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Abstract

Recent progress in massively parallel sequencing platforms has allowed for genome-wide 

measurements of DNA-associated proteins using a combination of chromatin immunoprecipitation 

and sequencing (ChIP-seq). While a variety of methods exist for analysis of the established 

microarray alternative (ChIP-chip), few approaches have been described for processing ChIP-seq 

data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein 

binding positions with high accuracy. Using three separate datasets, we illustrate new methods for 

improving tag alignment and correcting for background signals. We also compare sensitivity and 

spatial precision of several novel and previously described binding detection algorithms. Finally, 

we analyze the relationship between the depth of sequencing and characteristics of the detected 

binding positions, and provide a method for estimating the sequencing depth necessary for a 

desired coverage of protein binding sites.

A combination of chromatin immunoprecipitation and microarray hybridization (ChIP-chip) 

has been used extensively to determine chromosome binding patterns of DNA-associated 

proteins1. Several recent studies have demonstrated that newly developed high-throughput 

sequencing methods can be used to provide marked improvements over the microarray 

measurements2. While sequencing techniques have been previously used in combination 

with both chromatin immunoprecipitation (ChIP-seq) and sequence tagging methods3–6, the 

new generation of sequencing platforms provides orders of magnitude increase in the 

number of generated sequences7, allowing cost-effective genome-wide mapping for many 

proteins of interest.

Processing of ChIP-chip has focused on compensating for array limitations, such as probe-

specific behavior, dye bias and tiling resolution8–10. The ChIP-seq approach avoids such 
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biases and can provide greater sensitivity and specificity while requiring a much smaller 

amount of starting material2, 11. The ChIP-seq data, however, poses a number of different 

challenges. Given that the rate of sequencing errors varies between and within the sequenced 

reads, what range of sequence tag quality should be tolerated when aligning tags to the 

reference genome?12. What background tag distribution is appropriate for assessing the 

significance of observed binding positions? What is the required depth of sequencing? 

Finally, how can this information be utilized to accurately determine protein binding 

positions?

Here we describe a data processing pipeline optimized for detection of localized protein 

binding positions from unpaired sequence reads (Figure 1a). We illustrate the proposed 

pipeline on datasets for genome-wide binding of NRSF2, CTCF13 and STAT111, produced 

using the Solexa platform. The alignment procedure is enhanced to maximize the number of 

informative tags, based on the strand-specific pattern of tag distribution expected around a 

binding position. Filtering and background corrections steps are used to lower false-positive 

rates. We compare performance of several novel and previously described computational 

methods for calling specific binding positions, and show that some methods provide higher 

specificity and position accuracy. The final step of the proposed pipeline examines the 

saturation level of detected binding positions to determine the amount of additional 

sequencing that may be necessary.

Results

Tag distribution around protein binding positions

In general, immunoprecipitation selects a set of overlapping DNA fragments around bound 

positions. High-throughput sequencing identifies short (~35bp for Solexa or SOLiD) tags on 

the 5’ ends of fragments from either DNA strand. The positions of the tags are then 

determined by aligning them to the genome assembly, with ambiguous alignments typically 

being discarded. The resulting spatial distribution of tag occurrences around a stable binding 

position will therefore show separate peaks of tag density on positive and negative strands 

(Figure 1b,c). The distance between the peaks should reflect the size of the protected region, 

although it may also be influenced by the size distribution of the DNA fragments. This 

distance does not exhibit strong dependency on the number of tags within the peaks 

(Supplementary Table 1).

A genome-wide signature of such tag pattern can be assessed by calculating cross-

correlation of positive and negative strand tag densities, shifting the strand coordinates 

relative to each other by increasing distance (see Methods). All of the examined datasets 

exhibit a clear peak in the strand cross-correlation profile, corresponding to the predominant 

size of the protected region (Figure 1c, Supplementary Figure 1). The magnitude of the peak 

reflects the fraction of tags in the dataset that appear in accordance with the expected 

binding tag pattern (Figure 1c). In an ideal case, when all of the sequenced tags participate 

in such binding patterns, the correlation magnitude would reach a maximum value. 

Conversely, the magnitude decreases as tag positions are randomized (Supplementary Figure 

2).
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Using variable-quality tag alignments

While some tags align perfectly to the reference genome, others align only partially, with 

gaps or mismatches. Poorly aligned tags may result from experimental problems such as 

sample contamination, correspond to polymorphic or unassembled regions of the genome, or 

reflect sequencing errors. For the Solexa platform, the sequencing errors are more abundant 

towards the 3' ends of the sequenced fragments, frequently resulting in partial alignments 

that include only the beginning portion of the tag. From the growth of mismatch frequencies 

with nucleotide position, we estimate that such sequencing errors account for 41–75% of 

observed mismatches in the examined datasets (Supplementary Figure 3). Since it is not 

unusual to have more than 50% of the total tags result only in partial alignment, inclusion of 

tags that are partially aligned but still informative is important for making optimal use of the 

dataset11, 12. We therefore chose to classify the quality of tag alignment using the length of 

the match and the number of nucleotides covered by mismatches and gaps (Table 1, 

Supplementary Table 2).

