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Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool
in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for
human observers. To aid the image analysis process, we apply supervised and unsupervised pattern
recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI
data. These techniques represent an important component of future sophisticated computer-aided
diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-
MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the
heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal
kinetics. They also provide a regional subclassification of pathological breast tissue, which is the
basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to
have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate
breast lesions by non-invasive imaging.
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1 Introduction
Breast cancer is the most common malignant disease among women, but has an encouraging
cure rate if diagnosed in an early stage. Thus, early detection of breast cancer continues to be
the key for effective treatment. Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) has become a valuable tool for detection, diagnosis and management of breast
cancer [1–3]. Yet, interpretation of the multitemporal 3D image data poses new challenges to
radiologists.

Email address: t.twellmann@tue.nl (Thorsten Twellmann).
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Eng Appl Artif Intell. Author manuscript; available in PMC 2009 March 1.

Published in final edited form as:
Eng Appl Artif Intell. 2008 March ; 21(2): 129–140. doi:10.1016/j.engappai.2007.04.005.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In DCE-MRI, multiple 3D T1-weighted magnetic resonance (MR) images of both breasts are
acquired over a period of five to nine minutes while a contrast agent (CA) passes through the
breast tissue. A typical sequence of images consists of one precontrast image acquired before
injection of a CA bolus and a series of postcontrast images recorded afterwards over 1. Thus,
a time–series signal, i.e. a vector reflecting the local signal intensities at the time points of
image acquisition, is associated with each voxel. Due to characteristic changes in the structure
of benign and malignant tissue influencing the flux of CA molecules between the blood pool
and tissue, characteristic time–series signals can be observed for different tissue types.
Interpretation of these time-series signals allows for detecting cancer with high sensitivity,
even in the radio-opaque breast of young women, as well as for assessing the type of disorders
in a non-invasive fashion. However, while the presence of a suspicious tissue disorder can
already be identified by means of a strong signal enhancement in an early postcontrast image,
the course of the entire time–series signal has to be considered for differentiating benign and
malignant tissue (Figure 1) 2 [4].

In conventional X-ray mammography, computer-aided diagnosis (CAD) systems are being
developed to expedite diagnostic and screening activities and are today moving from research
to application in daily clinical practice. With breast cancer being an issue of enormous clinical
importance with obvious implications to healthcare politics, much effort is spent today on
research of similar techniques to aid or even automate diagnosis in breast MRI. The computer
assisted interpretation of time–series signals as measured during a DCE-MRI examination for
each image voxel represents one of the major steps in designing CAD systems for breast MRI.
Kuhl et al. have shown that the shape of the time–series signals represents an important criterion
in differentiating benign and malignant masses [4]. The results indicate that the enhancement
kinetics, as represented by the time–series signals visualized in Figure 2, differ significantly
for benign and malignant enhancing lesions and thus represent a basis for differential diagnosis:
Plateau or washout-time courses (type II or III) prevail in cancerous tissue. Steadily progressive
signal intensity time courses (type I) are exhibited by benign enhancing lesions, albeit these
enhancement kinetics are shared not only by benign tumors but also by fibrocystic changes.

Even though the time–series signals enable radiologists to infer information about the tissue
state, assessing the signal characteristics is a time-consuming task which needs experience and
expertise. It becomes further complicated due to the heterogeneity of lesion tissue causing the
signal characteristics to vary spatially. Also these spatial variations of signal characteristics
reflect specific tissue properties and should be taken into account for assessing the state of
lesions. Different computerized approaches have been proposed for enhanced visualization of
the multitemporal image data, facilitating the assessment of the spatio-temporal appearance
patterns of lesions. Pixel-mapping functions are used to map individual time–series signals to
pseudo-colors which reflect dedicated features of the temporal signal. These signal features
are derived from explicit mathematical models of the time–series signals, like in the three–
time–points (3TP) method [14] illustrated in Figure 3, or from more sophisticated
pharmacokinetic models [16–18] describing the exchange of CA molecules between tissue
compartments over time. Beside these model-based approaches, an increasing number of
applications apply pattern recognition methods to extract and to visually appreciate clinically
relevant information [5–11,13]. The conceptual difference between the application of pattern
recognition methods like artificial neural networks or machine learning algorithms and model-
based approaches is that the latter presuppose explicitly formulated models of the signal
domain, while in the former implicit signal models are derived during a data-driven adaptation
process from the measured data themselves.

