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Abstract

Background: There are lingering concerns about caffeine consumption during pregnancy or the early postnatal period,
partly because there may be long-lasting behavioral changes after caffeine exposure early in life.

Methodology/Principal Findings: We show that pregnant wild type (WT) mice given modest doses of caffeine (0.3 g/l in
drinking water) gave birth to offspring that as adults exhibited increased locomotor activity in an open field. The offspring
also responded to cocaine challenge with greater locomotor activity than mice not perinatally exposed to caffeine. We
performed the same behavioral experiments on mice heterozygous for adenosine A1 receptor gene (A1RHz). In these mice
signaling via adenosine A1 receptors is reduced to about the same degree as after modest consumption of caffeine. A1RHz
mice had a behavioral profile similar to WT mice perinatally exposed to caffeine. Furthermore, it appeared that the mother’s
genotype, not offspring’s, was critical for behavioral changes in adult offspring. Thus, if the mother partially lacked A1

receptors the offspring displayed more hyperactivity and responded more strongly to cocaine stimulation as adults than did
mice of a WT mother, regardless of their genotype. This indicates that long-term behavioral alterations in the offspring
result from the maternal effect of caffeine, and not a direct effect on fetus. WT offspring from WT mother but having a A1R
Hz grandmother preserved higher locomotor response to cocaine.

Conclusions/Significance: We suggest that perinatal caffeine, by acting on adenosine A1 receptors in the mother, causes
long-lasting behavioral changes in the offspring that even manifest themselves in the second generation.
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Introduction

Caffeine (1,3,7-trimethylxanthine) is a widely consumed psy-

choactive substance that is readily available through several

dietary products (coffee, tea, cocoa beverages and chocolate bars).

The total worldwide consumption of caffeine (irrespective of

source) has been estimated to approximately 70 to 76 mg/person/

day. Interestingly, the levels of caffeine intake in countries such as

Sweden and Finland reach more than 400 mg/person/day [1].

Although health consequences of ordinary caffeine consumption

are probably minor there are concerns about caffeine intake

during pregnancy and lactation. It is notable that in contrast to

alcohol and tobacco consumption during pregnancy, approxi-

mately 70% of expectant mothers continue to drink beverages

containing caffeine at normal or near normal rate [2,3].

Human and animal studies have shown that high caffeine intake

represents a risk for adverse pregnancy outcomes and teratological

consequences in offspring [4,5]. There are many animal studies on

the effect of caffeine intake by dams, and often rather high doses of

this substance (.50 mg/kg) have been studied. It is therefore

important to note that the behavioral effects of caffeine are

characterized by a biphasic dose-effect relationship. At low to

moderate doses (50 to 300 mg, i.e. 1 to 3 cups of coffee), caffeine

induces a central stimulation in humans, eliciting feelings of

wellbeing, alertness, energy and ability to concentrate. In contrast,

the subjective effects induced by caffeine at higher doses (300 to

800 mg) are characterized by negative feelings such as anxiety,

nervousness and insomnia, a condition sometimes referred to as

‘‘caffeinism’’ [6]. In laboratory animals the behavioural effects of

caffeine are also biphasic [7]. For example, low doses (,25 mg/

kg) of caffeine are similar to psychomotor stimulants such as

cocaine and amphetamine, whereas at higher doses caffeine has

effects that are similar to a diverse set of other agents such as

benzodiazepine-inverse agonists and phencyclidine (PCP) [8].

In low doses, which are the most relevant to human use, caffeine

effects are exerted by antagonizing brain adenosine A1 and A2A

receptors with secondary effects on dopaminergic neurotransmis-

sion [1]. There is little evidence that these doses produce

teratological effects [9]. One concern about early exposure to

low or modest doses of caffeine relates to hyperactivity in late

adolescence or adulthood [10]. Early exposure to psychostimulant

drugs may lead to a phenomenon called ‘‘neuronal imprinting’’
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where a drug may have effects that are not necessarily immediate

but manifest later in life [11]. Relating to the fact that the

rewarding properties of all psychostimulants, including to some

extent caffeine [7], are a result of actions of the drugs on the

mesolimbic dopamine system [12], early exposure to caffeine

might also produce late consequences e.g. in the reaction to other

psychoactive drugs.

It is often tacitly assumed that the reason that psychoactive

drugs have long-term behavioral consequences is due to the

affected fetal brain. However, it is clearly also possible that the

drug affects maternal physiology or behavior in such a way that

there are long-term consequences in the offspring. It will always be

difficult to discriminate between these two possibilities when only

drug administration is used. We therefore wanted to see if aspects

of the effects of caffeine could be mimicked by genetic targeting of

one of the adenosine receptors, since this might allow a separation

into maternal or filial effects.