Given a classification of tags by quality of alignment, we propose to use strand cross-

correlation profile to determine if a particular class of tags should be included in further 

analysis. A set of tags that is informative about the binding positions would increase cross-

correlation magnitude, whereas a randomly mapped set of tags would decrease it 

(Supplementary Figure 2). Using this approach for the NRSF dataset (Figure 2), we find that 

alignments with matches greater than 18bp and zero mismatches improve cross-correlation 

profile. However, only full-length (25bp) matches should be considered for tags with two 

mismatches. Accepting tags using such a criterion increases their number over the set of 

perfectly aligned tags by 27% for NRSF dataset, 30% for CTCF and 36% for STAT1 

(Supplementary Figure 4). The incorporation of these tags improves sensitivity and accuracy 

of the identified binding positions (Supplementary Figure 5).

Controlling for background tag distribution

The statistical significance of the tag clustering observed for a putative protein binding 

position depends on the expected background pattern. A simplest model would assume that 

the background tag density is distributed uniformly along the genome and independent 

between the strands11. In addition to the NRSF ChIP sample, Johnson et al14 have 

sequenced a control input sample, providing an experimental assessment of the background 

tag distribution. We find that the background tag distribution exhibits a degree of clustering 

that is significantly greater than expected from a homogeneous Poisson process suggested 

by the aforementioned simple model (P<10−6, Supplementary Figure 6).

Examining the input tag density, we find three major types of background anomalies. The 

first type results in singular peaks of tag density at a single chromosome position many 

orders of magnitude higher than the surrounding density (Figure 3a). Such peaks commonly 

occur at the same position on both chromosome strands. The second type of anomaly results 

in non-uniform, wide (>1000bp) clusters of increased tag density appearing on one or both 

strands (Figure 3b). The third type exhibits small clusters of strand-specific tag density 

resembling the pattern expected from a stable protein binding position, although it typically 
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shows smaller separation between strand peaks (Figure 3c). A similar set of anomalies can 

be observed in the input sequencing of other organisms (data not shown).

The first type of anomaly can be easily detected and eliminated due to its extreme deviation 

from the surrounding tag density (see Methods). However, the other types of anomalies, in 

particular the third one, are hard to distinguish within the ChIP data. This indicates that 

sequencing of input material is essential to properly account for the background tag 

distribution. Sequencing of a mock control experiment (non-specific antibody or no 

antibody) may also be necessary.

To control for the uneven background distribution, the binding methods proposed below 

subtract rescaled background tag density prior to determining binding positions, if such data 

are available (see Methods). In addition, only binding positions within regions of acceptable 

ChIP to input tag ratio are accepted2. The effect of such background corrections will be 

characterized in the subsequent sections.

Binding detection methods and relative coverage of binding sites

We have examined five different methods of calling binding positions, including two 

previously published algorithms (CSP2, XSET11), and three novel ones. Briefly, the 

ChIPSeq Peak locator (CSP) method identifies regions of significant enrichment compared 

to the input profile and determines binding positions as those with the highest number of 

tags within such regions. The extended set (XSET) method extends positive- and negative-

strand tags by the expected length of the DNA fragment, and determines binding positions 

as those with the highest number of overlapping fragments.

The newly proposed methods take advantage of the strand-specific tag pattern observed at 

binding positions (Figure 1c). The first such method, Window Tag Density (WTD), is 

similar to XSET but scores positions based on the strand-specific tag counts upstream and 

downstream of the examined position (Figure 4a). The second method, Matching Strand 

Peaks (MSP), determines local peaks of strand-specific tag density and identifies positions 

surrounded by positive- and negative-strand peaks of a comparable magnitude at the 

expected distance (Figure 4b). Finally, the third method, Mirror Tag Correlation (MTC), 

scans the genome to identify positions exhibiting pronounced positive and negative-strand 

tag patterns that mirror each other (Figure 4c). See Methods for details.

