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Abstract

Previous studies have found that children have difficulty solving proportional reasoning problems
involving discrete units until 10- to 12-years of age, but can solve parallel problems involving
continuous quantities by 6-years of age. The present studies examine where children go wrong in
processing proportions that involve discrete quantities. A computerized proportional equivalence
choice task was administered to kindergartners through fourth-graders in Study 1, and to first- and
third-graders in Study 2. Both studies involved four between-subjects conditions that were formed
by pairing continuous and discrete target proportions with continuous and discrete choice
alternatives. In Study 1, target and choice alternatives were presented simultaneously and in Study
2 target and choice alternatives were presented sequentially. In both studies, children performed
significantly worse when both the target and choice alternatives were represented with discrete
quantities than when either or both of the proportions involved continuous quantities. Taken together,
these findings indicate that children go astray on proportional reasoning problems involving discrete
units only when a numerical match is possible, suggesting that their difficulty is due to an
overextension of numerical equivalence concepts to proportional equivalence problems.
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Proportional reasoning involves understanding the multiplicative relationships between
rational quantities (a/b = c/d), and is a form of reasoning that characterizes important structural
relationships in mathematics and science, as well as in every day life (Cramer & Post, 1993;
Lesh, Post, & Behr, 1988). As Ahl, Moore, and Dixon (1992) emphasized, “Proportional
reasoning is a pervasive activity that transcends topical barriers in adult life.” Proportional
information is crucial in dealing with such diverse topics as economic values, relational spatial
contrasts, temperatures, densities, concentrations, velocities, chemical compositions,
demographic information, and recipe formulation (Karplus, Pulos, & Stage, 1983; Moore,
Dixon, & Haines, 1991; Siegler & Vago, 1978; Sophian & Wood, 1997; Spinillo & Bryant,
1999). For example, when baking, one needs to think proportionally about the relative measures
of each ingredient (e.g., 2-and-% cups flour, 1/3 cup sugar, and ¥ cup butter), and must maintain
these proportions whenever deviating from the recipe (e.g., whenever doubling or halving the
intended amount). In chemistry, proportionality is central to balancing chemical equations.
During election years, candidates strategically allocate their campaign time to particular

CORRESPONDENCE: Ty W. Boyer; 1101 E. 10th St.; Department of Psychological and Brain Sciences; Indiana University;
Bloomington, IN., 47405; 812-856-0814; tywboyer@indiana.edu.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Boyer et al.

Page 2

geographical locations based on the proportion of the population represented by specific
demographic target groups. Understanding of proportionality is also central to mathematics; it
is the basis of rational number operations, unit partitioning, and basic algebra and geometry
problem solving (Empson, 1999; Fuson & Abrahamson, 2005; Hasemann, 1981; Pitkethly &
Hunting, 1996; Saxe, Gearhart, & Seltzer, 1999; Sophian, Garyantes, & Chang, 1997). In fact,
this kind of reasoning is viewed as so central to mathematical thinking that the National Council
of Teachers of Mathematics (1989) stated that it deserves, “whatever time and effort must be
expended to assure its careful development” (cited in Cramer & Post, 1993).

Despite the importance and pervasiveness of proportional reasoning, there is disagreement
regarding its developmental time course. One theoretical perspective, originally presented by
Piaget and Inhelder (1951/1975; Inhelder & Piaget, 1958), proposes that children are incapable
of proportional reasoning until about 11-years of age. According to Piagetian theory,
proportional reasoning involves understanding the “relation between relations,” and is a
hallmark of formal operations. Piaget and Inhelder’s work, as well as many subsequent studies
support this idea (Fujimura, 2001; Schwartz & Moore, 1998). For example, Noelting (1980)
presented 6- to 16-year old children with two proportions, each represented as a set of glasses
of orange juice concentrate and a set of glasses of water and participants were asked to choose
which proportion would produce a more concentrated orange drink (e.g., three glasses of orange
juice to one glass of water vs. one glass of orange juice to three glasses of water). Consistent
with Piaget and Inhelder’s perspective, children under 12-years of age failed to select the
correct set.

Other studies have shown that 5- to 8- year-olds are unable to reliably predict the outcomes of
chance gambles, where outcome probabilities are determined by proportions (e.g., lottery
draws and spinner gambles; Brainerd, 1981; Chapman, 1975; Davies, 1965; Falk & Wilkening,
1998). Children’s difficulty with proportional reasoning in the context of conventional
fractions is also noted in the mathematics education literature (Carpenter, Fennema, &
Romberg, 1993; Pitkethly & Hunting, 1996). For example, Ball (1993) reported that third-
grade children systematically misinterpret traditionally notated fractions (e.g., %4), and estimate
that fractions with larger denominators are quantitatively greater than fractions with smaller
denominators (e.g., 4/6 < 4/8).

In contrast to studies indicating that proportional reasoning is a late achievement, some studies
report that children as young as 5- to 6-years of age can successfully solve slightly modified
proportional reasoning problems (Ginsburg & Rapoport, 1967; Sophian, 2000; Sophian &
Wood, 1997; Van Den Brink & Streefland, 1979). One problem modification that has been
used to this end has involved framing the proportional equivalence problems in terms of
analogy (Farrington-Flint, Canobi, Wood, & Faulkner, 2007). Children become capable of
solving simple analogy problems during the preschool years (e.g., Gentner, 1977a e.g.,
Gentner, 1977Db), and researchers have noted that proportional reasoning is a quantitative form
of analogical reasoning, in the sense that both conceptual analogies and quantitative
proportions require analysis of the relations between relations. For example, understanding
that the relation between hands and gloves is analogous to the relation between feet and shoes
may involve similar reasoning processes as understanding that the relation between 4/5 is
analogous, or proportionally equivalent to, 8/10. Working within this framework, Goswami
and colleagues (Goswami, 1989; 1995; Singer-Freeman & Goswami, 2001) designed problems
to assess young children’s proportional reasoning skills in the context of shape analogies. Their
findings show that six- and seven-year-olds understand, for example, that a 1/2 circle and 1/2
rectangle pair is analogous to a 1/4 circle and 1/4 rectangle pair (Goswami, 1989). Of course,
proportions, like other analogies, vary in difficulty depending on the specific terms involved,
and Goswami (1989) presented children with ¥-base problems (e.g., %, %, and %), which likely
made them easier than other alternatives (e.g., 2/3 and 6/9).
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Five to six-year-olds also have success on proportional reasoning problems that take the form
of probabilistic gambles if a modified response mechanism is used. In these studies, participants
are asked to provide a scaled judgment of their satisfaction with a gamble, rather than to predict
the outcome of the gamble (Acredolo, O’Connor, Bank, & Horobin, 1989; Schlottmann,
2001). It has been suggested that this type of response may enable young children to use
intuitive problem solving strategies that are more likely to be correct than more explicit
strategies (Boyer, 2007; Falk & Wilkening, 1998; Reyna & Brainerd, 1994; Schlottmann,
2001).