The present study was designed to further assess the behavioural

status, including motor functions and psychomotor activation of

adult animals whose mothers were exposed to caffeine during

pregnancy and lactation and their response to the psychostimulant

cocaine. The rationale behind testing the response to another

psychoactive stimulus in these animals is that caffeine, itself a

motor stimulant, might be expected to change the motor activity

in response to cocaine. Some neurochemical measurements were

also made. We found that some effects of perinatal exposure to

caffeine were mimicked in mice heterozygous for adenosine A1

receptors, which have half the normal number of such receptors.

This is relevant because regular human consumption of caffeine

leads to the blockade of about half of the body’s A1 receptors.

Results

Perinatal caffeine exposure
Adult WT mice, 8–10 weeks of age, were perinatally exposed to

0.3 g/l caffeine in the drinking water given to the dams from GD1

to PND21. The dose of caffeine given produced blood levels in

dams comparable to those obtained in humans after consumption

of 3–4 cups of coffee [13]. Together with offspring of untreated

WT dams, caffeine pre-treated male and female mice were tested

for motor balance and coordination on the rotarod on Day 1 of

the evaluation protocol (Figure 1). There were no major

differences in either sex between untreated group and mice given

perinatal caffeine in terms of their ability to remain on the rotarod

(Figure S1. A,B of the supplemental data).

Two periods of habituation to the open field were preformed on

Day 3 and the spontaneous activity was evaluated in all groups

tested. As shown in Figure 2A caffeine pre-treated adult WT females

displayed increased (121.762.1) spontaneous motor activity com-

pared to the WT untreated females (113.361.2) (p = 0.0008,

t = 3.68, df = 35 Student’s t test). Adult WT males pre-treated with

caffeine also had significantly increased horizontal activity during the

45 min of testing compared to the WT untreated group as already

published [14]. In agreement with these results, male and female

offspring from our other recent study, where the wild type mothers

were treated with the same concentration of caffeine (0.3 g/l) but

from GD7 to PND7, also displayed higher locomotor motor activity

as adults [14]. This implies that even a narrower time window of

caffeine exposure during development might be sufficient in

inducing life-long consequences.

The WT male mice perinatally exposed to caffeine displayed a

more pronounced increase in locomotor activity than controls after

the cocaine injection [14]. Caffeine pre-treated female mice were

also characterized by a higher response to cocaine stimulation than

the controls during the 90 min recording session (Figure 2B)

(Student’s t test for Ha: WT H2O 46.563.5, n = 8; WT Caff

73.864.7, n = 7, p = 0.0004, t = 4.75, df = 13). This observation was

similar to our previous report on the higher effect of amphetamine

stimulation in caffeine pre-treated female offspring [14].

Response to cocaine stimulation in A1R KO and A2AR KO
mice

It is known that behavioural effects of 15 mg/kg caffeine can be

largely accounted for by blockade of adenosine receptors and that

A1 and A2A receptors are particularly important [1]. We examined

if complete elimination of A1R would mimic the effect of caffeine.

As seen in Figure 3A,B cocaine injection (10 mg/kg) induced a

Figure 1. Experimental design. Pregnant WT females were divided in two groups: one exposed perinatally to 0.3 g/l caffeine (WT Caff), the other
receiving tap water (WT H2O) from GD1 to day 21 of lactation (PND21). After the separation from the mother, the offspring were housed 2–8 per cage
(males and females separately). At 2 months of age mice were tested at the rotarod, and then allowed to rest for one day and on the day 3 let to
spontaneously explore an open field for two separate 45 min sessions. The sessions were separated by a 2 h resting period. Following the open-field
habituation and test on day 4, the animals were sacrificed by means of decapitation and their brains were dissected out and stored at 280uC.
doi:10.1371/journal.pone.0003977.g001
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higher locomotor activity in the A1R KO adult male mice than in

the wild types (accumulated beam breaks for 90 min following

injection for Ha, WT: 39.562.6, n = 10, A1R KO: 63.9614.4,

n = 3, p = 0.008, df = 11 Student’s t test). This was partially due to

a higher basal activity (Figure 3A). The difference in cocaine

response was, if anything, more pronounced in female mice from

A1R KO genotype than in the WT group of the same sex (Ha,

accumulated beam breaks from 46–135 min after cocaine

injection: WT 51.663.7, n = 12, A1R KO: 71.666.9, n = 4,

p = 0.009, df = 14 Student’s t test), in part as a consequence of a

higher basal activity (Figure 3B).

Whereas A1R KO mice appear to be more responsive to

cocaine than wild type animals the opposite is known to be true for

A2AR KO mice since several previous reports, from our and other

groups, have demonstrated decreased response to cocaine or

amphetamine in animals that lack A2A receptor gene [14,15].

The obtained results, higher response of A1R KO animals, as

well as impaired response in A2AR KO mice to cocaine stimulus

reported in the literature, prompted us to continue the work

involving adenosine A1 receptor. Since normal doses of caffeine

block half the A1 receptors in the body [16], we used mice

heterozygous for adenosine A1 receptors as comparison to the WT

perinataly caffeine treated mice.

A1R Hz mice
Autoradiography with the selective A1R antagonist

[3H]DPCPX determined that half of the number of A1R present

in A1R Hz mice than in the WT when the area of nucleus

accumbens was examined (Figure 4) and striatum (not shown).

