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Abstract
We determined whether chronic aerobic exercise reverses high-fat diet-induced impairments in the
CAP (c-Cbl associated protein)/c-Cbl (Casitas b-lineage lymphoma) signaling cascade in rodent
skeletal muscle. Sprague-Dawley rats were placed into either control (CON, n=16) or high-fat fed
(n=32) diet groups for 4 wk. During a subsequent 4 wk experimental period 16 high-fat fed rats
remained sedentary (HF), 16 high-fat fed rats completed 4 wk of exercise training (HFX), and CON
animals were sedentary and remained on the control diet. Following the intervention period, animals
were subjected to hind limb perfusions in the presence (n=8/group) or absence (n=8/group) of insulin.
In the plasma membrane fractions, neither highfat feeding nor exercise training altered APS (adaptor
protein with PH and SH2 domains), c-Cbl or TC10 protein concentrations. In contrast, CAP protein
concentration and insulin-stimulated plasma membrane c-Cbl tyrosine phosphorylation were reduced
by high-fat feeding, but exercise training reversed these impairments. Of note was that insulin-
stimulated aPKC ζ (atypical protein kinase C) kinase activity toward TC10 was reduced by high-fat
feeding but normalized by exercise training. We conclude that chronic 4 wk of exercise training can
reverse high-fat diet-induced impairments on the CAP/c-Cbl pathway in high-fat fed rodent skeletal
muscle. We also provide the first evidence that the CAP/c-Cbl insulin signaling cascade in skeletal
muscle may directly interact with components of the classical (phosphoinositide 3-kinase dependent)
insulin signaling cascade.
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INTRODUCTION
Insulin-stimulated activation of phosphoinositide 3-kinase (PI3K) is required for GLUT4
translocation and glucose uptake (1–4). In rodent skeletal muscle high-fat feeding impairs
insulin-stimulated rates of glucose transport and uptake in part due to decreased PI3K activity
and GLUT4 translocation to the plasma membrane (5–11). However, in insulin sensitive tissues
activation of the classical PI3K dependent insulin-signaling pathway alone cannot fully account
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for insulin-stimulated glucose transport and GLUT4 translocation (12–15). Rather, a
purportedly PI3K independent pathway, the CAP/c-Cbl insulin signaling cascade, is also
involved in the regulation of glucose metabolism (16–20). In response to insulin the activation
of the CAP/c-Cbl pathway is initiated by the APS (adaptor protein with PH and SH2 domains)
recruiting c-Cbl (Casitas b-lineage lymphoma) and a second adaptor protein CAP (c-Cbl
associated protein) to the insulin receptor (IR) (20–23). This complex enables the tyrosine
residues on c-Cbl to be phosphorylated thereby causing the CAP-Cbl complex to dissociate
from the IR and migrate to flotillin. This in turn recruits the CrkII/C3G complex to the lipid
raft microdomain of the plasma membrane where the guanine nucleotide exchange factor C3G
activates a small GTP-binding protein TC10. Activated GTP bound TC10 causes actin
remodeling and enables GLUT4 to dock/fuse to the plasma membrane (16,21–24). Of interest,
it has been suggested that the CAP/c-Cbl pathway may not function in an entirely PI3K
independent manner (24–27). Specifically, aPKCζ/λ, a component of the PI3K dependent
pathway, may interact with TC10 (24,28–30) resulting in increased TC10 threonine
phosphorylation (31). We have recently observed that high-fat feeding reduces insulin-
stimulated plasma membrane aPKC ζ/λ protein concentration and activation in rodent skeletal
muscle (11). Furthermore, Bernard et al. (32) and Prada et al. (33) using skeletal muscle
obtained from high fat fed rodents report that CAP protein concentration and insulin-stimulated
c-Cbl tyrosine phosphorylation are decreased. Given that high fat feeding modulates
components of both the PI3K dependent and CAP/c-Cbl insulin signaling cascades in skeletal
muscle we believed the high fat-fed rodent model could provide insight whether interaction
exists between these signaling pathways. We hypothesized that in rodent skeletal muscle
insulin-stimulated aPKCζ/λ activation results in TC10 threonine phosphorylation and that
aPKCζ/λ threonine phosphorylation of TC10 is impaired by high fat feeding.