The discrepancy in results among studies showing early versus later success on proportional
reasoning problems seem to be explainable by a common thread. In particular, many studies
that report later understanding of proportionality tend to present participants with proportions
consisting of discrete sets, whereas many studies that report earlier understanding of
proportionality tend to present participants with proportions consisting of continuous amounts
(Mix, Huttenlocher & Levine, 2002). A few studies have directly examined the impact of
discrete versus continuous quantities on proportional reasoning. Spinillo and Bryant (1999),
for instance, found that 6-year-olds were more successful in solving a proportional matching
task when the stimuli were continuous than when they were discrete (i.e., accuracy was higher
when target proportions, which were represented as small round pies, were not “sliced” into
discrete units than when they were). Similarly, Jeong, Levine, and Huttenlocher (2007) found
that 6-, 8-, and 10-year-olds performed significantly above chance in selecting which of two
spinner gambles involves a higher probability for success if the winning and losing proportions
on each spinner were represented with continuous sections. None of these age groups, however,
selected the more probable spinner if the winning and losing portions were broken into discrete
units by demarcating lines. It is possible that proportions represented with continuous amounts
are more likely to elicit correct intuitive processes than proportions represented with discrete
sets. The question then becomes --what are the explicit processes elicited by discrete quantities
that interfere with successful proportional reasoning?

Children’s difficulty with discrete unit proportional reasoning problems may be due to over-
extension of counting routines to judgments of proportionality (Mix, Levine, & Huttenlocher,
1999; Wynn, 1997). In support of this possibility, Jeong and colleagues (2007) found that even
10-year-olds have particular difficulty on proportional reasoning problems if counting the
number of discrete target units produced an outcome inconsistent with the relative proportion
of target and non-target units (e.g., they judged 6/10 as more probable than 4/6). Thus, counting
and the overextension of numerical counts to proportional problems may impede proportional
reasoning. It is also possible that the presence of discrete units interferes with forming a
representation of the relative proportion of numerator to denominator amounts, even if children
do not try to solve the problem by counting the numerator and denominator units.

In the current studies, participants were given a task that involved selecting a proportion that
matched a target juice mixture. Similar to previous studies (Fujimura, 2001; Noelting, 1980;
Schwartz and Moore, 1998), proportionality was determined by the relative quantities of juice
and water parts. The present task, however, focuses on proportional equivalence between a
target and a choice alternative, rather than concentration ordinality, which may serve to reduce
task difficulty (Cooper, 1984; Frydman & Bryant, 1988; Mix et al., 2002).

Participants were randomly assigned to one of four continuity conditions, which involved
variation in whether the target and choice alternatives were represented with continuous water
and juice amounts or with discrete water and juice units. In one condition, both the target
proportion and choice alternative proportions were represented with discrete units (hereafter
referred to as DD); in another condition, both the target and choice alternatives were
represented with continuous amounts (CC); for a third group the target was represented with
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discrete units and the choice alternatives with continuous amounts (DC); finally, for a fourth
group the target was represented with continuous amounts and the choice alternatives were
represented with discrete units (CD). Based on previous findings, we predicted that children
would perform relatively well on the continuous target-continuous choice alternatives (CC)
problems, and relatively poorly on the discrete-discrete (DD) problems. Children’s
performance on the mixed conditions, which involved continuous target proportions and
discrete choice alternatives (CD), or the reverse (DC), were included to provide information
about the nature of children’s difficulty. The hypothesis that children’s tendency to make
numerical matches interferes with their proportional reasoning would gain support if their
difficulty is isolated to the DD condition, where both target and choice proportions are
represented with discrete units (i.e., DD < DC = CD = CC), because the DD condition is the
only one in which absolute numerical matches are possible. Alternatively, if the presence of
discrete units causes difficulty with forging a proportional representation, we might expect that
children will perform poorly anytime discrete units are present in the problem, and the CC
condition will be the only condition on which they perform well (DD = DC = CD < CC). It is
also possible that there will be an incremental effect, such that participants given discrete targets
with continuous choice alternatives or the reverse will succeed at a rate that lies between those
in the DD and CC conditions (i.e., DD < DC = CD < CC). This might be the case because
participants given either discrete targets or discrete choice alternatives (i.e., DC and CD) are
presented with fewer total countable units than those given discrete targets and discrete choice
alternatives (i.e., DD).

Another major conclusion of previous studies that have examined the development of
proportional reasoning is that young children are not able to go beyond the parts of the
proportion to represent part-whole relations (Inhelder & Piaget, 1958; Singer & Resnick,
1992). To examine this issue, we manipulated foil-type to analyze the role of parts and
wholes in children’s proportional reasoning. Across trials, the correct choice alternative was a
proportional match for the target mixture [i.e., the juice/(juice + water) proportion is preserved].
For half of the trials, the incorrect foil alternative matched the target’s absolute juice portion
(i.e., a juice part foil-type), and for the other half of trials, the foil matched the target’s total
amount (i.e., a juice + water whole foil-type). This was the case in each continuity condition.
If younger participants do indeed focus on the parts that compose proportions, we might expect
an effect of foil-type, such that younger children perform more poorly on trials on which the
foil matches the target’s “juice” portion (i.e., they are drawn towards forming a part match)
than on trials for which the foil matches the target’s whole juice + water amount.