When A1R Hz animals were tested for motor coordination on the

rotarod, decreased fall latency was observed in A1R Hz males, but no

changes in the ability to remain on the rotating rod were found in

A1R Hz females compared to the wild types (Figure S1. A,B of the

supplemental data, males: WT H2O 124.267.4, n = 21 and A1R Hz

94.069.8, n = 8, p = 0.03, t = 2.2, df = 27 Student’s t test).

When tested for the spontaneous activity A1R Hz male group

did not show a significant increase in locomotion compared to the

WT untreated group (Figure 5A) (45 min of habituation 1, Ha:

WT H2O 110.761.0, n = 17; A1R Hz 113.661.6, n = 7, p = 0.15,

t = 1.51, df = 22, Student’s t test). A statistically significant increase

in locomotion was, however, displayed by female A1R Hz group

compared to their WT controls (Figure 5B). Student’s t test was

Figure 2. Spontaneous horizontal activity measurements after caffeine exposure. (A) Spontaneous horizontal activity measurements in
adult wild type females exposed to 0.3 g/l caffeine (WT Caff) from GD1 to PND21 (white circle) and WT group receiving tap water (WT H2O, black
circle). Each point represents the mean6S.E.M of the beam breaks recorded during 5 minute intervals. Statistical analysis was performed with
Student’s t test (females WT H2O, n = 25, WT Caff n = 12, ***p,0.01). (B) Analysis of open field behavior in two month-old female mice after
stimulation with cocaine (10 mg/kg, 90 min recording). Horizontal activity was recorded during habituation 3 (min 1–45) and after cocaine
stimulation (min 46–135). Each point represents the mean6S.E.M (females WT H2O n = 8, WT Caff n = 7) of the beam breaks recorded during
15 minute intervals for habituation 3 and cocaine challenge. Arrows indicate the time of cocaine injection. Statistical analysis was performed using
Student’s t test (***p,0.001 significantly different from WT H2O).
doi:10.1371/journal.pone.0003977.g002
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run on the score of accumulated beam breaks for the 45 min

period of the first habituation, WT H2O 113.361.2, n = 25 and

A1R Hz 124.164.1, n = 8, p = 0.0018, t = 3.4, df = 31.

The enhanced response to cocaine challenge found in WT

caffeine pre-treated male groups was also observed in the mice that

were heterozygous for the A1 receptor gene (Figure 5C) (accumu-

lated beam breaks for 90 min recording of Ha: WT H2O

42.463.7, n = 11; A1R Hz 63.361.1, n = 3, p = 0.02, t = 2.8,

df = 12 Student’s t test). A1R Hz female mice were also

characterized by a higher response to cocaine stimulation than

the controls during the 90 min recording session (Figure 5D)

(Student’s t test, WT H2O 46.563.5, n = 8, A1R Hz 63.864.7,

n = 4, p = 0.02, df = 10).

Both adenosine A1 receptor heterozygous mice and WT mice

exposed to perinatal caffeine showed the tendency towards

increased locomotion and decreased habituation (Figure 5). Thus,

the behavioral profile of A1R Hz mice which were born by A1R

Hz mothers was basically similar to that of mice exposed to

perinatal caffeine. However, part of the increase in response to

cocaine in the mice perinatally treated with caffeine or the A1R Hz

group could be due to a higher basal activity since those two

groups tended to habituate less completely to the open field arena

than the control animals (Figure 5C,D).

Role of maternal genotype
The fact that some of the characteristics of perinatal caffeine

exposure could be mimicked by partial deletion of a gene opens the

possibility of examining whether it is effects in the mother or in the

offspring during the perinatal period that determine the phenotype

of the offspring in adulthood. We therefore compared the behavior

of wild type pups and pups heterozygous for adenosine A1 receptors

born to and raised by mothers heterozygous for adenosine A1

receptors, with that of pups heterozygous for adenosine A1 receptors

born to and raised by wild type mothers. The latter was achieved by

mating WT dams with A1R KO male mice.

As shown in Figure 6A, there was a statistically significant

increase in locomotor activity in male mice (regardless of their

genotype) to the response to cocaine injection only when born to a

mother that partially lacked adenosine A1 receptors (significant

interaction being mother’s genotype p,0.0001, F(1,31) = 23.8, Two

Way ANOVA with factors offspring and mother’s genotype). The

same phenomenon was also found in the female offspring of the

A1R Hz mothers after the cocaine stimulation (interaction

mother’s genotype p = 0.0014, F(1,27) = 12.6, Two Way ANOVA)

(Figure 6B).

Furthermore, as exemplified by female mice in Figure 2B and

5B, the habituation profile of adenosine A1 receptor heterozygous

offspring was similar to that of mice exposed to perinatal caffeine.

Thus, the hyperactivity profile in offspring seems to be strongly

dependent on whether the mother was heterozygous for adenosine

A1 receptors or not. We have also preformed the statistical analysis

of all our data taking into consideration the litter-related issues and

observed that the significant results remained.

