.2 Å from Fiser method; 9.0 Å from LIP
method; 3.79 Å from Rosetta method. Note also that—unlike
in the other methods—all our predictions had global
RMSD , 2 Å, the threshold that is considered to define a
good loop prediction (Fiser et al., 2000). However, our
method is significantly slower than the others in this com-
parison, representing the ‘price’ of the increased accuracy of
our loop predictions.

Computational costs
The first stage of LMMC sampling for 100 million MC steps
takes ,20 h/CPU (Apple G5 processor). Each LMMC simu-
lated annealing simulation for 6 million MC steps takes
,1 h/CPU. Usually, one loop prediction by this method
takes 120 h/CPU. Since the simulated annealing can be run
in parallel, the whole calculation can be completed within a
day using 25 CPUs or within 2 days using 4 CPUs. The
replacement of the protein by a potential map reduced the
computational costs significantly. For example without using
the grid-based potential map, a similar loop prediction proto-
col with explicit protein would take �72 CPU days.

Table I. Comparison of loop prediction results from LMMC simulated annealing method and others [the results are based on the backbone global RMSD (in

Å) between the crystal and predicted loop structures]

PDB code Loop Length LMMC LMMC-MM van Vlijmen
and Karplus

CODA PETRA Fiser LIP Rosetta

2apr 76–83 8 0.37 0.29 5.16 2.2 2.6 1.31 0.50 2.54
8abp 203–208 6 0.29 0.22 0.28 0.8 2.5 0.38 0.79 0.56
2acta 198–205 8 1.52 1.69 1.58 3.1 1.5 1.04 0.13 3.79
8tlna E32–E38 7 0.46 0.25 3.70 1.9 — 2.03 0.24 2.62
3grsa 83–89 7 1.15 1.20 4.55 1.4 2.0 0.42 2.13 0.97
5cpa 231–237 7 1.05 0.95 2.14 0.2 1.3 0.95 0.23 1.22
2fb4a H26–H32 7 1.10 1.09 1.62 0.4 1.9 4.20 0.19 1.79
2fbja H100–H106 7 0.85 0.86 0.49 1.4 3.2 0.84 9.00 0.98
8tlna E248–E255 8 0.63 0.50 1.83 1.8 — 0.87 0.61 1.52
3sgb E199–E211 9 1.68 1.73 1.79 — — 0.28 0.22 1.10
3dfr 20–23 4 0.46 0.37 2.64 0.4 1.7 1.15 1.07 0.80
3dfr 89–93 5 0.72 0.75 1.62 0.6 1.2 1.02 3.13 0.96
3dfr 120–124 5 0.57 0.46 0.47 0.7 1.2 0.26 1.92 0.76
3blm 131–135 5 0.25 0.11 0.82 0.2 1.8 0.16 0.24 0.43

aCrystal packing information is included for loop prediction by LMMC method only.

Fig. 5. Crystal, initial and predicted loop structures in the protein dimer of
8tln (248–255). The gray wires represent the crystal structures, the gray
stick represents the initial loop structure (6.0 Å of RMSD from crystal loop
structure), and the black stick represents the MC predicted loop structure
(0.67 Å of RMSD from crystal loop structure).
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Conclusions

We have developed an improved LMMC loop sampling
approach for loop structure prediction. The MC algorithm
samples the torsion angles of loops only, while keeping bond
lengths and bond angles fixed. Two types of MC moves are
performed: simple moves for torsion angles of amino acid
side chains in the loop; and local moves for the seven con-
secutive backbone torsion angles in a window of loops. The
total energy of loop conformation is evaluated at every MC
step. To reduce the computational cost of energy evaluation
in this method we developed a potential map, which include
van der Waals, electrostatics, hydrophobic as well as hydro-
gen bond potentials to replace the bulk protein environment
and solvation effect. We also reparametrized the Mehler–
Solmajer distance-dependent dielectric function (Mehler and
Solmajer, 1991) to reflect the contributions of the other
potential energy contributions. To improve the efficiency of
LMMC sampling we employed a two-step protocol: (i) loop
sampling at high temperature by using a reduced potential
map to lower the energy barriers for exploring a larger con-
formational space; (ii) clustering of loop conformations
extracted from the high-temperature run followed by multiple
simulated annealing simulations to identify the loop confor-
mations in local energy minima.

To evaluate the performance of our newly developed grid-
based LMMC loop prediction approach, we applied it to a
test set of protein loop predictions, which has been pre-
viously used by others. The results showed a significant
improvement in the accuracy for loop predictions comparing
with the other methods tested on the same loop test set. The
success of this method can be attributed to the powerful
LMMC sampling technique and accurate grid-based energy
functions. In addition, we found that the crystal packing
could affect the native loop conformations, and need to be
considered for the evaluation of loop predictions. However,
the crystal packing in this loop test set has not been dis-
cussed previously, which could have some potential effect on
these prediction results (more likely positive effect due to the
additional constrains for loops).

The MC loop prediction approach developed here could be
useful for improvement in the quality the loop regions in
homology models, flexible protein–ligand and protein–
protein docking studies. The LMMC loop sampling method
has been implemented into MMC program (http://inka.mssm.
edu/~mezei/mmc/), which is available upon request.
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