Participants—Participants were 240 students recruited from seven Chicago Public Schools,
with 48 participants from kindergarten, first-, second-, third-, and fourth-grades, and
approximately the same number of girls and boys tested at each grade level (Mg = 6-years-1-
month, 27 girls, 21 boys; M4 = 7;1, 23 girls, 25 boys; M, = 8;0, 20 girls, 28 boys; M3 = 8;10,
23 girls, 25 boys; M4 = 9;10, 28 girls, 20 boys; SD = 4-months, in all grades). There were 12
participants per grade per continuity condition. All children had written parental consent to
participate. We did not expressly collect information on each participating child’s ethnicity or
socio-economic status (SES), and therefore precise data for these factors are not available.
There was, however, substantial diversity within and across the schools sampled, which we
can examine at the school level. Based on the statistics reported for each school and the number
of children tested at each, we can estimate that approximately 26% of participants were
Hispanic, 26% were Asian, 17% were Black, and 31% were White. Using the percentage of
students at each school who are eligible for the free or reduced cost lunch program as a metric
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of SES, we estimate that about 66% of the children in our sample come from low SES
backgrounds (sd = 27%, range = 26% to 96%) 2 Al participants were fluent English speakers.

Procedure—~Participating children were individually administered an engaging proportional
reasoning task on an IBM T20 laptop computer with a 14.1” screen. Testing was carried out
during regular school hours, in familiar rooms adjacent to participants’ classrooms. During
task instructions, a picture of a teddy bear appeared on the screen and children were told that
his name is “Wally-bear.” The experimenter explained that Wally-bear enjoys drinking all
kinds of juice — red, blue, green, yellow, and purple juice — and likes to mix his juice himself.
The experimenter then showed participants an example that stressed the importance of
maintaining a recipe’s proportion when transforming total amount (See Appendix for the
instruction script).

During each trial, a small photo of the character appeared on the upper-left side of the screen,
and a mixture of juice + water (target proportion) was shown just below the photo. Two
potential matches for the target proportion appeared on the right two-thirds of the screen, one
of which was a correct proportional match, and the other of which was a part foil or a whole
foil (as described above). The bottoms of the choice alternatives were vertically aligned with
each other, but were not aligned with the target proportion (see Figure 1 for example
screenshots of the experiment). With the target and choice proportions on the screen, the
experimenter asked, “Which of these two (pointing to the two alternatives) is the right mix for
the juice Wally-bear is trying to make? Which of these two would taste like Wally-bear’s
juice?” Using the computer’s mouse, the participant registered a selection by clicking a button
that appeared below each of the choice alternatives. After the child selected, another target
proportion and another two choice alternatives appeared. The “juice” color on each successive
trial was different from that on the previous trial. Sixteen self-paced trials were administered
in this manner, in one of four predetermined orders (i.e., two pseudo-random orders and their
reverses were used). No performance feedback was provided on any trial.

Experimental Design—Participants were randomly assigned to one of four continuity
conditions (CC, CD, DC, and DD, as described above). The sole difference between the
continuity conditions was in how the juice and water parts were represented. In the discrete
conditions there were lines that demarcated each 1-cm? unit, and in the continuous conditions
the juice and water portions formed unitary columns, with visible divisions only occurring at
the point where the juice and water parts met (Figure 1 gives example screenshots of each
continuity condition). As mentioned above, for each continuity condition, foil-type was varied
S0 as to match the target’s juice part on half of the trials and the target’s whole extent (e.g.,
total juice + water quantity) on the other half of the trials (the incorrect alternative in each
frame of Figure 1 is a juice part foil).

Several other factors were controlled. The target to match scaling direction was balanced across
part and whole foil trials. That is, there were equal numbers of problems that involved scaling
up from a target proportion with a smaller numerator/denominator to a proportional match with
a larger numerator/denominator (e.g., 2/3 to 6/9), and scaling down from a larger numerator/
denominator to a smaller numerator/denominator (e.g., 6/9 to 2/3). In addition, foils were
chosen such that the proportional disparity between the target and foil were approximately
equivalent across problems (see Table 1). Previous studies have shown that “half” is an
especially salient proportion (Jeong, 2005;Spinillo & Bryant, 1991,1999), so neither the target
nor either of the choice alternatives were ever %. Furthermore, all foils were on the opposite
side of the half-boundary from the target (i.e., if the target proportion was less than %, then the

2|nformation regarding the National School Lunch Program, including income eligibility requirements, is available through the United
States Department of Agriculture, Food and Nutrition Service (http://www.fns.usda.gov/cnd/Lunch/).
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foil proportion was greater than Y%, or vice versa), which should make the problems easier than
had we included foils on the same side of the half boundary as the target proportion. Other
factors were varied randomly, as determined by the computer program (i.e., the “juice” color
assigned to a particular trial and whether the correct choice appeared on the right or left).

Collapsing across all variables, participants selected the proportional match for the target on
63.2% of all trials. Table 2 summarizes the mean proportion of trials, per school-grade,
continuity condition, and foil-type on which participants selected the proportional match. The
primary analysis was a4 x 5 x 2 x 2 mixed model Analysis of Variance (ANOVA). Continuity
condition (CC, CD, DC, or DD), School grade (kindergarten, first-grade, second-grade, third-
grade, or fourth-grade), and Sex were between-subjects factors, and Foil-type (part foil or
whole foil) was a within-subjects variable. The dependent measure was the number of times
participants selected the proportional match (out of eight trials for each foil-type).

The ANOVA revealed a significant main effect of Continuity condition, F (3, 200) = 12.88,
p <.0001, an =.16. Planned pairwise comparisons revealed that participants in the DD
condition were significantly less likely to select the proportional match than participants in all
other groups (all ps <.001), and that there were no significant differences between the
performance levels of participants in the other three continuity conditions (all ps > .18)1.
Follow-up comparisons against chance revealed that performance levels of participants in the
CC, CD, and DC conditions all exceeded chance (all ps <.001), but the performance level of
participants in the DD condition did not (p = .68).

The main effect of school grade was also significant, F(4, 200) = 14.49, p < .001, lep =.23.
Planned comparisons showed that fourth-graders were more likely to select the proportional
match than all other groups (all ps <.001). Third-graders and second-graders did not
significantly differ from each other (p = .58), but both were more likely to select the
proportional match than first-graders and kindergartners (all ps <.01), who in turn did not
significantly differ from each other (p = .74). On average second-, third-, and fourth-graders
selected the proportional match more frequently than would be expected by chance (all t >
4.30, all p <.001), but kindergartners and first-graders did not significantly differ from chance
performance (both t < 1.00, both p >.32). Across grades performance was poorest in the DD
condition, and the interaction between school grade and continuity condition was not
significant, F(12, 200) = .51, p = .91, n, = .03. The main effect of sex was non-significant, F
(1,200)=.01,p=.91, n2p <.01, and no interactions involving this variable reached statistical
significance (all p > .08).