For additional evaluation of the effect of knocking out one copy

of the mother’s A1R gene on the second generation of the offspring

we have examined the behaviour of the WT male mice whose

mothers were WT but grandmothers were either WT or A1R Hz

mice. After stimulation with cocaine we could still observe

modifications caused by the absence of A1R on the offsprings’

reaction to the psychostimulant (Figure 6C) (accumulated beam

breaks from 46–135 min in Ha: WT grandmother WT mother

WT offspring: 39.863.3, n = 9; A1R Hz grandmother WT mother

Figure 3. Open field behavior of A1R KO mice. During habituation 1,
2 on the first day of examination and habituation 3 (45 min), followed by
10 mg/kg cocaine injection (90 min) in WT (black circle) and A1R KO (open
circle) male (A) and female (B) mice, in the second day of testing. Arrows
indicates the time of cocaine injection. Each point represents the
mean6S.E.M of the beam breaks recorded during 15 minute intervals
(males WT n = 10, A1R KO n = 3; females WT n = 12, A1R KO n = 4).
doi:10.1371/journal.pone.0003977.g003

Figure 4. [3H]DPCPX-binding in the Nucleus accumbens.
Saturation curve of [3H]DPCPX-binding in the Nucleus accumbens from
WT and A1R Hz mice. Significant difference in Bmax values for the two
groups was found by Student’s t test (Bmax WT 20868.23 fmol/gray
matter, n = 6, A1R Hz 10465.36 fmol/gray matter, n = 6, df = 10,
***p,0.001). The same was observed in striatum.
doi:10.1371/journal.pone.0003977.g004
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WT offspring: 51.763.8, n = 4, p = 0.02, t = 2.1, df = 11 Student’s

t-test).

Expression of immediate early genes and dopamine
receptor subtypes

Some attempts were made to find a neurochemical correlate to

the behavioral changes. The dose of cocaine used was too low to

induce any significant change in the expression of either NGFI-A

mRNA or c-fos in caudate-putamen, nucleus accumbens core,

nucleus accumbens shell and medial prefrontal cortex in the WT

mice pre-treated with caffeine and the WT controls of both sexes.

Also the tyrosine hydroxylase in substantia nigra, Table 1 and

[3H]mazindol binding in caudate-putamen (fmol/mg protein,

offspring from the WT mothers: 418.8626.3, n = 11; offspring

from the A1R Hz mother: 362.7621.0, n = 26, p = 0.07, t = 1.5,

df = 35 Student’s t-test), failed to demonstrate any significant

difference. We also found no changes in the binding of dopamine

D1 (with SCH23 390) or D2 (with raclopride) receptor ligands nor

in expression of preprotachykinin, prodynorphin, prosomatostatin

mRNA levels in nucleus accumbens or caudate-putamen (Table 1),

but there was a significant increase in preproenkephalin mRNA in

the offspring born to A1R Hz mother in the caudate-putamen

(Table 1).

Discussion

We have confirmed that early exposure to caffeine leads to

altered motor behavior, including enhanced responses to cocaine

[9,14,17,18,19]. It is recognized that low doses of cocaine and

caffeine produce additive effects [20,21]. However, in the present

experiments caffeine was administered long before cocaine and

another explanation than the direct drug interaction must be

sought. In most, but not all of these earlier studies, perinatal

caffeine in doses similar to those we used caused a slight

hyperlocomotion of the offspring even in the absence of a drug

challenge. Caffeine and cocaine are both behavioral stimulants,

but use somewhat different mechanisms to produce their effects

[22,23]. The mechanisms underlying the behavioral features

associated with caffeine, and psycho-stimulants in general, are

believed to be related to the activation of dopamine (DA) receptors

in the mesolimbic dopamine system (notably in the nucleus

accumbens). Whereas cocaine and amphetamine primarily

stimulate D1 receptor, caffeine largely acts by enhancing D2

receptor pathways [23,24]. The effects of caffeine is believed to be

indirect and due to blockade of adenosine A2A receptors that are

co-localized with D2 receptors that have opposite actions [1].

We found in our recently published study that an even shorter

period of maternal caffeine intake (two weeks prenatally and one

week postnatally) was sufficient to produce long-lasting behavioral

changes in the offspring [14]. This suggested that the antenatal

period is particularly important as also attested by the previous

cross-fostering experiments [25]. We cannot rule out that also

shorter periods of caffeine treatment before the pregnancy could

have effects, but most data on humans suggest a complete return of

physiological functions after cessation of caffeine use, for reference

see [1]. In female mice, we found no evidence that long term oral

caffeine intake in the doses given here alters overall activity, or the

location of activity (central vs. peripheral), which may be

somewhat related to anxiety following a period of caffeine

exposure (Eriksson, Yang, Salmi and Fredholm, unpublished

data). Furthermore, we did not observe any gross alteration in

maternal behavior in the caffeine treated dams. We therefore

favour the hypothesis that maternal caffeine use during a critical

period of fetal development is the most important.