Aerobic exercise training reverses high fat diet-induced impairments in rodent skeletal muscle
(34–36) primarily by enabling the PI3K-dependent insulin signaling cascade to be more fully
activated by insulin (11,34–38). Whether exercise training can reverse high fat diet-induced
impairments in the CAP/c-Cbl pathway is not known, but we have previously reported aerobic
training increases insulin-stimulated c-Cbl tyrosine phosphorylation in normal rodent skeletal
muscle (39). We therefore hypothesized that high fat diet-induced impairments on the CAP/c-
Cbl signaling cascade and aPKCζ/λ threonine phosphorylation of TC10 are reversible by
exercise training.

MATERIALS AND METHODS
Experimental Design

Forty-eight male Sprague-Dawley rats (Harlan, San Diego, CA) approximately 6 wk of age
were placed randomly into either normal diet (n=16) or high-fat diet (n=32) groups. The normal
diet (D12328, Research Diets Inc., New Brunswick, NJ) consisted of 73.1% carbohydrates,
10.5% fat, and 16.4% protein. The high-fat diet (D12330, Research Diets Inc.) contained 25.5%
carbohydrates, 58% fat, and 16.4% protein. The animals were on their respective diets for 4
weeks and allowed to feed ad libitum, which we have previously shown to induce skeletal
muscle insulin resistance in male Sprague-Dawley rats (7,8,10). During the subsequent 4 wk
experimental period high-fat diet rats continued to eat the high-fat diet and were randomly
assigned to either high-fat diet (HF, n=16) or exercise training (HFX, n=16) groups. Exercise
training consisted of treadmill running for 1 h/day, 5 day/wk at 32m/min on a 15% incline.
The speed was gradually increased during the first week of training such that the animals were
running at 32m/min by the 5th day of training and continued to run at this pace for the duration
of the exercise training. We have previously shown that when Sprague-Dawley rats are
exercised using this speed and grade that red gastrocnemius oxidative capacity is significantly
increased (40,41). The third group of rats (CON; n=16) remained on the chow diet for the
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duration of the study (8 wk), and acted as a control group. Following the experimental period
animals were fasted for 8–12 h prior to undergoing hind limb perfusion. Exercise trained
animals undertook their last training bout 36–48 h prior to hind limb perfusion. We have
reported serum glucose, insulin, adiponectin, FFA and skeletal muscle lipid content for these
animals previously (37).

All experimental procedures were approved by the Institutional Animal Care and Use
Committee at California State University, Northridge and conformed to the guidelines for the
use of laboratory animals published by the United States Department of Health and Human
Resources.

Hind Limb Perfusions
Animals were anesthetized with an intraperitoneal injection of sodium pentobarbital (6.5 mg
100−1 g body wt) and surgically prepared for hind limb perfusion as previously described by
Ruderman et al. (42) and modified by Ivy et al. (43). Following surgical preparation, cannulas
were inserted into the abdominal aorta and vena cava, and the animals were killed via an
intracardiac injection of pentobarbital as the hind limbs were washed out with 30 ml of Krebs-
Henseleit buffer (KHB) (pH 7.55). Immediately, the cannulas were placed in line with a non-
recirculating perfusion system, and the hind limbs were allowed to stabilize during a 5 min
washout period. The perfusate was continuously gassed with a mixture of 95% O2-5% CO2
and warmed to 37° C. Perfusate flow rate was set at 7.5 ml min−1 during the stabilization and
subsequent perfusion during which rates of glucose transport were determined.