1The exact number of postcontrast images and their temporal spacing depends on the imaging protocol and typically varies from clinical
site to site.
2Color figures are also provided in digital form in a supplemental PDF file.
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In this article, two approaches for computing enhanced visualizations of lesions based on
supervised and unsupervised pattern recognition techniques are investigated. The proposed
approaches focus strictly on the observed MRI time–series signals and allow for an initially
model–free and data–driven segmentation of manually marked region-of-interests (ROIs)
enclosing suspiciously enhancing areas of tissue. Automatic selection of such ROIs is possible
(see e.g. [26,12]), but not in the scope of this work. The time–series signals underlying the
marked voxels are analyzed with respect to fine–grained differences in the amplitude and
dynamics. In the supervised approach, the signals are classified by a multi-class support vector
machine (MSVM) into a set of predefined tissue classes. In the unsupervised approach, a fuzzy-
clustering (FC) based on deterministic annealing is applied for grouping voxels with respect
to similarities between the underlying time–series signals. In either case, the outcome of the
voxel-by-voxel assessment of tissue is depicted as a pseudo-color overlay e.g. in the precontrast
image. Therewith, temporal and spatial tissue characteristics of individual voxels or larger
segments can be observed by means of a single 3D color image.

The inspection of these pseudo-color images represents an unique practical tool for
radiologists, enabling fast scans of data sets for regional differences or abnormalities of tissue
enhancement and, therewith, contributes to the diagnosis of indeterminate breast lesions by
non-invasive imaging.

2 Materials and Methods
2.1 Patients

A total of 12 female patients (age range with 48–61) with solid breast tumors were examined.
All patients had histopathologically confirmed diagnosis from needle aspiration/excision
biopsy and surgical removal. Table 1 shows the histopathologic classification and the size of
the lesions for the six women with malignant tumors and six women with benign lesions.

2.2 MR Imaging
MR imaging was performed with a 1.5 T system (Magnetom Vision, Siemens, Erlangen,
Germany) equipped with a dedicated surface coil to enable simultaneous imaging of both
breasts. The patients were placed in a prone position to minimize motion artifacts. Only data
sets that do not require additional registration, i.e. show a suffcient anatomical alignment over
time, are considered in this study. First, transversal images were acquired with a STIR (short
TI inversion recovery) sequence (TR=5600 ms, TE=60 ms, FA=90°, IT=150 ms, matrix size
256×256 pixels, slice thickness 4 mm). Then a dynamic T1-weighted gradient echo sequence
(3D fast low angle shot sequence, TR=12 ms, TE=5 ms, FA=25°) was performed in transversal
slice orientation with a matrix size of 256×256 pixels and an effective slice thickness of 4 mm.

The dynamic study consisted of nS = 6 measurements with an interval of 110 s. The first image
was acquired before injection of a paramagnetic contrast agent (Gadopentatate dimeglumine,
0.1 mmol/kg body weight, Magnevist™, Schering, Berlin, Germany) immediately followed
by the 5 other measurements. The initial localization of suspicious breast lesions was performed
by inspection of the subtraction image based on the first and fourth acquisition.

The following preprocessing steps are applied before evaluation of the time–series signals with
one of the pattern recognition techniques: For the fuzzy clustering, each time–series signal s
is transformed into a relative enhancement curve (REC), resembling the signal representation
that is commonly used for manual signal evaluation in a clinical setting. The signal values are
normalized with respect to the first (the precontrast) signal value s0 leading to the corresponding
feature vector x ∈ X with
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(1)

The multi-class support vector machine is applied to two different types of signal
representations. Next to the unprocessed time–series signal, referred to as raw feature, the
allratios feature representation is considered consisting of all possible combinations of two
signal values measured at different time points.

2.3 Unsupervised Clustering of Time–Series Signals
The employed unsupervised vector quantization (VQ) algorithm – a fuzzy clustering based on
deterministic annealing – is based on grouping of image voxels according to the similarity of
the associated time–series signals.