In practically all previous studies on perinatal caffeine effects,

the focus in the discussion has been on the fetus. Indeed, caffeine

readily crosses the placenta without metabolism and partially

enters breast milk [26]. The human fetus and newborn infant is

exposed to caffeine for a prolonged period of its early life as liver

enzymes which metabolize caffeine are not present until eight

months of age [26]. However, it is clearly also possible that the

relevant action is on the mother. Previous cross-fostering

experiments have demonstrated that the effect of a single caffeine

dose on the subsequent behavior could not be ascribed to changes

in mother’s behavior or lactational efficiency in mice [25]. It

could, however, be due to an altered uterine environment

[27,28,29]. It has been shown that a single, very high dose of

caffeine (120 mg/kg) could reduce blood flow to the uterus and

decidua [30]. This may cause changes in fetal oxygen supply and/

or changes in maternal blood composition, but the effects of such

high doses are very different from what is observed with the

present dosing. However, to completely differentiate between

maternal and fetal actions in this period will be virtually impossible

when examining drug administration, which by necessity must be

through the mother. This is why we tried to find a genetic model

that could mimic some aspects of exposure to caffeine.

The present data show that several features of perinatal caffeine

administration, notably the enhanced response to cocaine, can be

mimicked by deletions of the A1 receptor, a known target of

caffeine, whereas it was known since before that deletion of both

copies of the A2A receptor had the opposite effect [15]. We also

found that the deletion of only one of the copies of the A1 receptor

gene, resulting in approximately half the number of receptors in

cortex and hippocampus [16] but also in regions of more direct

relevance here (present data), enhanced the response to cocaine.

By contrast, deletion of one of the copies of the A2A gene reduces

the response to cocaine (Jiang-Fan Chen, personal communica-

tion) albeit not to the same extent as removal of both copies [15].

It is important to note that the A1 heterozygous mouse still

responds to adenosine, but approximately twice as much of the

agonist is needed for the same response [16,31]. Such a parallel

shift of the dose-response is also achieved by caffeine at

concentrations close to the Kd for the antagonist (10–30 mM),

concentrations that are attained by the doses of caffeine used in the

present experiments.

It is also noteworthy that the effect of caffeine on the behavior of

the offspring was (at least partially) mirrored by the A1 receptor

deletion, whereas the stimulatory responses of caffeine are

generally dependent on the A2A receptor [32,33] although A1

receptors contribute [34,35,36,37]. This suggests that the effect is

Figure 5. Spontaneous horizontal activity of A1R Hz mice. Measurements of spontaneous horizontal activity in adult male (A) and female (B)
wild type and A1R Hz mice. WT group receiving tap water (WT H2O: males n = 17, females n = 25, black circle) and A1R Hz group (males n = 7,
females = 8, gray circle). Each point represents the mean6S.E.M of the beam breaks recorded during 5 minute intervals. Statistical analysis was
performed with Student’s t test (**p,0.01). (C) and (D) Analysis of open field behavior after stimulation with cocaine in adult mice (10 mg/kg, 90 min
recording). Black circle: offspring from control (WT H2O: males n = 11, females n = 8) dams, gray circle: A1R Hz offspring (males n = 3, females n = 4).
Horizontal activity was recorded during habituation 3 (min 1–45) and after cocaine stimulation (min 46–135). Each point represents the mean6S.E.M
of the beam breaks recorded during 15 minute intervals for habituation 3 and cocaine challenge. Arrows indicate the time of cocaine injection.
Statistical analysis was performed with Student’s t test (*p,0.05).
doi:10.1371/journal.pone.0003977.g005
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Figure 6. Effect of mother’s genotype on cocaine responce. A1R Hz mice are similar to mice exposed to perinatal caffeine in locomotor
response to cocaine and this response seems to be dependent on mother’s genotype, not offspring’s (A,B). Closed circle represents WT mice born to
a WT mother (M:WT,O:WT, males n = 11, females n = 12), open circle WT are mice born to an A1R Hz mother (M:WT,O:A1R Hz, males n = 6, females
n = 6), closed square stand for A1R Hz mice born to a WT mother (M:A1R Hz,O:WT, males n = 6, females n = 3) and open square A1R Hz mice born to a
A1R Hz mother (M:A1R Hz,O: A1R Hz, males n = 12, females n = 10). Mice were habituated to the open-field arena for 45 min before administration of
cocaine (10 mg/kg, i.p.), immediately followed by a 90-min test session. Arrow indicates time of injection of cocaine or vehicle. Results are shown as
means6S.E.M.. The enhanced response to cocaine was only present in offspring born to a mother heterozygous for the adenosine A1 receptor gene.
Statistical analysis was performed with Two-Way ANOVA with factors offspring’s genotype and factor mother’s genotype (**p,0.01; ***p,0.001
significantly different from WT mother WT offspring). (C) Response to cocaine in the second generation. Open circle grandmother WT, mother WT,
offspring WT (G:WT,M:WT,O:WT, n = 9) and closed circle: grandmother A1R Hz, mother WT, offspring WT (G:A1R Hz,M:WT,O:WT n = 4). After 45 min of
habituatain mice were injected cocaine and analysed for the next 90 min. Each point represents the mean6S.E.M of the beam breaks recorded
during 15 minute intervals for habituation 3 and cocaine challenge. Arrows indicate the time of cocaine injection. Statistical analysis was performed
with Student’s t-test (*p,0.05).
doi:10.1371/journal.pone.0003977.g006
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not simply due to psychostimulant actions where A2A receptors are