Finally, the ANOVA revealed a significant main effect of foil-type, F(1, 200) = 43.42,p <.
001, an = .18, with participants selecting the proportional match more often when the foil was
a whole match (juice + water total) than when the foil matched the target’s juice part (68.2%
vs. 57.4% of trials, respectively). As illustrated in Figure 2, however, foil-type interacted with
school grade, F(4, 200) = 4.24, p =.003, nzp =.08, such that the difference between whole and
part foils decreased with development. Figure 2 also shows that selection of the proportional
match when the foil matched the target’s juice part did not exceed chance until third-grade
whereas it exceed chance by kindergarten when the foil matched the target’s total juice + water
amount (with a Bonferroni control for multiple comparisons).

Individual analyses were conducted to examine whether participants tended to consistently
select the proportional match or the foil alternative, and if so, whether this shifted over

1an pairwise comparisons reported throughout the text were conducted with one-tailed tests.
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development. The binomial distribution indicates that in order to exceed chance (a < .05, two-
tailed) a participant must select a particular choice alternative on at least 13 of the 16 trials. As
can be seen in Table 3, the results of the individual analysis largely mirrored the group findings;
generally, there was an increase in the number of participants who consistently selected the
proportional match with age, and more participants in the CC, CD, and DC conditions (62
children, 34.4%) consistently selected the proportional match across grades than in the DD
condition (8 children, 13%). Although relatively few children selected the foil alternative more
frequently than chance, more participants in the DD condition (7 children, 12%) did so than
in the three other conditions (1 child, 1%).

The amount of time that participants took to complete each trial was also analyzed. On average,
participants responded in 8.8-seconds per trial (SD = 5.2). Importantly, the time taken to
complete the task was negatively correlated with accuracy, r =—.214, p =.001, indicating that
there was not a speed-accuracy trade-off; rather, those who responded more quickly also tended
to respond more accurately. A 4 x 5 x 2 x 2 ANOVA carried out to analyze the effects of
condition, school grade, sex, and foil-type on median response time revealed a main effect for
continuity condition, F(3, 200) =5.08, p=.002, n2p =.07, with participants in the DD condition
taking longer to respond than those in all other conditions (all ps < .02, Sidak adjusted), which
did not significantly differ from each other. The analysis also revealed a main effect of grade,
F(4,200)=2.97,p=.02, nzp =.06, with second-graders responding faster than kindergartners
and first-graders (p = .03 and p = .05, respectively, Sidak adjusted), but with no other significant
pairwise differences (all p >.17). These findings largely mirror those found in our analyses on
accuracy —participants in the DD condition and the youngest participants were slower to
respond as well as less accurate. Neither the main effect of sex or foil-type was significant, F
(1,200) = .03, p = .87, 1%, < .01 and F(1, 200) = 3.04, p = .08, n%, = .02, respectively. The
ANOVA, however, revealed an unexpected foil-type x school grade interaction, F(4, 200) =
2.96, p =.02, nzp = .06, reflecting faster responding of first-graders when the foil matched the
target’s juice part than when it matched the target’s juice + water whole (p = .014, Sidak
adjusted). In addition, an unexpected three-way foil-type x school grade x sex interaction
emerged, F(4, 200) = 2.42, p = .05, nzp = .05 Although difficult to interpret, pairwise
comparisons indicate that this was due to kindergarten boys, first-grade girls, and third-grade
girls responding faster on part foil trials than on whole foil trials (all p < .02, Sidak adjusted).

Discussion

The current study shows that children have difficulty solving proportional reasoning problems
when both the target and the choice proportions are represented with discrete units, but perform
significantly better on problems for which the target, the choice alternatives, or both are
represented with continuous amounts. That is, performance of participants in the DC and CD
conditions did not differ from those in the CC condition, and each of these groups performed
above chance and better than those in the DD condition. This pattern of results suggests that
proportional reasoning is not limited by the mere presence of discrete, countable entities.
Rather, the findings suggest that children’s difficulty with proportional reasoning problems
involving discrete quantities may stem from an overextension of absolute numerical
equivalence strategies to problems that should be solved on the basis of proportional
equivalence. Absolute numerical equivalence matching (i.e., matching the target with the foil
alternative, which has the same number of units as the target juice part or the target juice +
water whole) was only possible when both the target and choice alternatives were represented
with discrete units, as in our DD condition (i.e., numerical matching was not possible in the
conditions where the target, the choice alternatives, or both were continuous). The difficulty
young children have in making proportional matches on DD problems is particularly striking
in view of the fact that all foils were on the opposite side of the half-boundary than the target
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proportion, in that using an approximate representation of proportion (i.e., more than half, less
than half) rather than matching target and foil counts would have led to the correct answer.

As predicted, performance also suffered when the foil matched the target’s juice part, relative
to when the foil matched the target’s juice + water whole, suggesting that a common absolute
juice part between the target and foil is a particularly salient similarity feature. As evidenced
by an interaction between foil-type and school grade, this was especially the case for younger
children. Kindergarten and first-grade students actually performed below chance in choosing
the proportional match when the foil matched the target’s juice part (See Figure 2). As
summarized in Table 2, kindergartners and first-graders in the DD continuity condition selected
the proportional match on only 33% and 23% of the trials when the foil alternative matched
the target’s juice part, compared to 48% and 55% of trials when the foil alternative matched
the target’s whole (juice + water). This is generally consistent with the previous finding that
younger children tend to focus on the parts of the problem, rather than analyzing part-whole
relations (Inhelder & Piaget, 1958;Singer and Resnick, 1992).