Perfusions were performed in the presence (n = 8/group) or absence (n= 8/group) of 500 µU
ml−1 insulin. The basic perfusate medium consisted of 30% washed time-expired human
erythrocytes (Ogden Medical Center, Ogden, UT), KHB, 4% dialysed bovine serum albumin
(Fisher Scientific, Fair Lawn, NJ) and 0.2 mM pyruvate. The hind limbs were washed out with
perfusate containing 1 mM glucose for 5 min in preparation for the measurement of glucose
transport. Glucose transport was measured over an 8 min period using an 8 mM concentration
of non-metabolized glucose analogue 3-O-methylglucose (3-MG) (32 µCi 3-[3H] MG
mM−1, PerkinElmer Life Sciences, Boston, MA) and 2 mM mannitol (60 µCi-[1-14C] mannitol
mM−1, PerkinElmer Life Sciences). Immediately after the transport period, portions of the red
gastrocnemius (RG) were excised from both hind limbs, blotted on gauze dampened with cold
KHB, freeze clamped in liquid N2 and stored at −80° C for later analysis.

3-MG Transport
Rates of insulin-stimulated skeletal muscle 3-MG transport were calculated as previously
described and this data has been reported elsewhere (37).

Muscle Homogenization
Portions were cut from the RG, weighed frozen and homogenized in an ice-cold
homogenization buffer (HB) (1:10 wt/vol) containing 50 mM Hepes (pH 7.6), 150 mM NaCl,
20 mM Na-Pyrophosphate, 20 mM β-Glycerophosphate, 10 mM NaF, 2 mM orthovanadate,
2 mM EDTA, 1% IGEPAL, 10% glycerol, 2 mM phenylmethylsufonylfluoride, 1 mM
MgCl2, 1 mM CaCl2, 10 µg ml−1 leupeptin, and 10 µg ml−1 aprotinin. The homogenate was
then transferred to a microcentrifuge tube and centrifuged (19,600 × g, 4° C) in a refrigerated
microcentrifuge (Micromax RF, International Equipment Co., Needham Heights, MA) for 15
min. The supernatant was collected, labeled as lysate and assayed for protein concentration
using the Bradford method (44) adapted for use with a Benchmark microplate reader (BioRad,
Richmond, CA).
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Plasma Membrane Fractionation
Plasma membrane fractions were prepared as described previously (45). This procedure
provides an enriched plasma membrane fraction and a cytosolic fraction that is devoid of
plasma membranes (46). Briefly, a portion of the RG was homogenized in 8x (wt/vol) ice-cold
buffer containing 20 mM HEPES (pH 7.4), 2 mM EGTA, 50 mM β-glycerophosphate, 1 mM
dithiothreitol, 1 mM Na3VO4, 10% glycerol, 3 mM benzamidine, 10 µM leupeptin, 5 µM
pepstatin A, and 1 mM phenylmethylsulfonylfluoride. The homogenate was centrifuged at
100,000 × g for 30 min at 4° C, and the supernatant was collected as the cytosolic fraction. The
pellet was resuspended by agitation in 4× (wt/vol) ice-cold homogenization buffer to which
1% Triton X was added. The resuspended pellet was then centrifuged at 15,000 × g for 10 min
at 4° C. The supernatant, representing the plasma membrane fraction, was collected.