very important, but that some other features must be involved. It is

probably relevant that we have previously demonstrated that the

ability of a low dose of caffeine to cause reinstatement of cocaine-

seeking behavior could be mimicked by A1-, but not by A2A

receptor antagonists [38], even though A2A antagonists per se tend

to produce at least as large increases in locomotion that do A1R

antagonists [35,36,39].

Although a link between the perinatal caffeine use and

dopaminergic mechanisms is possible the above data and consider-

ations suggest that the relationship is not simple. Whereas the

blockade of A2A receptors has been linked to psychostimulation

[32,33], blockade of A1 receptors may instead be related to enhanced

glutamatergic transmission [1,16].Our examination of various

neurochemical parameters did not provide any direct evidence for

a major disruption of the dopaminergic pathways involved in

psychostimulation. We did find an elevation of preproenkephalinA

mRNA levels in caudate-putamen. Enkephalin-expressing neurons

project to globus pallidus, a brain region that has been demonstrated

to be smaller in children with attention-deficit hyperactivity disorder

[40]. The potential association between perinatal exposure to

caffeine and ADHD in later life needs to be further evaluated. The

precise mechanisms underlying the behavioural enhancement in the

mouse offspring therefore remains to be explained. It was also not

the major focus of this study.

Instead the aim was to use the genetic model to try to elucidate

whether the enhancement of cocaine responses in the offspring was

due to a primary effect on the mother or the fetus/pup. The

approach we used with a genetic study makes it possible to

investigate this aspect, which would not be possible using drugs (since

it is impossible to administer psychoactive drugs only to the dam and

not to the fetus, and vice versa). The results very clearly indicate the

first possibility. Thus, if the mother partially lacked A1 receptors, the

offspring displayed hyperactivity during habituations and responded

more strongly to cocaine as adults, regardless of their own genotype.

Also, the offspring of wild type mothers showed no behavioral

changes, even if they themselves lacked A1 receptors (i.e. their fathers

lacked A1 receptors). The apparent lack of importance of the fetal

brain A1 receptors is supported by other evidence. Even if adenosine

A1 receptors are present, albeit sparse, in the embryonic brain [41],

these receptors appear to be poorly coupled to G proteins [42]. A

maternal effect of caffeine related to adenosine A1 receptor signalling

was also shown in a recent study where adenylyl cyclase inhibition by

an adenosine A1 receptor agonist was decreased only in the mother

but not the fetal brain [43].

What changes that occur specifically in the pregnant mice that

brings about the long-lasting behavioral effects we demonstrate

here in the offspring is not known, and will need consideration in

future studies. Our experiments performed on the second

generation of mice whose grandmother was A1R Hz but mother

a WT still showed increased response to stimulation with cocaine

compared to the WT mice whose both mother and grandmother

were wild types. This indicates that long-term behavioral

alterations in the offspring may greatly depend on a maternal

effect of caffeine and not a direct effect in the fetus, and that some

epigenetic effect may be involved.

Epigenetic change to the genome (e.g. in DNA methylation) not

only determine the phenotype of the offspring but can sometimes be

passed on to the second generation. These processes of transgenera-

tional passage of changes in genomic DNA methylation can occur in

both female and male lineage, as the transmission is only via the

gamets and can equally apply to sperm and ova [44]. Therefore,

epigenetical transmission from father or mother could have the

effects on the developmental responses in the offspring. In our study,

we have controlled for the mother’s and grandmother’s genotype in

A1R Hz offspring but not for the father’s or grandfather’s genotype.

There were two reasons for not considering the paternal genotype.

Firstly we wanted to relate our findings to the exposure of mouse

dams to caffeine. Clearly paternal effects can not be very important

here. Secondly we noted in a separate study that life-long exposure

(including perinatal exposure) to caffeine did not cause behavioral

changes in the male but did in female mice (Salmi P, Fredholm BB

unpublished data).

In summary, we found that adenosine A1 receptor heterozygous

offspring had a behavioral profile of hyperactivity quite similar to

normal mice exposed perinatally to caffeine. Furthermore, it

Table 1. Expression of mRNA levels in cocaine-treated offspring to adenosine A1R Hz or WT mother.