These performance data are consistent with our proposal that young children would succeed
on problems that they solve through intuitive processes and have greater difficulties with
problems that invoke more explicit processes. The response time data are consistent with this
intuitive/explicit distinction, in that faster responses were associated with higher performance
levels than slower responses (Sloman, 1996; Stanovich, 2004). One potential limitation of this
study, however, concerns the simultaneous presentation of target and foil. This may have
enabled participants to revise their initial encoding of the target quantity in the DC and CD
conditions, because they could go back and forth between the target and the choice alternatives.
For example, a participant in the DC condition may have initially represented a % discrete
target numerically (e.g.,as “3 juice parts” or “4 total”), rather than representing it proportionally
(e.g., “about %4,” “more than half juice,” or “3 parts juice to 1 part water”). Upon seeing the
choice alternatives represented in a continuous format, however, the child might have
reanalyzed the target proportion and re-encoded it in a proportional manner. Thus, the fact that
children performed as well in the DC and CD conditions as in the CC condition may have
stemmed from the simultaneous availability of target and foil quantities. In order to determine
whether this is the case, and to better understand at what point in the problem solving process
discrete units disrupt performance, Study 2 adopts the design of Study 1, but modifies the
procedure so that the target and choice alternatives are presented sequentially.

The present study divides the task into encoding and comparison phases with sequential
presentation of the target and choice alternatives. The crossing of continuous and discrete
targets and choice alternatives with this procedure should provide more definitive information
as to whether difficulties with discrete proportions arise at encoding, at comparison, or during
both phases. If difficulties arise during encoding, then we should see low and similar
performance in the DD and DC conditions, the conditions in which the target proportion
consists of discrete units, irrespective of how the choice alternatives are represented.
Alternatively, if difficulties arise at the comparison phase, through overextension and matching
of the target and foil quantities, then we should see poor performance only in the DD condition,
because absolute numeric matches are only possible in this condition. This would replicate the
results of Study 1, but would more precisely pinpoint the locus of the difficulty to quantitative
comparison because the sequential presentation precludes going back and forth between the
target and the choice alternatives. Finally, if difficulties with discrete units arise during
encoding and comparison, then performance in the DD, DC, and CD conditions should all be
lower than performance in the CC condition. In this event, discrete units may disrupt
proportional reasoning for one or both of the following reasons; first, children may be unable
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to keep from applying counting algorithms in the presence of countable entities and this may
decrease their ability to process proportional information; second, the presence of discrete units
may decrease the child’s ability to perceptually abstract proportional information by breaking
up the gestalts of the colored regions.

Participants—~Participants were 144 first- and third-graders recruited from three of the same
sites that participated in Study 1 (M = 7-years-1-month, 36 girls, 36 boys; M3 = 9;0, 34 girls,
38 boys; SD = 3.5-months in each grade). There were 18 participants per grade and continuity
condition. Participants recruited for the current study had not participated in the first study. As
in the previous study, we did not collect any ethnicity or SES information for each individual
child. Again using reported school data and the number of participants recruited from each
school, we estimate that 28% of participants were Hispanic, 18% were Asian, 11% were Black,
and 43% were White, and that about 46% (sd = 29%) were from low SES backgrounds (based
on the percentage of students in each school who qualify for free or reduced-cost lunch).

Procedure—The instructions given to participants prior to the task were identical to those
given to participants in Study 1. The procedure was also largely consistent with that of Study
1; however, the targets and choice alternatives in each problem appeared sequentially. On each
trial, the participant was first shown the target proportion. This was followed by a solid dark
mask that appeared briefly (= 100 ms) and then a 5-second blank screen interval. Immediately
after this, the two choice alternatives were presented. Participants themselves controlled how
long they saw the target proportion; that is, while the target proportion was presented, the
participant could click the mouse anywhere on the screen to make it disappear and initiate the
mask and the 5-second ISl (with a ceiling of 20-seconds). Problems were presented in random
order, as determined by the computer program.

Experimental Desigh—The experimental design was identical to that of Study 1.
Participants were again randomly assigned to one of four continuity conditions (again referred
to as CC, CD, DC, and DD). As in Study 1, in each continuity condition, the foil matched the
target’s juice part on half the trials and the target’s whole (e.g., total juice + water quantity)
on the other half.

Collapsing across all variables, participants selected the proportional match for the target on
63.7% of all trials. Table 4 summarizes the data for each continuity condition, school grade,
and foil-type. The primary analysis was a 4 x 2 x 2 x 2 mixed model ANOVA. Continuity
Condition (CC, CD, DC, or DD), School grade (first-grade or third-grade), and Sex were
between-subjects variables, and Foil-type (part or whole foil) was a within subjects variable.

The analysis revealed a significant main effect of continuity condition, F(3, 128) =3.49,p =.
02, nzp =.08. Planned pairwise comparisons revealed that participants in the DD continuity
condition were significantly less likely to select the proportional match than those in the CC,
CD, and DC conditions (all ts > 1.70, ps < .05). There were no significant differences in
performance between the CC, CD, and DC conditions (all ps > .41). Comparisons against
chance revealed that participants in the CC, CD, and DC conditions selected the proportional
match at a rate that exceeded chance (all ts > 3.71, all ps <.001), whereas those in the DD
condition did not (t = 1.26, p = .22). The analysis also revealed a main effect of school grade,
F(1,128) =21.84,p<.001, nzp =.15, with third-graders selecting the proportional match more
frequently than first-graders (71.3% vs. 56.1% of trials). On average, both first-graders and
third-graders selected the proportional match more frequently than expected by chance, t (71)
=2.81,p=.006and t (71) = 7.49, p <.001, respectively. The main effect of sex was not
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significant, F(1, 128) = 1.60, p = .21, nzp =.01; however, there was an unexpected statistically
significant sex x continuity condition interaction, F(3, 128) = 5.11, p = .002, nzp =.11, which
was due to girls, but not boys, performing better in the CC, CD, and DC conditions than the
DD condition (all ts > 3.22, ps <.002, Sidak adjusted). Girls selected the proportional match
on 75%, 72%, 71%, and 46% of trials for the CC, CD, DC, and DD conditions, respectively,
and boys selected the proportional match on 60%, 65%, 58%, and 64% of trials for the CC,
CD, DC, and DD conditions, respectively (this also resulted in a significant difference between
boys and girls in the CC and DD conditions, both ps <.035, Sidak adjusted). Finally, the
ANOVA revealed a main effect of foil-type, F(1, 128) = 4.12, p = .04, nzp = .03, with better
performance when the foil alternative matched the target’s juice + water whole than when it
matched the target’s colored juice part (65.9% vs. 61.4%).