Western Blotting
Plasma membrane samples from the RG (100 µg of protein for CAP, APS, c-Cbl, and Flotillin)
were added to Laemmli buffer (47). Sample proteins were subjected to SDS-PAGE run under
reducing conditions on a 7.5% (CAP and c-Cbl) or 10% (APS and Flotillin) resolving gel in a
MiniProtean 3 dual-slab cell (BioRad). Resolved proteins were transferred to polyvinylidene
difluoride (PVDF) membranes using a semidry transfer unit (10 V for 55 min). Membranes
were then blocked in 5% nonfat dry milk/Tris-Tween-buffered saline and incubated with anti-
CAP [Cat# 06-994, UBT], anti-APS [sc-8894, Santa Cruz Biotechnology (SCBT) Santa Cruz,
CA], anti-c-Cbl [Cat# 05-440, UBT], or mouse polyclonal anti-Flotillin-1 [Cat# 610820, BD
Transduction Laboratories, BD Biosciences Pharmingen, San Diego, CA] followed by the
species-specific immunoglobulin (Ig) G secondary antibody conjugated to horseradish
peroxidase (HRP). Antibody binding was visualized by enhanced chemiluminescence in
accordance to manufacturer’s instructions. Images were captured using a ChemiDoc system
(BioRad) equipped with a CCD camera and saved to a Macintosh G4 computer. Protein bands
were quantified using Quantity One analysis software (BioRad). The data is expressed as a
percentage (arbitrary units) of a muscle sample standard that was run on each gel.

Immunoprecipitation
c-Cbl tyrosine phosphorylation and TC10 protein concentration were determined using
immunoprecipitation followed by western blotting. Sixty microliters of Pro-A slurry were
incubated with 4 µg of anti-c-Cbl [Cat# 05-440, UBT] or anti-TC10 [Cat# sc-12637, SCBT]
overnight at 4° C with rotation. Following an overnight incubation, plasma membrane samples
(1000ug of protein for c-Cbl tyrosine phosphorylation and TC10 protein concentration) were
added to the immunocomplexes and placed on rotation for 2 h at 4°C. The Pro-A beads were
resuspended in 25 µl of Laemmli buffer, subjected to SDS-PAGE on a 7.5% (c-Cbl tyrosine
phosphorylation) or 12.5% (TC10 protein concentration) resolving gel and transferred to PVDF
membranes as described above. Membranes were then subjected to western blotting, the
proteins were visualized and quantified as described above using either antiphosphotyrosine
[Cat# 02-247, UBT] or anti-TC10 [Cat# sc-12637, SCBT] as the primary antibody.

aPKCζ Kinase Activity Toward TC10
We determined whether insulin-stimulated activation of aPKCζ resulted in increased TC10
threonine phosphorylation in mammalian skeletal muscle. The rationale for this assay is that
TC10 has a consensus aPKCζ threonine phosphorylation site (31). One hundred microliters of
Pro-A slurry were incubated with 4 µg of anti-PKCζ [Cat# sc-216, SCBT] overnight at 4°C
with rotation. Following an overnight incubation, 1000 µg of sample protein was added to the
immunocomplexes and placed on rotation for 2 h at 4°C. The immunocomplexes were then
washed 3 times with PBS. After the final wash, the supernatant was completely removed and
the remaining bead/immunocomplex was subjected to a kinase assay using a TC10 substrate.
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The TC10 substrate, amino acid sequence ILTPKKHT(179)VKKIGS of TC10 containing
threonine 179 that is phosphorylated in response to insulin stimulation, was synthesized by
American Peptide Company, Inc. (Sunnyvale, CA). Twenty microliters of assay dilution buffer
was added to the bead/immunocomplex in addition to 10 µl of the custom TC10 substrate. The
kinase reaction was initiated by the addition of 500 µl assay dilution buffer, 75 mM MgCl2, 1
M adenosine triphosphate (ATP), and [γ-32P] ATP (PerkinElmer Life Sciences) and warmed
to 37° C with constant mixing for 10 min. The reaction was terminated by the addition of 80
µl of Tris-tricine sample buffer and heated at 95° C for 5 min. Fifteen microliters of samples
were loaded onto a 20% Tris-tricine polyacrylamide gel in duplicate and electrophoresed for
130 min at 100 V using a MiniProtein electrophoresis system (BioRad). After electrophoreses,
gels were wrapped in plastic wrap and exposed to a phosphor screen (Eastman Kodak
Company) overnight. Images were captured and quantified as described above.