Let nS denote the number of subsequent scans in a DCE-MRI study, and let nK denote the
number of voxels in the marked ROIs. The time–series signals of the nK voxels, respectively
their representations as RECs, can be considered as a distribution of points in a nS-dimensional
feature space X. Cluster analysis groups voxels together based on the similarity of their intensity
profiles in time, i.e. their Euclidean distance in X. Therewith, the entire feature space is
partitioned into clusters based on the proximity of the input data. These groups or clusters are
represented by prototypical time–series signals called codebook vectors (CV) located at the
center of the corresponding clusters. The CVs represent prototypical time–series signals each
related to a cluster of voxels sharing similar temporal characteristics.

VQ represents a fast clustering technique for feature vectors describing time–series signals in
breast MRI. The cluster centers represented by the codebook vectors wi are determined by an
iterative adaptive update based on the equation [19]

(2)

where ε(t) represents the learning parameter, ai a codebook C(t) = {wi(t)} dependent
cooperativity function, κ a cooperativity parameter, and x(t) a feature vector randomly chosen
at iteration t.

In this paper, a fuzzy clustering based on deterministic annealing [20,21] is employed for
clustering time–series signals. Its update equation for the CVs can be derived from equation
(2). The cooperativity function ai is given by

(3)

with ρ(t) being the time dependent ”fuzzy range” of the model, which defines a length scale
in X and which is annealed to repeatedly smaller values in the course of the training. In parlance
of statistical mechanics, ρ represents the temperature T of a multiparticle system by T = 2ρ2.
This cooperativity function is the so–called softmax activation function, and accordingly the
outputs lie in the interval [0,1] and sum up to one.

The resulting learning rule for fuzzy clustering based on deterministic annealing is given as

(4)
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This learning rule describes a stochastic gradient descent on an error function which is a free
energy in a mean–field approximation. The algorithm starts with one cluster representing the
center of the whole data set. As ρ decreases during the annealing process, the VQ procedure
undergoes a sequence of cluster splitting phase transitions, until a fine–grained partition of the
data space is achieved. Cluster splitting occurs when a minimum of the error function (or free
energy in a mean-field approximation) is transformed into a saddle point within the annealing
process of the cooperativity parameter ρ. This parameter determines the amount of smoothing:
for high values of ρ the clustering cost function contains only one global minimum, while for
low values, the structure of the original cost function is reflected by the free energy. Thus for
ρ → ∞, the free energy equals almost the original form of the clustering cost function. The
repetitive cluster splitting assembles in the course of simulations a tree of codebook vectors
and its resolution can be adapted according to the observer’s needs. This represents a major
advantage over fuzzy c–means clustering since this algorithm does not employ prespecified
number of cluster codebook vectors.

The clustering procedure identifies groups of pixels sharing similar properties of signal
dynamics, and thus enables the interpretation of the physiological part of the experiment. The
main differences between this method and Kohonen’s map are, as pointed in [21]: (1) the
hierarchical and multiresolution aspect of data analysis, (2) monitoring based on different
control parameters (free energy, entropy) facilitates straightforward cluster splitting, and (3)
the learning rule based on a stochastic gradient descent on an explicitly given error function
[27].

The exact number of clusters is usually determined by cluster validity techniques. In general,
the higher the number the finer–grained the analyzed ROI is partitioned, however at the expense
of an increase in signal noise susceptibility, while a lower number leads to an oversight of
pertinent information. In our study, we have experimented with different cluster numbers
ranging from 4 to 8. Our simulation results demonstrated that four clusters are adequate for a
correct identification of the time–signal intensity curve types.

2.4 Classification of Time–Series Signals
In the unsupervised analysis of lesions, the grouping of time–series signals is solely determined
by their distribution in X, and the diagnostic meaning of each signal cluster has to be determined
after adaptation by interpreting the corresponding CVs. In contrast to that, supervised methods
allow for classification of time–series signals into a predetermined set of signal classes given
by a labeling of the training data by e.g. a human expert. Typically, each signal class reflects
a certain tissue type or state, so that pseudo-color visualizations of the classification outcome
are linked to a clear diagnostic meaning.

For the classification of DCE-MRI time–series signals we use the support vector machine
(SVM) algorithm [23,22]. The SVM has been successfully applied to a wide range of
classification problems and is employed for mapping DCE-MRI time–series signals to discrete
class labels respectively to vectors of confidence values reflecting the probabilities of
membership in the considered classes.