As in Study 1, individual analyses mirrored the findings in the group analyses. The number of
participants who consistently selected the proportional match increased with age (13% of 15t
graders and 50% of 3'9-graders exceeded chance), and more participants in the CC, CD, and
DC conditions (39%, 33%, and 33%, respectively) consistently selected the proportional match
than in the DD condition (19%). Conversely, 3 of 36 participants (8%) in the DD condition
consistently selected the absolute foil alternative, whereas only 1 of 108 participants (1%) in
the other three conditions combined did so.

On average, participants took 9.1-seconds to encode the target proportion (SD = 5.6), and took
6.9-seconds to choose once the choice alternatives appeared (SD = 5.6). As in Study 1, accuracy
and timing were negatively correlated, which was true both for encoding time and accuracy,
r=-.21, p.012, and for choice time and accuracy, r =—.16, p .064. A4 x 2 x 2 x 2 x 2 mixed
model ANOVA was conducted to analyze the effects of continuity condition (CC, CD, DC,
and DD), school grade (15%- and 3"-grades), sex, foil-type (part foils and whole foils), and
process (encoding and choice), with median times as the dependent variable. There was a main
effect of continuity condition, F(3, 128) = 3.75, p = .01, nzp =.08. Participants in the CC
condition (M = 5.8) were significantly faster than those in the DD condition (M =7.8,p =.
007, Sidak adjusted), but neither significantly differed from those in the CD and DC conditions
(Mcp = 6.9 and Mpc = 6.8). As in Study 1, these results show problem solving times that are
generally consistent with performance, rather than reflecting a speed-accuracy trade-off.
Although not of central theoretical interest, there was also a main effect of process, F(1, 128)
=80.74, p <.001, n“p = .39, with participants taking significantly longer to encode the target
proportion than to select a choice alternative. The main effects for foil-type, school grade, and
sex were not significant (F < 1.20, p >.28). Finally, there was a significant three-way process
x condition x school grade interaction, F (3, 128) = 3.57, p =.02, nzp =.08. Pairwise
comparisons suggest this was due to first-graders in the CC condition encoding the target
proportion faster than first-graders in the DD and DC conditions (ps < .04, Sidak adjusted),
with no other significant pairwise differences.

Discussion

Consistent with Study 1, the results of Study 2 revealed that as early as first-grade (i.e., at about
6- or 7-years of age) children can successfully solve proportional equivalence problems when
the target proportion, the choice alternative proportions, or both are represented with
continuous quantities. They failed to solve otherwise parallel problems, however, when the
target and choice proportions were both represented with discrete quantities. The finding that
performance levels in the DC and CD conditions were significantly better than in the DD
condition and not significantly different from performance in the CC condition indicates that
the mere presence of discrete units does not disrupt proportional reasoning. The combination
of above chance performance in the DC condition and chance performance in the DD condition
is particularly telling. This pattern suggests that children can correctly encode the target’s
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proportion when a quantity is made up of discrete units (as indicated by performance in the
DC condition), but that when numerical unit information is available at both target encoding
and choice alternative comparison (as in the DD condition), the possibility of a numerical
match, particularly a match to the highly salient juice parts, detracts from making a proportional
match.

The significant interaction between continuity condition and sex was unexpected. Consistent
with the performance patterns of Study 1, girls performed more poorly in the DD condition
than in the other three conditions, but in contrast to the findings in Study 1, boys’ performance
did not differ significantly across conditions. Furthermore, girls exhibited stronger
performance than boys in the CC condition, and boys exhibited stronger performance than girls
in the DD condition. This crossover interaction suggests that sequential presentation may
decrease the propensity of boys to make a numerical match in the DD condition more than it
does for girls, and raises the possibility that there may be a sex-based divergence between
intuitive and more explicit proportional reasoning capacities. However, because the sex x
condition interaction was unique to Study 2 (this effect did not approach significance in Study
1), it must be interpreted with caution.

General Discussion

The current studies extend our understanding of the development of proportional reasoning,
and illuminate some of the reasons why children have difficulty solving proportional
equivalence problems involving discrete quantities compared to problems involving
continuous amounts (Jeong et al., 2007; Sophian, 2000; Spinillo & Bryant, 1999). Specifically,
our continuity condition manipulation revealed that children are able to solve proportional
equivalence problems when the target, the choice alternatives, or both are represented by
continuous amounts several years before they are able to solve parallel problems in which both
the target and the choice proportions are represented by discrete units. This pattern of findings
suggests that children’s difficulties stem, at least partly, from their propensity to compare
quantities on the basis of the number of elements in the target quantity rather than on the basis
of proportional relations. In Studies 1 and 2, performance in the DD condition, which is the
only condition where absolute numeric matches were possible, was significantly worse than
in the other conditions, and did not rise above chance level. That participants in both studies
had more success in solving proportional problems when the target was represented with
discrete units and the choice alternatives were represented with continuous amounts (the DC
condition) or vice versa (the CD condition), suggests that they are not simply misrepresenting
proportional information whenever discrete, countable units are involved. Rather, the finding
that performance was at chance only in the discrete-target, discrete-choice alternatives
condition indicates that children’s difficulties reflects a tendency to match the number of units
in the target and choice alternatives when this is possible.

In both studies there was also an effect of foil-type, such that performance was lower when the
foil matched the target’s colored juice part than when it matched its juice + water whole. This
indicates that a common absolute part quantity between the target and foil is particularly
attractive. This effect did not interact with continuity condition, which suggests that it is robust,
and occurs even when continuous quantities are involved and children are representing
proportional information. As mentioned, this finding is consistent with previous results
showing that young children have a tendency to focus on the parts of a proportion (Inhelder
& Piaget, 1958; Singer & Resnick, 1992). This does not necessarily mean that children are
unable to code part-whole relationships, but rather, that parts may be more salient to them than
wholes. It should be noted that the types of foils used in the current study were not exhaustive.
For example, the foils could have involved a match to the target proportion’s water part. We
reasoned that the colored juice part of each proportion, which varied from trial to trial, was
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more perceptually salient than the water portion of each proportion, which remained constant
in color, and therefore the juice part was more likely to provide participants with an attractive,
albeit erroneous, choice alternative. We expect that equivalent target and foil alternative water
parts may have drawn some participants to the foil, because such a foil would provide another
sort of numerical match, but this effect may have been less dramatic than we see for juice part
foils. Further, our current findings do not provide information as to whether the potency of the
numerical foil would vary depending on whether it was shown in the lower or upper portion
of the stimulus column, or whether the water and juice parts were randomly interspersed (e.g.,
Jeong et al., 2007), as the juice part was always shown cohesively in the lower part of each
proportion column.