Statistical Analysis
A one-way analysis of variance (ANOVA) was used on all variables to determine whether
significant differences existed between groups. When a significant F-ratio was obtained, a
Tukey HSD post-hoc test was used to identify statistically significant differences (p<0.05)
among the means. Statistical analyses were performed using JMP software (SAS Institute Inc.,
Cary, NC), and all values were expressed as means ± SE.

RESULTS
Body and Epididymal Fat Pad Mass

Body and epididymal fat pad mass data have been published by us in a companion paper
(37). Body and epididymal fat pad mass of the HF animals were heavier than CON and HFX
animals (p<0.05).

CAP Protein Concentration
Plasma membrane CAP protein concentration in the HF group was reduced compared to CON
and HFX groups (p<0.05, Fig. 1). CAP protein concentration was not different between CON
and HFX animals (Fig. 1).

c-Cbl Protein Concentration and Tyrosine Phosphorylation
Plasma membrane c-Cbl protein concentration was not different among groups in the absence
or presence of insulin (Fig. 2A). In the absence of insulin, c-Cbl tyrosine phosphorylation was
similar among groups (Fig. 2B). In the presence of insulin c-Cbl tyrosine phosphorylation was
elevated above basal levels in both CON and HFX animals (p<0.05) but not in the HF group.

APS, Flotillin and TC10 Protein Concentration
APS (Fig. 3A), Flotillin (Fig. 3B) and TC10 (Fig. 3C) protein concentration were similar in
the absence or presence of insulin among groups.

aPKCζ Kinase Activity Toward TC10
In the absence of insulin, the substrate specific kinase activity of aPKCζ was similar among
groups (Fig. 4). In the presence of insulin threonine phosphorylation of TC10 by aPKCζ in
CON and HFX animals was greater than that of the HF animals (p<0.05).

DISCUSSION
The classical PI3K dependent and novel CAP/c-Cbl insulin signaling cascades were believed
to independently contribute to insulin-stimulated GLUT4 translocation. However, it has been
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proposed that these two pathways may work in partnership (24–27). Of interest, aPKCζ/λ may
be recruited to the plasma membrane in a TC10-dependent mechanism as it has been reported
that both aPKCζ/λ and TC10 can form complexes with the plasma membrane-associated
proteins Par3 and Par6 (24,28–30). Furthermore, Kotani et al. (48) have reported that when
Par3 is overexpressed in 3T3-L1 adipocytes that insulin-stimulated aPKCζ/λ activation is
inhibited which in turn results in decreased GLUT4 translocation. Collectively, this data raises
the possibility that the PI3K dependent and CAP/c-Cbl signaling cascades may not only work
in concert but may actually have components of the signaling cascades that “cross-talk” in
response to insulin stimulation.

Supporting this contention we observed that insulin-stimulated aPKCζ kinase activity toward
TC10 was reduced by high-fat feeding but normalized by aerobic training. The functional
significance of this observation remains to be determined but may be related to the role that
TC10 plays in the cortical actin remodeling that is critical for docking/fusion of GLUT4
vesicles to the plasma membrane in response to insulin stimulation (16,17,49). Liu et al. (50)
have observed in differentiated rat L6 muscle cells that insulin recruits aPKCζ to the plasma
membrane and mediates glucose transport through actin remodeling. Moreover, we have
recently shown that in these high-fat fed animals insulin-stimulated plasma membrane aPKC
ζ and λ protein concentration and insulin-stimulated aPKCζ/λ activities were less than that of
the normal diet animals, and that exercise training increased both insulin-stimulated plasma
membrane association and activation of aPKCζ/λ in the high-fat fed skeletal muscle (11), which
complemented our observation that insulin-stimulated 3-MG transport rates in HF animals
were less than CON and HFX animals but were not different between CON and HFX (37).