A complete list of true binding sites is not known for any of the examined datasets, however 

all three proteins exhibit known binding sequence specificities. While the binding detection 

methods described in this work do not rely on sequence information, we will utilize high-

scoring sequence motif instances to assess relative performance of different binding 

detection methods. In doing so we only assume that the high-scoring motif instances contain 

a representative subset of true binding positions, and do not require for all high-scoring 

motifs to be bound, or all true binding sites to exhibit a motif signature. We evaluated 

performance using canonical sequence motifs for the NRSF and CTCF binding15, 16, and 

using GAS motif as a predictor of STAT1 binding5, 11 (see Methods). The binding 

detection methods provide peak magnitude scores associated with the identified binding 

positions, thus allowing prioritization of binding positions determined by each method.
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To compare sensitivity of different methods, we selected increasing numbers of top binding 

positions returned by each method, and examined the fraction of motif occurrences for 

which a binding position was identified (Figure 4d). We find that 89% of the selected 

highest-scoring NRSF motif matches coincide with the detected binding positions. The 

motif coverage rate is clearly above the random expectation, allowing for comparison of 

relative performance of different binding detection methods. All of the methods except for 

the MSP and CSP achieve similarly high motif coverage. The CSP method performs worse 

for the more prominent binding positions (top 500), while the MSP method exhibits poor 

performance throughout the entire range. Analyses of the STAT1 and CTCF binding show 

analogous results in terms of relative performance of different methods (Supplementary 

Figure 7). These results are also confirmed by analysis of PCR-validated binding loci from 

the literature2,16,11 (Supplementary Figures 8,9). We note that the motif and PCR-validated 

test sets represent only a fraction of true binding sites. As this fraction is smaller for CTCF 

and STAT1 larger sets of top binding positions are used to illustrate test set coverage by 

different methods.

The background subtraction methods outlined in the previous section improve the NRSF 

motif coverage, reaching the same level of coverage at up to 11% fewer top binding 

positions (Supplementary Figure 10). The corrections have little effect on the top 1500 

binding positions, which are associated with higher tag counts than any false positive peaks 

arising from uneven background. The background-driven false positive positions are 

generally smaller in magnitude and begin to influence predictions as more binding positions 

are considered.

Precision of binding positions

To evaluate the spatial precision with which protein binding positions are identified by 

different methods, we have analyzed the distances between predicted positions and locations 

of high-scoring motif hits (Figure 5a). For the NRSF dataset, the WTD method predicts 

most precise binding positions, with over 60% of predicted peaks located within 10bp of the 

motif center (Figure 5b, Supplementary Figure 11a). It is followed by XSET and MTC and 

MSP methods, with CSP calling approximately 40% of peaks within 10bp of the motifs. 

Background corrections have limited effect on the precision of the predicted positions, with 

only WTD method showing 3% improvement for strong binding positions (data not shown).

For the CTCF and STAT1 predictions, however, the MTC method achieves better precision 

than WTD (Figure 5c,d, Supplementary Figure 11b,c). The difference can be explained by 

the properties of the tag distribution immediately near the center of the protected region. 

Unlike WTD and XSET, the MTC method does not take into account tags within the central 

region (30bp) when scoring binding positions. Altering the MTC method to take such 

positions into account reduces the precision of the determined binding positions to the level 

similar to the WTD predictions. Examining the overall distribution of tag positions relative 

to high-scoring motif hits, we find that CTCF and STAT1 show unexpected peaks of tag 

density immediately adjacent (10–15bp) to the motif position (Supplementary Figure 12). 

Such pattern, in which small sets of negative strand tags appear immediately upstream of the 

protected region and are mirrored by the positive strand tags immediately downstream, may 
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result from cross-linking interactions occurring beyond the central protected region (Figure 

1b, dashed line). As a result, peak detection methods that take into account the tags near the 

central region tend to call positions 15–20bp upstream or downstream of the true binding 

site.

Statistically significant positions

The binding detection methods should limit the resulting binding positions to those that are 

not likely to have occurred by chance. The desired level of statistical significance is 

commonly given in terms of a false discovery rate (FDR) or the number of expected false 

positive positions (E-value). The detection methods can then use background tag distribution 

to determine the minimal binding position score satisfying the specified level of 

significance. Many false positive calls originate from large anomalous regions described 

earlier. Such systematic errors can be filtered prior to determination of significance 

thresholds (see Methods). Based on the input sample data for the NRSF, we find a total of 

2755 binding positions for the FDR threshold of 0.01 using WTD method. We note that this 

closely corresponds to the number of top peaks that was required to achieve maximal 

coverage of high-scoring motif positions that were utilized in the previous sections (Figure 

4d).

In the absence of an empirical estimate of the background tag distribution, it may be 

possible to rely on an analytical model. The simplest such model is a spatial Poisson process 

where the tags are uniformly distributed across the accessible regions of the genome11. 

However, because the true background tag distributions exhibit significant degree of tag 

clustering, such Poisson-based threshold is significantly lower than the one obtained from 

empirical background measurement, resulting in overestimation of the number of significant 

binding positions (9206 vs. 2755 for FDR 0.01). Comparing with the input-based FDR 

calculations, we find that the Poisson-based model underestimates FDR by 8–20 times 

depending on the target FDR (see Supplementary Table 3).