Also of note is our use of a rather minimalistic approach to discretizing the presented elements;
that is, although demarcated in a way that makes them countable, our discrete representational
format does not actually involve independent entities, with inter-item distances. In the present
studies, our intent was to make the continuous and discrete representational formats as
comparable as possible, and therefore, we elected to use the described, perhaps less dramatic,
demarcated columns for discrete trials. Basically, we conceptualized our continuous stimuli as
existing in an undifferentiated cylinder, and our discrete stimuli as existing in something along
the lines of a graduated cylinder. It is possible that independent discrete units, which
participants might be even more likely to explicitly count, would heighten the effects we
obtained with demarcated columns, and would lead to even worse proportional reasoning
performance.

Our results show that children are able to reason about proportionality at earlier ages than
Piaget and Inhelder’s (1951/1975; Inhelder & Piaget, 1958) classic studies indicated. That is,
if the problem involves at least one proportion consisting of continuous amounts, which
effectively prevents children from making matches on the basis of number, they demonstrate
an ability to reason about proportional equivalence earlier — by about first-grade (i.e., between
6- and 8-years of age). At the same time, however, our results are consistent with Piaget and
Inhelder’s findings that children have marked difficulty with problems represented entirely
with discrete units for which there is the possibility of a numerical match to the target. That is,
participants in the DD condition were at chance levels of performance, and in fact tended to
select the absolute numeric match slightly more often than the proporitonal match until fourth-
grade (i.e., about 10-years of age). If continuous amounts are conceptualized as eliciting
intuitive problem solving processes, and problems with discrete targets and choice alternatives
are conceptualized as eliciting more explicit problem solving processes, our results can be
viewed as consistent with the Piagetian perspective. That is, Piaget and Inhelder
(1975/1951) acknowledged the possibility of intuitive problem solving by young children, but
did not consider this to reflect true understanding of probability and proportionality. Thus,
differing views about the developmental course of proportional understanding may hinge on
what constitutes evidence of understanding. Current views, which characterize the
development of mathematical understanding as moving from partial to more complete, and
from more to less contextually dependent, rather than as nonexistent until a point in
development until a certain kind of problem is solved correctly, are helpful in making sense
of seemingly disparate findings (e.g., Mix, 2002; Mix, Huttenlocher & Levine, 2002).

Related to the issue of graded and contextually dependent development, the individual analyses
we conducted revealed that children tend to use a variety of strategies to solve the problems.
Relatively few participants, particularly younger participants, selected either option (i.e., the
proportional match or the absolute numerical foil) at a rate that exceeded chance, which
suggests that most children were not consistently using a specific strategy across problems. As
suggested by Siegler (1996; 2005), in the context of studying children’s solutions to numerical
calculations, this variability may be an important engine for learning and development. A
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microgenetic study that probes children’s explanations for their solutions to proportional
reasoning problems could provide more information about their strategies, and thus shed light
on whether variable solution strategies are related to learning trajectories for this kind of
problem. There may, however, be an inherent difficulty in doing this; specifically, intuitive
resoning processes are by definition less open to scrutiny than more explicit processes, and
although children may be able to verbalize the explicit processes they engage in (e.g., counting
the discrete units — anectodally, a strategy used by numerous participants in the current study),
they may have difficulty verbally explaining the intuitive strategies they use (Siegler, 2000).
Furthermore, requesting participants to verbalize how they solved a given problem may
actually affect the sort of processes they use to solve that problem or subsequent problems.

Another contribution of the present studies to the cognitive developmental literature is the
identification of a perceptual manipulation — continuous vs. discrete representation — that drives
engagement of intuitive and more explicit problem solving processes. Others have noted the
role of perceptual manipulations on children’s numerical processing skills. For example, Mix
(1999; 2008) demonstrated that 3- to 4-year-olds are more likely to select a choice alternative
that is numerically equivalent to a target if the target and choice arrays have similar surface
features. Mix (2008) suggests that this occurs through alignment processes, and that highly
similar item sets invite more thorough comparison processes than less similar item sets,
resulting in more frequent numerical matching. This raises the possibility that young
participants in our study may have been particularly drawn to making numerical target-foil
matches in the DD condition by the surface feature similarity between the two (e.g., 3 yellow
target units could be matched with 3 yellow foil units). It is possible that if there were variation
between the color of the target and choice alternatives’ juice parts the incorrect numerical match
would have been less attractive and proportional matching would have been even better.

Our finding of early intuitive proportional reasoning in the context of continuous amounts is
also consistent with results showing sensitivity to proportional relations in young children and
infants. For example, several studies show that very young children are able to encode the
length of a target object relative to a comparison standard at a point in development when they
are unable to encode the length of the target object in the absence of a comparison standard, a
finding that implicates proportional reasoning strategies (e.g., Baillargeon, 1991; Duffy,
Huttenlocher, & Levine, 2005; Huttenlocher, Duffy, & Levine, 2002). Further, McCrink and
Wynn (2007) report that 6-month-old infants are sensitive to the ratio captured by arrays of
two categories of units (i.e., relatively larger pacman figures and smaller pellet objects), as
long as the ratio is sufficiently large (i.e., a 2:1 ratio). This finding may seem somewhat
inconsistent with our results, as the units incorporated into each of McCrink and Wynn’s ratios
were discrete; however, the number of objects in the sets that were presented was quite high
(i.e., ranging from 12 to 60 total units presented at once). In light of our findings, it is possible
that infants’ sensitivity to the ratios may actually be linked to their inability to exactly
enumerate the set of objects shown, and the engagement of an approximate, analogue
magnitude system (Feigenson, Dehaene, & Spelke, 2004). This raises the somewhat counter-
intuitive hypothesis that given a task like the one used in the present studies, children younger
than those tested here, who have not yet developed mature counting skills, might be able to
make proportional matches irrespective of the stimulus format (i.e., continuous vs. discrete),
perhaps out-performing older children who erroneously make numeric matches on discrete-
discrete problems. Conversely, elementary school age children may perform better on
proportional reasoning tasks if the number of units to be counted is increased to a point that
eliminates counting and matching as a feasible problem solving strategy. In this sense,
understanding of number, and the ease or ability to count sets of items, is the very thing that
negatively impacts elementary school aged children’s success in solving proportional
equivalence problems. A similar argument is made by Thompson and Opfer (in press), who
suggest that the beneficial development of a linear numerical representation is associated with
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the cost of losing access to a fractional power function representation. In their studies, higher
accuracy in a number line estimation task was associated with lower accuracy in a fraction line
estimation task. These findings are similar to the present results, and suggest that an interesting
future direction may be to more specifically analyze the relation between performance on the
sort of proportional reasoning task used here and performance on problems assessing
arithmetical skills.