It has been reported that aPKCζ/λ interacts with GLUT4 containing vesicles (24,51) and
aPKCζ regulates munc18 (a protein of the GLUT4 vesicular trafficking machinery) (52). We
have previously demonstrated that insulin-stimulated plasma membrane GLUT4 protein
concentration is reduced by high-fat feeding and increased in the high-fat fed-exercise trained
animals (11). Accordingly, it seems entirely plausible to suggest that aPKCζ serves to couple
the activation of the PI3K dependent and CAP/c-Cbl signaling cascades. Specifically, the PI3K
dependent insulin signaling cascade’s primary role may lie in initiating GLUT4 vesicular
translocation while the CAP/c-Cbl insulin signaling cascade might predominantly assist in the
trafficking, docking and fusion of GLUT4 vesicles to the plasma membrane. However, the
“cross talk” that occurs between these two pathways appears necessary to orchestrate the
coordinated movement of GLUT4 containing vesicles among cellular compartments in
response to insulin stimulation.

Aerobic exercise training is well recognized as an intervention that improves glucose
metabolism in skeletal muscle (53–56). In the high-fat fed rodent model aerobic exercise
training reverses not only whole body insulin resistance (34,35) but also improves impairments
in the classical PI3K dependent insulin signaling cascade as evidenced by increased PI3K
activity, Akt2 activity, aPKCζ/λ activity, aPKCζ/λ translocation, GLUT4 expression and
GLUT4 translocation (11,37,57,58). In contrast, the effects of chronic aerobic training on the
CAP/c-Cbl insulin signaling pathway have not been well studied. Bernard et al. (39) have
reported that exercise training increases CAP protein concentration and c-Cbl tyrosine
phosphorylation in normal rat skeletal muscle, and increases CAP and TC10 protein
concentration in obese Zucker rat skeletal muscle (59). Consistent with these findings we
observed that chronic aerobic exercise normalized CAP protein concentration and c-Cbl
tyrosine phosphorylation in high-fat fed rodent skeletal muscle. This training adaptation likely
contributes to enhancing the formation of the CAP/c-Cbl complex which facilitates GLUT4 to
traffic to the plasma membrane through TC10 activation (16,21–24). Skeletal muscle APS, c-
Cbl, and TC10 protein concentration were unaltered by either exercise training or a high-fat
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diet, which is also in agreement with previous reports (32,39), and suggest that neither exercise
training nor dietary content affects the expression of these proteins.

In conclusion, the present study provides the first evidence that in skeletal muscle the CAP/c-
Cbl insulin signaling cascade may directly interact with components of the PI3K dependent
insulin signaling cascade. Additionally, we demonstrate that chronic aerobic exercise training
can reverse high-fat diet-induced impairments in components of the CAP/c-Cbl insulin
signaling cascade in skeletal muscle.
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Figure 1.
Plasma membrane CAP protein concentration obtained from normal diet, control (CON); high
fat diet, control (HF); high fat diet, exercise trained (HFX) animals. *, Significantly different
from CON (p<0.05). †, Significantly different from HFX (p<0.05). Values are means ± SE.
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Figure 2.
(A) Plasma membrane c-Cbl protein concentration, (B) Plasma membrane tyrosine
phosphorylation of c-Cbl obtained from normal diet, control (CON); high fat diet, control (HF);
high fat diet, exercise trained (HFX) animals. *, Significantly different from CON (p<0.05).
†, Significantly different from HFX (p<0.05). §, Significantly different from basal condition
(p<0.05). Values are means ± SE.
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Figure 3.
(A) Plasma membrane APS protein concentration, (B) Plasma membrane Flotillin
concentration, (C) Plasma membrane TC10 concentration obtained from normal diet, control
(CON); high fat diet, control (HF); high fat diet, exercise trained (HFX) animals. Values are
means ± SE.
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Figure 4.
Plasma membrane aPKCζ/λ kinase activity toward TC10 obtained from normal diet, control
(CON); high fat diet, control (HF); high fat diet, exercise trained (HFX) animals. *,
Significantly different from CON (p<0.05). †, Significantly different from HFX (p<0.05). §,
Significantly different from basal condition (p<0.05). Values are means ± SE.
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