A closer estimate of statistical thresholds may be obtained by accounting for the degree of 

clustering present in the background tag distribution. A simple approach is to utilize a 

randomization that maintains tags occurring at the same or nearby positions together, instead 

of assigning them independent positions as it is done under Poisson model. The number of 

significant positions determined using such randomization models with different bin sizes 

are shown in Supplementary Table 3. For the FDR of 0.01 a randomization model that 

maintains together tags occurring at the exactly the same position in the genome results in a 

comparable number of NRSF binding positions (2985). We used such randomization to 

determine the number of statistically significant binding positions for the CTCF (23981 

positions at FDR of 0.01) and STAT1 (44921 positions) datasets. Matching the number of 

binding positions for more stringent FDR values requires larger tag randomization blocks 

(Supplementary Table 3), indicating that simple randomization strategies cannot properly 

account for the background clustering properties.
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Testing for sufficient sequencing depth

To assess whether the sequencing depth has reached a saturation point beyond which no 

additional binding sites are detected, we have analyzed how the set of the predicted binding 

sites changes when only a subset of tag data is utilized for prediction. Sampling increasing 

fractions of the tag data, we determined binding positions and compared these predictions 

with the set of reference binding sites identified from the complete data (Figure 6a, 

Supplementary Figure 13).

If the sequencing depth has moved beyond the saturation point, it would be possible to 

arrive at the reference set using only a subset of the tag data. We find, however, that none of 

the three datasets have reached such a saturation point (horizontal asymptote), and that the 

fraction of the concordant binding positions decreases when even a small fraction of tag data 

is omitted. This indicates that additional binding sites are being continuously identified with 

increasing sequencing depth. The observed trend holds for a range of FDR thresholds 

(Supplementary Figure 13): although the slope of the saturation curve can be reduced by 

setting a considerably more stringent FDR threshold that results in a significantly smaller 

number of binding sites.

To understand the properties of the binding site coverage, we have examined tag counts 

associated with high-scoring sequence motifs (Figure 6b, Supplementary Figure 14). In all 

three datasets, the distribution of tag counts shows a very wide dynamic range. While some 

positions have hundreds of tags, others barely rise above the expected background counts. 

Moreover, these distributions appear to be continuous in that they do not show distinct sub-

populations of binding positions. This suggests that increasing sequencing depth may allow 

distinguishing an increasing number of weakly pronounced binding positions without a 

qualitative threshold that would define a complete set of binding sites.

Since more pronounced binding positions are identified using smaller sequencing depth, an 

experiment of given depth may saturate detection of the binding positions that exceed a 

certain tag enrichment ratio relative to the background. We will refer to such enrichment 

ratio as Minimal Saturated Enrichment Ratio (MSER). The saturation criteria that define the 

maximal acceptable slope of the saturation curve (Figure 6a) can be formulated as a 

requirement for stability of the set of predicted binding sites. For instance, we will require 

99% agreement in the set of binding positions when dataset is reduced by 105 tags. Using 

NRSF input tag data to determine the confidence intervals for the enrichment ratio of each 

binding position, we find that current sequencing depth is sufficient to saturate detection of 

binding positions with tag enrichment ratios significantly above 7.5 (P-value <0.05, see 

Methods, Fig. 6a, Supplementary Figure 17). Of the 2755 NRSF binding positions detected 

at FDR 0.01, 1879 (68%) are above MSER 7.5 (Supplementary Figure 13). We note that a 

particular MSER value does not imply that all of the true binding positions of that 

enrichment fold have been discovered; instead, it attests that new binding positions with 

enrichment significantly higher than the MSER value are being detected at a sufficiently 

slow rate. A potential range of true enrichment ratios can be assessed from the enrichment 

confidence intervals calculated for each binding position (Supplementary Figure 15). Since 

estimation of the enrichment ratio confidence intervals also depends on the amount of 
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information available about the background tag distribution, input datasets of similar 

genomic coverage should be used when comparing different MSER values.

For practical purposes, it is important to be able to predict the number of tags required to 

saturate detection of peaks above a given target enrichment ratio. The relationship between 

the number of tags and the MSER settles into a dependency that can be extrapolated using a 

log-log model (Figure 6c). We predict, for instance, that 1.2×106 more tags would be 

required to reach saturation in detecting NRSF binding positions with enrichment over the 

background significantly higher than two-fold (P-value < 0.05). The MSER values and 

extrapolations depend on the saturation criteria and on methods used to calculate enrichment 

confidence intervals (see Methods, Supplementary Figure 18).