Cx NAcc CP SN

c-fos WT 0.2560.02 0.2760.03

A1R Hz 0.2360.01 ns 0.2460.01 ns

NGFI-A WT 0.5560.02 0.1960.01 0.3760.02

A1R Hz 0.5460.01 ns 0.2260.01 ns 0.4260.01*

Proenkephaline A WT 0.7560.03 0.6860.02

A1R Hz 0.7760.02 ns 0.7560.01**

Substance P WT 0.9460.02 0.8560.02

A1R Hz 0.9460.02 ns 0.8160.01 ns

Dynorphine WT 0.3560.03 0.2660.01

A1R Hz 0.3160.02 ns 0.2460.01 ns

Somatostatin WT 0.4560.04 0.3360.06

A1R Hz 0.5260.03 ns 0.3560.02 ns

Tyrosine hydroxylase WT 0.7460.02

A1R Hz 0.7360.02 ns

Cx = cortex, CP = caudatum putamen, NAcc = nucleus accumbens, SN = substantia nigra. Values are means6S.E.M of the optical density (n = 11–30). Statistical analysis
was performed with the Student’s t test (ns.0.05, *p,0.05, ***p,0.001).
doi:10.1371/journal.pone.0003977.t001
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appeared that the genotype of the dam, not the offspring, was

critical for behavioral changes in adult offspring. We hypothesize

that perinatal caffeine, by acting on adenosine A1 receptors in the

mother, appears to be responsible for the long-lasting behavioral

changes in the offspring. It should be remembered, however, that

at this point it is not possible to conclude whether the long-lasting

behavioral changes observed here are detrimental or beneficial.

Materials and Methods

Animals
Three types of mice were used: adenosine A1 receptor knock-out (A1R

KO) [16], mice heterozygous for the adenosine A1 receptor (A1R Hz) and

C57BL/6 mice (wild type, WT). For generating the A1R KO mice,

the second coding exon of the mouse adenosine A1 receptor gene

was inactivated in mouse E14.1 embryonic stem cells. 129/

OlaHsd/C57Bl/6 hybrid mice were generated. These animals

were backcrossed for at least 10 generations with C57Bl/6 to

achieve practically congenic A1R KO mice. Animals were bred at

the Department of Physiology and Pharmacology, Karolinska

Institutet and housed at a constant room temperature (22uC; 12 h

light/dark cycle, lights on at 6 a.m) with ad libitum access to food

and water. To generate the A1R KO and A1R Hz mice

heterozygote matings were usually performed, except where

otherwise stated. Mice were genotyped by PCR. All experiments

were approved by the Local Committee on Ethics of Animal

Experimentation, Stockholm, Sweden.

Chemicals
Caffeine (anhydrous; Sigma Chemical Co., St. Louis, MO) was

administered through the animals’ drinking water (0.3 g/l).

Cocaine hydrochloride (Apoteksbolaget AB, Sweden) was dis-

solved in 0.9% NaCl (10 mg/ml) and injected intra-peritoneally

(i.p.) in a dose of 10 mg/kg. Saline vehicle served as controls.

Exposure to caffeine
The experimental design of caffeine exposure is shown in Fig. 1.

Pregnant WT females, housed in individual cages, were admin-

istered caffeine through their drinking water. The first set of

animals received 0.3 g/l caffeine and the second was given tap

water only, and served as control. The exposure time ranged from

gestational day (GD) 1 to day 21 of lactation, i.e. postnatal day

(PND) 21. That is why the term ‘‘perinatal’’ is here used to denote

the period of pregnancy and the 21 days after birth. The offspring

was analyzed with behavioral tests at two months of age.

Behavioral evaluation. All behavioral tests were performed

during the light period between 8 a.m. and 4 p.m. The animals

were separated into groups based on exposure (caffeine, water,

A1R Hz from A1R Hz mothers) and stimulation (cocaine or

saline). Males and females were analyzed separately (n = 6–25

mice in each exposure group, selected randomly from 2–4

independent litters). The motor activity in an open field arena

was analyzed at adult age with an experimental protocol that

spanned over 4 days (Fig. 1). The rotarod test, including the

training session, was performed during the first day. Mice were

allowed to rest the next day, and on the third day two open field

habituation sessions were performed. The challenge with cocaine,

preceded by another habituation session, was done on the fourth

day. For this purpose the mice from each exposure group were

divided into two sets, one stimulated with cocaine, the other

receiving saline. A1R KO and their WT littermates were also

analysed according to the 4 day protocol explained above.

Regarding adenosine A1 receptor heterozygous mice, and their

wild type littermates, four different groups of offspring were tested:

1) wild type mice born to an adenosine A1 receptor heterozygous

mother, 2) adenosine A1 receptor heterozygous mice born to an

adenosine A1 receptor heterozygous mother, 3) adenosine A1

receptor heterozygous mice born to a wild-type mother, and 4)

wild type mice born to a wild type mother. Behavioral tests were

performed when offspring were at least 8 week of age. A1R Hz

mice were separated into groups described above and challenged

with cocaine.