The current results have implications for efforts to increase children’s understanding of
fractions and proportions (e.g., Ball, 1993; Empson, 1999; Pitkethly & Hunting, 1996; Sophian
etal., 1997; Streefland, 1993). The main effect of school grade, coupled with a non-significant
interaction between school grade and continuity condition, shows that there are significant
improvements in proportional reasoning with age, even when conditions are favorable for
representing proportional information (i.e., when at least one of the proportions in the problem
is represented with continuous quantities and foils are on the opposite side of the half
boundary). This may reflect the impact of school curricula, as fraction and rational number
operations are increasingly emphasized at higher elementary grade levels. In the particular
schools attended by children in our studies, fractions and rational number operations are
introduced in 3"9-grade and are given increasing emphasis in 41 grade and in subsequent grade
levels. Furthermore, the fact that only the third- and fourth-graders in Study 1 and the third-
graders in Study 2 performed significantly above chance when the foil was a part match in the
DD condition may reflect the knowledge they are gaining in school. It would be very interesting
to further examine the effect of instruction on fraction problem solving on proportional
reasoning processes, perhaps by tying this instructional effort to the intuitive proportional
reasoning that young children in our studies demonstrate. This sort of instructional strategy
could make use of children’s success on proportional problems involving continuous amounts
to scaffold their performance on proportional problems involving discrete sets. Drawing
parallels between the two kinds of problems may increase the likelihood that children will
apply correct intuitive processes, rather than erroneous counting strategies, to proportional
problems involving discrete sets. Relating instruction to children’s intuitive knowledge is an
approach that is widely advocated by educational researchers (e.g., Fischbein, 1987), and by
those specifically interested in improving children’s proportional reasoning and fraction
understanding (e.g., Ahl et al., 1992; Fuson & Abrahamson, 2005; Pitkethly & Hunting,
1996).

In conclusion, the present findings indicate that children’s proportional reasoning abilities vary
as a function of the structure of the representations they are given. When absolute numerical
matches are not possible, even six- and seven-year-olds demonstrate proportional reasoning
abilities. Conversely, when absolute numerical matches are possible, even eight- and nine-
year-olds have difficulty reasoning proportionally. Our results suggest that young children go
wrong in reasoning about proportions when the knowledge they have acquired about counting
to compare set sizes gets in the way of their intuitive, relative visual comparison, proportional
reasoning processes.
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Appendix Task instructions script

The participant is shown a photo of a teddy bear on the computer screen, and is told:
“His name is Wally-bear, and Wally-bear really, really likes drinking juice.”

The participant is prompted to click a button on the screen, and upon doing so, the character
photo changes so that he appears to be holding a glass of orange juice:

“See, he has a glass of orange juice. Wally-bear loves orange juice, but he also loves
all other kinds of juice — he loves red juice, blue juice, green juice, yellow juice, and
purple juice — all kinds of juice. Wally-bear loves juice so much that sometimes he
likes to mix his juice himself, but he needs to be really careful when he’s mixing his
juice, so he has just enough juice and just enough water, so that it tastes just right!
Let me show you.

The participant is again prompted to click the screen button, and a column depicting two (or
three) orange “juice” units, and two (or three) light blue “water” units appeared below the
character (always resulting in a one-to-one, juice to water ratio). Note, the program randomly
determined whether the participant was shown two or three initial juice and water units. Also,

Dev Psychol. Author manuscript; available in PMC 2009 September 1.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Boyer et al.

Page 18

as in the task itself, in the conditions where the target was continuous, the initial column’s juice
and water parts are continuous, with visible division only occurring where the two meet.

“See, when he was mixing this glass of orange juice [pointing to the glass the character
appears to be holding], Wally needed just the right amount of orange [gesturing to
the orange portion of the column], and he needed just the right amount of water
[gesturing to the light blue portion of the column], so that when he mixed them up
[gesturing with a circular motion around the entire column], it would taste just right.
Let me show you what would happen if Wally wanted more (less) juice.”

The participant represses the button, and a second column, also composed of juice and water
parts appears. The second column is proportionally equivalent to the initial column, but is more
(or less) in absolute amount:

“See, if Wally wanted more (less) juice, he would need to mix more (less) orange
[pointing to the orange portion of the secondary column, and gesturing back and forth
between the initial and secondary orange amounts], and he would need more (less)
water [pointing to the light blue portion of the secondary column, and gesturing back
and forth between the initial and secondary water amounts], so that when he mixes
his juice [gesturing with a circular motion around the entire secondary column], it
would still taste just right [gesturing with a circular motion around the entire initial
column], just like it is supposed to [with a point to the glass of juice the character
appears to be holding].”

Finally, the participant is prompted to click the button again, the juice mix columns disappear,
and the experimenter says:

“Now | have a question for you. You see, Wally knows how to mix his juice, and he
knows what the different kinds of juice are supposed to taste like, but sometimes he
gets a little confused, and he doesn’t know how much juice and how much water he
needs to mix for his different kinds of juice. Do you think you could help him by
picking out the right mixes for his different kinds of juice? Do you think you can pick
out the right mixes so that Wally’s juice tastes just right?
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Figure 1.

Example screenshots from each of the four between-subjects continuity conditions formed
through 2 x 2 combination of continuous targets vs. discrete targets x continuous choice
alternatives vs. discrete choice alternatives.
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Figure 2.

Study 1: Mean proportion correct for school grade x foil-type. Error bars represent the standard
error of the mean.
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