Increasing the sequencing depth is also likely to lead to increased accuracy of the 

determined binding positions. Using the NRSF dataset, we analyzed how the mean distance 

between the detected binding positions and sequence motifs depends on the number of tags 

used for predictions. Our results show that accuracy indeed improves with the increasing 

number of tags (Supplementary Figure 16). The improvement, however, is minor: the 

accuracy decreases by only several base-pairs even when number of tags is halved.

Discussion

Analysis of protein-DNA interactions using high-throughput short sequencing poses a 

number of novel computational challenges. We show that many aspects of the processing 

pipeline can be specifically tailored to improve detection of binding positions.

The protein binding positions exhibit a strand-specific pattern of tag occurrences. We 

illustrate that a genome-wide signature of such a pattern can be obtained with strand cross-

correlation of tag density, providing a quick assessment of dataset quality and binding 

characteristics. The proposed alignment procedure also relies on this signature to determine 

the range of alignment quality that is informative about the binding positions. In our 

implementation, we have used a simple classification of tag alignment quality, based on the 

number of nucleotide mismatches. The same procedure can be applied to more elaborate 

measures of alignment quality, such as those incorporating confidence in specific base 

calls12.

The examination of the input sequencing clearly indicates that experimental assessment of 

the background tag distribution is necessary for accurate evaluation of the ChIP-seq data. 

The background distribution is far from uniform and, in some cases, shows tag density 

patterns similar to those expected from true binding positions. We demonstrate that the 

knowledge of such distribution is instrumental for accurately assessing and reducing rates of 

false positive predictions. As additional datasets become available, it will be important to 

analyze the degree to which tag profiles of input or no-antibody measurements differ 

between independent experiments.

Comparison of different binding prediction algorithms shows that even though several 

methods can reach optimal sensitivity, there is a considerable variation in the accuracy of the 

identified binding positions. While the MTC method provides more accurate positions for 
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CTCF and STAT1 binding, the WTD method is better at identifying precise positions of 

NRSF binding. The difference can be attributed to the consideration of tag patterns 

immediately near the center of the binding pattern, which show qualitative differences 

between NRSF and CTCF/STAT1 datasets (Supplementary Figure 12). Since the NRSF 

binding tag pattern is more consistent with the basic expectations, we recommend using 

WTD method in the cases when the tag pattern cannot be examined beforehand on a set of 

expected binding positions. It remains to be seen, however, which tag pattern will be typical 

of other experiments and whether both patterns can be efficiently handled by a single 

method.

The ability to evaluate and predict the sequencing depth requirement is an important aspect 

of ChIP-seq studies. Our analyses demonstrate that none of the three examined datasets 

definitively reach a point of saturation at which the set of determined binding positions 

stabilizes. The binding positions exhibit very wide range of enrichment ratios so that 

additional sequencing reveals increasing number of weaker binding sites. This bears some 

resemblance to other genomics studies. In genome-wide association studies, for instance, 

increasing the sample size allows one to find more and more loci with smaller LOD scores; 

in gene expression studies, it leads one to find more and more genes with a statistically 

significant but smaller fold-change. In practical terms, this lack of saturation point has 

profound implications in study design. It suggests that it would be difficult to define a 

“sufficient” depth of sequencing and that other criteria must be specified.

We therefore propose that the sequencing depth requirements should be evaluated with 

respect to a specific target enrichment ratio of the binding positions. Towards that end, we 

provide a method to determine the minimal fold enrichment ratio above which the detection 

of binding positions has been saturated (i.e. stabilized) at a current sequencing depth. We 

also show that the relationship between saturated fold enrichment and the number of 

sequenced tags may be extrapolated to estimate the sequencing depth that would be required 

to reach saturation for lower fold enrichment ratio. It will be important to examine how well 

such extrapolations describe saturation properties of much larger datasets that are likely to 

be come available in the near future.

The fold enrichment ratio of a particular binding position may depend on diverse factors, 

such as binding affinity or efficiency of chromatin extraction. Since its relationship to the 

functional importance of binding positions is uncertain, the desired fold enrichment ratio 

target would clearly vary for different experiments. When some functional binding positions 

are already known for a particular protein, the target enrichment ratio can be chosen based 

on examination of these positions in the initial sequencing data or with quantitative PCR. If 

a target enrichment ratio cannot be estimated from other sources, it can be specified relative 

to the maximum or median enrichment observed in the dataset (e.g. detect binding positions 

with enrichment 5-fold below the maximum observed enrichment).

As more ChIP-seq datasets are generated, it will be important to analyze additional factors, 

such as sequencing biases associated with individual sequencing platforms, or stability of 

ChIP and input tag distributions between replicate experiments. Such data will likely lead to 

improvements in the binding prediction methods and allow better interpretation of the 
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functional relevance of observed variability in fold enrichment ratios of different binding 

positions. Finally, it will be important to see whether the described techniques can be 

adapted for analysis of histone modifications or other widely-distributed chromatin marks 

that do not fit the models of point binding patterns.

