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Abstract
N1-Alkylation of 1H-benzimidizole of the δ agonist H-Dmt-Tic-NH-CH2-Bid with hydrophobic,
aromatic, olefinic, acid, ethyl ester or amide (1–6) became δ antagonists (pA2 = 8.52–10.14). δ- and
μ-Opioid receptor affinities were high (Kiδ = 0.12–0.36 nM and Kiμ = 0.44–1.42 nM). Only δ
antagonism (pA2 = 8.52–10.14) was observed; μ agonism (IC50 = 30–450 nM) was not correlated
with changes in alkylating agent or δ antagonism and some compounds yielded mixed δ antagonism/
μ agonism.

Numerous opioid peptides2 and non peptide opiates3–5 interact with opioid receptors. H-Dmt-
Tic-OH,6 which evolved from H-Tyr-Tic-OH,7 as a simplified form of TIP(P),8 represents
the minimal sequence that selectively interacts with δ-opioid receptors as a potent δ-antagonist.
The dipeptide was transformed into a potent δ agonist by replacing the carboxylic function
with an alkyl amide terminated with 1H-benzimidazole (H-Dmt-Tic-NH-CH2-Bid).9,10 To
restore the δ-opioid receptor selectivity, an acidic moiety was introduced by alkylation of N1-
benzimidazole, yielding H-Dmt-Tic-NH-CH2-Bid(CH2-COOH),10 and whose
pharmacological behaviour highlighted the role of benzimidazole-N1H in δ-receptor
interaction and activation. Similarly, the presence of a nitrogen was required in C-terminally
modified endomorphin-2 with naphthyl or isoquinolyl groups resulting in mixed μ-/delta;-
agonists.11 To investigate the role of the N1-benzimidazole on δ and μ bioactivity, alkylation
with various groups was initiated. All compounds reverted to potent δ-antagonists, and in
several cases, μ agonism increased.

Pseudopeptides were prepared stepwise by solution peptide synthetic methods9 described in
detail in Supporting Information. In brief, mixed carbonic anhydride coupling of tert-
butyloxycarbonyl-glycine (Boc-Gly-OH) with o-phenylendiamine gave intermediate
monoamide, which was converted without purification to the desired 1H-benzimidazol-2-yl-
methyl)-carbamic acid tert-butyl ester (Boc-NH-CH2-Bid) by cyclization and dehydration in
acetic acid (AcOH) in the Scheme. After N-terminal Boc deprotection with TFA, H2N-CH2-
Bid was condensed with Boc-Tic-OH via WSC/HOBt. Alkylation of N1-Bid was carried out
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by treatment of Boc-Tic-NH-CH2-Bid9 with K2CO3 and iodomethane, benzyl bromide, allyl
bromide, cyclopropylmethyl bromide or ethyl bromoacetate.10 Boc-Tic-NH-CH2-Bid(R) (R
= alkyl groups) was deprotected with TFA and condensed with Boc-Dmt-OH via WSC/HOBt.
Compound (6) was obtained from Boc protected (5) after hydrolysis with NaOH 1N and
reaction with NH3 via mixed anhydrides. Final compounds (1–6) were obtained after TFA
treatment and purified by preparative HPLC.

Compounds (1–6) (Table) had subnanomolar affinity for δ-opioid receptors (Kiδ 0.12–0.36
nM); alkylation decreased affinity by approximately an order of magnitude relative to the
reference compounds H-Dmt-Tic-NH-CH2-Bid (a) and H-Dmt-Tic-NH-CH2-Bid(CH2-
COOH) (b). μ-Opioid receptor affinity was within the same order of magnitude as H-Dmt-Tic-
NH-CH2-Bid and the lack of a carboxylic function caused a significant increase in μ-opioid
receptor affinity.6,15,18 Thus, the analogues remained essentially neutral and non-selective,
except 5 which was comparable to H-Dmt-Tic-NH-CH2-Bid (a), but considerably less selective
than H-Dmt-Tic-NH-CH2-Bid(CH2-COOH) (b) (Table).

Alkylation transformed the δ agonist H-Dmt-Tic-NH-CH2-Bid (IC50 = 0.035 nM, MVD) (a)
into δ antagonists (1–6) without effect on μ-opioid receptors (GPI). The analogues
demonstrated high δ antagonism (pA2 = 8.52 to 10.14) without μ antagonism; a 15-fold
difference in μ-opioid agonism occurred among 1–6. Although the alkylating agent per se does
not appear important, methyl (1) improved δ antagonism slightly more than the bulky
substituents (2–4), particularly the aromatic benzyl group (2). Interestingly, a single methyl
converted naltrindole, an opiate δ antagonist, into a μ agonist.12

Modification of the carboxylic function into an ester (5) or amide (6) did not change δ
antagonism, suggesting these functional groups are weakly implicated in δ-receptor
interactions. Compounds (1–6) had improved μ-opioid receptor affinity and agonism compared
to H-Dmt-Tic-NH-CH2-Bid(CH2-COOH) (b), supporting evidence that the carboxylic
function prevents μ-opioid receptor activation.2a,6 Alkylation of N1H-benzimidazole did not
modify the pharmacological activity toward μ-opioid receptors indicating that this nitrogen is
not implicated in μ-opioid receptor activation. Thus, 1–6 had a pattern of pharmacological
activities as mixed μ agonists/δ antagonists.

In summary, the alkyl groups (hydrophobic, aromatic, olefinic, acid, ethylester, amide) modify
δ-opioid receptor activation which suggests the importance of N1H-benzimidazole in these
events. The allyl and cyclopropylmethyl (3,4) substituents induce antagonism when present at
the amino function of alkaloid opiates.13 The δ-antagonism/μ-agonism profile of 1–6 is similar
to the bioactivity of opioids that elicit analgesia and display a lower degree of tolerance as seen
with analgesics of the μ-selective opiates.14

Binding assays were conducted as described elsewhere using rat brain P2 synaptosomes
preincubated to remove endogenous opioids,6,15 and labelled with 2.1 nM [3H]deltorphin II
(45.0 Ci/mmol, Amersham, Buckinghamshire, UK; KD = 1.4 nM) for δ-opioid receptors, and
3.5 nM [3H]DAMGO (50.0 Ci/mmol, Amersham, Buckinghamshire, UK; KD = 1.5 nM) for
μ-opioid receptors; the affinity constants (Ki) were calculated.17

In vitro activity utilized guinea-pig ileum (μ) and mouse vas deferens (δ) in competitive
bioassays.6 Antagonism was the shift of deltorphin C (MVD) and dermorphin (GPI) log
(concentration)-response curve to the right; pA2 values were determined using the Schild Plot.
18 Agonism was the inhibition of the electrically-evoked twitch; the IC50 values (nM) represent
the mean ± SE of not less than six tissue samples.
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