For the evaluation of the effect of knocking out one copy of the

A1R gene on the second generation of the offspring we have

examined the behaviour of the WT male mice whose mothers

were wild type but grandmothers were either WT or A1R Hz

mice. These mice underwent the same behavioural protocol as

described in above (Fig. 1).

Open field model
The effects of caffeine on motor functions were analyzed by

recording the locomotor activity in a square open field arena

(50065006225 mm), enclosed in a solid and sound-attenuating

box (Kungsbacka Mät och Reglerteknik AB, Fjärås, Sweden). The

open field arena was equipped with two rows of photocells

sensitive to infrared light, each row having 16 photocells per side.

The space between the photocells was 31 mm and the outermost

was placed 17.5 mm from the wall. The number of photocell

interruptions was collected by a computer and the following

variables were recorded and analysed: horizontal activity (Ha,

total number of beam breakings), locomotion (L, interruptions of

photocells in the lower rows when there is a new beam broken, i.e.

the animal has made an actual transfer) and rearing activity (Ra,

all interruptions of photocells in the upper rows). This equipment

does not allow recording small movements, e.g. tremor, reflexes

and tail movements. The data were subjected to a square root

transformation (sqrt) before statistical analysis.

Prior to the recording, all animals were allowed a period of 30–

45 min in behavioral the testing room. At 2 months of age the

mice were analyzed with an experimental protocol that spanned 2

days. Two habituations (45 min each) were performed on day 1,

separated by 2 h period. Directly after the first habituation

(habituation 3) on the second day the mice were injected with

cocaine (10 mg/kg) and their locomotor activity was recorded for

90 min. A1 receptor heterozygous mice were separated into groups

described in 2.3. and challenged with cocaine.

Rotarod
Potential effect of the perinatal caffeine exposure on the

cerebellum was tested by Rotarod test at 2 months of age (LSi

Letica Scientific Instruments, Debiomed, Cornella, Spain). Mice

were initially trained to remain on the rotating drum at a constant

speed of 4 r.p.m. (revolutions per minute) for 3 min. During the

three trials the rotarod accelerated from 4 to 40 r.p.m. over a

5 min period. Two mice were tested simultaneously, and every

animal was involved in three consecutive trials, each separated by

a 30 min resting period. Fall latencies were recorded. Analysis was

performed using the best value obtained in 3 consecutive sessions

for each animal.

Tissue preparation
After the experiments (approximately 2 h after cocaine or

vehicle injection) mice were anaesthetized with CO2 and sacrificed

by decapitation. The brains were dissected out, frozen on dry ice

and stored at 280uC. Frozen brains were cut by cryostat into

14 mm coronal sagittal sections, thaw-mounted on poly-L-lysine

coated slides as previously described [45,46] and stored at 220uC.
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In situ hybridization and receptor autoradiography
The immediate early genes NGFI-A and c-fos were examined

by in situ hybridisation on coronal sections (14 mm). Expression of

preprotachykinin, prodynorphin, prosomatostatin, preproenke-

phalin and tyrosine hydroxylase mRNA was also measured

[39,47]. Binding studies included dopamine D1 receptor binding

examined by 0.2, 0.4, 0.6, 1 and 2 nM [3H]SCH23390 ((R)-(+)-

7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-

benzazepine, DuPont NEN, Stevenage, UK), D2 receptor binding

with 1, 2, 3, 5 and 10 nM [3H]raclopride (DuPont NEN,

Stevenage, UK), respectively as described before [48] and

10 nM [3H]mazindol binding [49]. A1R binding was evaluated

by incubating the brain section from WT and A1R Hz animals

with increasing (0.2–10 nM) concentrations of A1R antagonist

[3H]1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX) as de-

scribed in [50].

Films were developed after 4 weeks of exposure. The

autoradiographic films were digitized using a CCD camera (Sierra

Scientific Sunnyvale, CA, USA), and optical densities were

converted to fmol/mg tissue using a Kodak density wedge and

the MCID M5 system (Imaging Research, St. Catharines,

Canada). Specific binding was obtained by subtracting non-

specific binding from total binding.

Statistical analysis
Data were analyzed using GraphPad Prism 4 (GraphPad

Software Inc., San Diego, USA). To determine statistical

significance, open field data were first normalized with a square

root transformation. Accumulated counts (horizontal activity and

rearing) and rotarod data (fall latencies) were analysed using

Student’s t test. In some cases Two Way ANOVA was used, as

indicated. Differences were considered statistically significant at

p#0.05. Data are presented as means6S.E.M.

Supporting Information

Figure S1 Rotarod measurements.Analysis of the rotarod

performance in adult WT and A1R Hz male (A) and female (B)

mice that received perinatally 0.3 g/l caffeine or tap water. Fall

latencies (mean6S.E.M.) were analyzed by Student’s t test (males

WT H2O: n = 21, WT Caff: n = 7, A1R Hz: n = 8; females WT

H2O: n = 22, WT Caff: n = 13, A1R Hz: n = 8).

Found at: doi:10.1371/journal.pone.0003977.s001 (3.52 MB TIF)
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