Methods

Datasets

The analysis of the NRSF binding were performed using tag data from Johnson et al2. Raw 

tag information necessary for the analysis was only available for experiment #2. CTCF data 

was taken from Barski et al13. The STAT1 binding was analyzed using INF-γ stimulated 

dataset from Robertson et al11.

Cross-correlation profiles

For each chromosome c, the tag count vector  was calculated to give the number of 

tags whose 5’ end maps to the position x on the strand s . Strand cross-correlation for a 

strand shift δ was then calculated as , where 

P[a, b] is the Pearson linear correlation coefficient between vectors a and b, C is the set of 

all chromosomes, Nc is the number of tags mapped to a chromosome c, and N is the total 

number of tags.

Tag alignment and selection of informative tags

Sequence tags were aligned to human genome assembly (NCBI build 36, hg18) using 

BLAT17, with min score threshold of 16, max gap of 4 and step size of 3. Tags aligning to 

multiple locations in the genome were discarded in this analysis.

Anomalous tag positions were identified as those with the number of mapped sequence tags 

(5’ ends) above the significance threshold defined by Z-score of 10. All of the tags mapping 

to such anomalous position (on either strand) were omitted prior to further analysis.

The resulting tag alignments were classified based on 1) the length of the alignment and 2) 

the number of nucleotide differences (number of mismatches + total gap length). A given 

class of tags was accepted if adding these tags to the reference set significantly (Z-score > 6) 

increased the cross-correlation profile within the region ±20bp around the cross-correlation 

peak. The set of perfectly aligned tags (maximum length, no mismatches) was used as a 

reference set.

Detection of binding positions

WTD—A binding score was calculated for all positions i in the genome as 

, where pD and pU are the number of 5’-end tag positions 

mapping to a positive strand within a distance of w upstream and downstream of a position i 

respectively. Similarly, nD and nU correspond to the number of upstream and downstream 

tags mapping to the negative strand. Window size w = 200bp was used for CTCF and NRSF, 

and w = 400bp was used for STAT1. The window sizes were chosen to encompass the size 
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of the average binding tag pattern (i.e. Supplementary Figure 12). We find that this size can 

be estimated from the cross-correlation profiles (Figure 1d, Supplementary Figure 1) as the 

width of the cross-correlation peak at 1/3 of the peak height. Positions on the chromosome 

corresponding to non-unique tag alignment and mirror positions with respect to point i were 

excluded from score calculation. Binding peaks were determined as local maxima of Swtd(i).

MSP—Tag density profiles along each chromosome strand were calculated using Gaussian 

smoothing kernel with bandwidth corresponding to the 0.45*σscc where σscc is the width of 

the strand cross-correlation peak (Figure 1d) at half height. The kernel bandwidth was 

selected for optimal coverage and accuracy of the method (Supplementary Figure 20). A 

binding position was accepted when local maxima (peaks) of positive and negative strand 

density were found the distance of µ±20bp, where µ is the size of the protected region for 

that protein (estimated from cross-correlation analysis). The peaks were required to be 

comparable in magnitude (based on likelihood ratio test with a Z-score cutoff of 8).

MTC—Similar to WTD, the binding score was calculated as 

, where ρ is the Pearson linear correlation coefficient between 

tag vectors v+ and v−, such that v+ (k) is the number of 5’-end tag positions mapping to 

positive strand in position i + k, and v− (k) is the number of 5’-end tag positions mapping to 

negative at i − k . The correlation is evaluated for , where 

w0 = 15bp, and the values of w are the same as in the WTD method.

When using the methods described above, peaks within distance w of a larger peak were 

omitted ( w = 200bp for CTCF and NRSF, 400bp for STAT1). The CSP method 

implementation provided by Johnson et al2 was used, and the XSET method was 

implemented as described in Robertson et al11.

Background tag density corrections

To normalize for background tag density in the analysis of NRSF binding, the window tag 

counts described in the WTD and MTC methods were adjusted by subtracting the weighted 

number of background (input) tags occurring within that window. To account for differences 

between ChIP and background dataset sizes, the background tags were multiplied by Nc / 

Nb, where Nc and Nb are non-specific sizes of ChIP and background datasets. The non-

specific size of the dataset was determined as a number of dataset tags outside of highly-

enriched regions: regions of 1Kbp with the number of tags exceeding uniform (Poisson) 

density with P-value < 10−5. This type of weighting allows for proper estimation of the 

background density ratios when a large fraction ChIP dataset tags is concentrated within 

localized bound regions (which for NRSF is 23%).

To reduce the impact of false positives from large regions of systematically high 

background, subsequent calculation excluded regions of size 104bp or larger where input tag 

counts are significantly larger (Z − score ≥ 5) than ChIP counts.
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Statistical significance of detected positions

For a predicted binding position with score s , the false discovery rate (FDR) was estimated 

as , where Nr(s) is the number of binding positions with score s or higher found 

in the real dataset, and Nc (s) is the number found in a control dataset. The FDR estimates of 

positions with scores above maximal score found in the control dataset (i.e. Nc(s) = 0) were 

assigned minimal FDR found in the set of detected positions. Two types of control models 

were used: randomized models, and a model based on the background (input) tag data.

Under a completely randomized model, control data was generated by randomly reassigning 

positions of the real (ChIP) dataset tags. More restrictive randomization models maintained 

together tags that occurred within a distance d in the original data. Supplementary Table 3 

shows results based values of d ranging from 1 to 7. A total of 10 randomized permutations 

of the complete dataset were employed for FDR calculations.

Under a background-based model, the control predictions were generated in the same way as 

predictions on real data, interchanging background (input) and ChIP data.

Sequence motifs position accuracy

Motif occurrence positions within human genome were calculated using MAST18. High-

scoring NRSF motif occurrences were determined using position-specific matrix (PSSM) 

from Mortazavi et al15. Positions with P value < 4×10−9 were chosen, to match the number 

of motifs obtained in Johnson et al2. For STAT1, GAS motif occurrences were determined 

using the PSSM from the TRANSFAC database19, with maximum P value of 10−5. High-

confidence CTCF motif positions were determined using the PSSM from Kim et al16, with 

the P value threshold of 4×10−8.

The accuracy of the predicted protein binding positions was analyzed based on the distances 

between identified positions and centers of high-scoring motif hits. Only binding positions 

occurring within 300bp of a sequence motif instance were included in the analysis. The sign 

of the distance was adjusted according to the strand on which the motif hit occurred. Since 

the center of the motif hit may not represent a true center of binding (e.g. protected region), 

the distances to the motif were centered by subtracting the median distances. The centered 

distances were used in Figures 5b–d, and Supplementary Figure 11.

Sequencing depth analysis

To evaluate stability of the identified set of binding positions on the set of tags, binding 

positions were predicted on randomly sampled subsets of the original tag data. Sampling 

was performed without replacement. WTD method with FDR of 0.01 was used to generate 

the predictions. A chain of subsampled datasets was generated by 15 successive random 

reduction of a dataset by 105 tags. A total of 100 such random chains were generated. The 

convergence of the MSER and depth predictions with the increasing number of chains is 

shown in Supplementary Figure 17.
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We will use fractional agreement F(si, sj), to refer to an average fraction of binding positions 

determined using randomly sampled fraction of tags of size sj that is also present (within 

50bp) in a set of binding positions determined using tag subsample of size si . The basic 

saturation curves (Figure 6a) show the values F(st, x), where x is the number of tags sampled 

(x-axis), and st is the total size of the original dataset.

To estimate the minimal fold enrichment ratio of the identified binding positions over the 

background, we calculated the number of ChIP (nc) and input (nb) tags within 100bp 

surrounding the identified position. The counts were used to estimate 95% confidence 

interval of the fold enrichment ratio based on a Poisson model with non-informative 

Bayesian prior 20. As the background tag density is lower than the ChIP tag density, we also 

tested using larger window sizes in counting background tags (see Supplementary Figure 

18). While such approach should provide tighter enrichment confidence intervals, it appears 

to result in over-estimation of enrichment folds relative to qPCR data.

We will use Fe(si, sj) to refer to the fractional agreement after filtering both predictions to 

include only those binding positions with lower bound of enrichment ratios above e. The 

minimal saturated enrichment ratio (MSER) for a dataset x was calculated as the minimal 

value of e such that Fe(sx, sx − 105) ≥ 0.99. The relationship between log10(MSER − 1) and 

the size of the dataset (x) was approximated using a linear model based on a least squares fit.

Availability

An implementation of the described methods is available as an R package and can be 

downloaded at http://compbio.med.harvard.edu/Supplements/ChIP-seq

Supplementary information is available on the Nature Biotechnology website.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a. Main steps of the proposed ChIP-seq processing pipeline. b. A schematic illustration of 

ChIP-seq measurements. DNA is fragmented or digested, and fragments cross-linked to the 

protein of interest are selected with IP. The 5’ ends (squares) of the selected fragments are 

sequenced, typically forming groups of positive and negative strand tags on the two sides of 

the protected region. The dashed red line illustrates a fragment generated from a long cross-

link that may account for the tag patterns observed in CTCF and STAT1 datasets. c. Tag 

distribution around a stable NRSF binding position. Vertical lines show the number of tags 

(right axis) whose 5’ position maps to a given location on positive (red) or negative (blue) 

strands. Positive and negative values on the y-axis are used to illustrate tags mapping to 

positive and negative strands respectively. The solid curves show tag density for each strand 

(left axis, based on Gaussian kernel with σ =15bp). d. Strand cross-correlation for the NRSF 

data. The y-axis shows Pearson linear correlation coefficient between genome-wide profiles 

of tag density of positive and negative strands, shifted relative to each-other by a distance 

specified on the x-axis. The peak position (red vertical line) indicates a typical distance 

separating positive- and negative-strand peaks associated with the stable binding positions.
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Figure 2. Selecting informative tag classes based on the change in strand cross-correlation 
magnitude
For each class of tag alignment quality listed in Table 1, the plots show the change in strand 

mean cross-correlation profile when this class of tags is considered together with the base 

class of perfectly aligned tags (25bp, no mismatches). Three plots correspond to tag classes 

(a) without mismatches, (b) with a single mismatch, and (c) with two mismatches. 

Informative tag classes improve cross-correlation (marked by *), and are incorporated into 

the final tag set. The y-axis gives the mean change in cross-correlation profile within 40bp 

around the cross-correlation peak (Figure 1d).
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Figure 3. Examples of anomalies in background tag distributions
a. Singular positions with extremely high tag count. b. Larger, non-uniform regions of 

increased background tag density. c. Background tag density patterns resembling true 

protein binding positions. Each plot shows density of tags from ChIP and input samples. The 

tag histograms give combined tag counts.
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Figure 4. Binding position detection methods and their relative sensitivity
a. Schematic illustration of the Window Tag Density (WTD) method. To identify positions 

with a tag pattern expected from a strong binding, the method calculates the difference 

between geometric average of the tag counts within the regions marked by orange color (p1 

and n2), and the average tag count within the regions marked by green color (n1 and p2). b. 

The Matching Strand Peaks (MSP) method first identifies local maxima on positive and 

negative strands (open circles) and then determines positions where such two peaks are 

present in the right order, with the expected separation and comparable magnitude. c. The 

Mirror Tag Correlation (MTC) method is based on the mirror correlation of positive and 

negative-strand tag densities. The mirror image of negative-strand tag density is shown by 

dashed blue line. The tags within 15bp of the center position are omitted. d. Coverage of 

high-confidence NRSF motif matches by top peaks. The plot shows the fraction of motif 

instances that coincide (with 50bp) with identified binding positions, as a function of 

increasing number of top binding positions identified by different methods. Most methods, 

except for MSP and CSP are able to achieve similarly high coverage.
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Figure 5. Accuracy of determined binding positions
a. Distribution of distances between high-confidence NRSF motif instances and locations of 

binding positions identified by different methods. The standard deviation of the resulting 

distribution (σ) is shown for each method. Only motifs containing a binding position within 

100bp were considered. b–d. The fraction of the identified binding positions within the 10bp 

of the motif position is shown for an increasing numbers of top binding positions identified 

by different methods. Only binding positions occurring within 300bp of a sequence motif 

instance are included in the analysis. Median distance to motif center was subtracted for 

each method to account for non-central position of sequence motif relative to the center of 

the protected binding region (see Methods). The MTC method achieves highest accuracy for 

CTCF and STAT1; however, WTD gives more accurate positions for the NRSF binding.
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Figure 6. Analysis of sequencing depth
a. Given the NRSF binding positions determined using complete dataset (y-axis), the black 

curve shows the fraction of positions that can be predicted (within 50bp) using smaller 

portions of the tag data (x-axis). All of the binding predictions are generated using FDR of 

0.01 using the WTD method. The curve does not reach a horizontal asymptote, indicating 

that the set of detected NRSF binding sites has not stabilized at the current sequencing 

depth. The additional curves limit the analysis to binding positions whose fold enrichment 

ratio over the background is significantly (P<0.05) higher than 7.5 (MSER: Minimal 

Saturated Enrichment Ratio, dashed line) and 30 (dotted line). The observed enrichment 

ratios are evaluated independently for each tag subsample (x-axis). b. Distribution of tag 

counts around high-confidence NRSF motif positions. Positions with zero tags were not 

included. c. The relationship between MSER of the detected binding positions and 

sequencing depth (expressed as a fraction of the complete dataset). The dashed gray line 

shows a log-log model that can be used to estimate the sequencing depth required to saturate 

detection of binding positions with lower fold-enrichment ratio. By that estimate, 1.2×106 

more sequence tags would be necessary to saturate detection of binding positions that are 

two-fold enriched over background (MSER=2 corresponds to y=0, at which the red line 

crosses x-axis: x=2.8×106).
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