The basic idea of the SVM algorithm is to construct a hyperplane
(5)

with normal vector w ∈ X and bias b, which separates the labeled training data into two classes
with maximum-margin: given a set of N labeled training examples {(x; y)i}; i = 1,…,N, xi ∈
X belonging to two different classes yi ∈ {−1, 1}, a maximum-margin hyperplane is determined
which separates the training examples of the two different classes so that the distance between
the hyperplane and the closest examples, the margin γ, is maximized. This hyperplane is fully
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specified by a subset of the training examples representing those points that lie closest to the
decision surface and pose the biggest challenge in terms of classification.

Formally speaking, the margin  of the hyperplane (5) is maximized by solving the
following constrained optimization problem:

(6)

(7)

This optimization problem is solved by employing the Lagrange-theory, leading to the
maximum-margin hyperplane normal vector

(8)

with αi being the Lagrange-coefficients. In practice, the decision function

(9)

is frequently determined by only a small subset of training examples with αi > 0, the so called
support vectors, while the remaining examples with αi = 0 can be neglected.

If the two classes are not linearly separable, two modification are commonly made to the
original optimization problem. First, the constraints (7) are relaxed by introducing slack
variables ξi:

(10)

(11)

(12)

This soft-margin formulation of the support vector machine allows to tolerate a ceratin amount
of margin violations, controlled by the regularization parameter C, and leads to reasonable
linear classification functions even in the presence of noise or class overlap.

The second modification introduces a non-linear transformation of the data. The inner products
xi · xj are replaced by a kernel function K(xi, xj) = Φ(xi) · Φ(xj), evaluating the inner product
between two examples after transformation by a nonlinear function Φ(x). The hyperplane is
now optimized in a new feature space and corresponds to a nonlinear decision function in the
original data space. A frequently used nonlinear kernel function is the Gaussian kernel

(13)

In practice the regularization parameter C and the kernel bandwidth σ are varied in a wide
range of values and the optimal performance is assessed on a separate validation set or using
the cross-validation technique [22].

Solving multi-class problems with the SVM algorithm requires a suitable decomposition of
the classification task into a sequence of binary subtasks, which each can be handled by
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employing the standard SVM algorithm. The outputs of the binary classifiers are then
recombined to the final multi–class prediction of the multi-class SVM (MSVM).

For the classification task at hand, three different tissue classes have to be distinguished. Each
tissue class is considered in one of the binary subtasks as the target class to be distinguished
from the union of the remaining classes (one-vs-all decomposition scheme). The MSVM then
returns three-dimensional vectors with components reflecting the outcomes 
of the three binary SVMs. In order to increase the interpretability of the classification outcome,
it is transformed into posteriori probabilities by postprocessing with a parameterized softmax-
function

The parameters  are estimated by minimizing the cross-entropy error on a subset of the
training data.

2.4.1 Training Data—Training examples for benign time–series signals are sampled from a
set of lesions which were manually segmented by a radiologist and subsequently classified as
benign according to the outcome of a histological examination. Training examples for
malignant time–series signals are sampled from histologically classified malignant lesions,
whereas examples for normal tissue are randomly selected from unmarked voxels. Because
the histopathological classification can only be related to the entire lesion and provides no
detailed information about the signal characteristics of individual lesion voxels, a certain
overlap between the classes of benign and malignant training signals has to be assumed.

2.4.2 Evaluation—To evaluate the classifications of time–series signals associated with
lesion voxels, a jackknife evaluation scheme is employed to the pool of 12 cases. The MSVM
is adapted with a balanced set of labeled training examples sampled from eleven DCE-MRI
data sets and subsequently applied for classification of time–series signals of the lesion in the
excluded twelfth image sequence. This leave-one-case-out scheme is repeated twelve times so
that each sequence is excluded for testing once. Pseudo-color visualizations of the excluded
lesion are computed by displaying each lesion voxel with a RGB color reflecting the three-
dimensional vector of posteriori probabilities resulting from the classification of the underlying
time–series signal. Next to the MSVM with linear kernel function (MSVM-L), application of
the MSVM with the nonlinear Gaussian kernel function (MSVM-G) is considered.

Due to the lack of a reference label reflecting the biological truth for each individual lesion
voxel, the outcomes of the MSVM are compared with those of the 3TP technique, representing
a clinically relevant and accepted diagnosis protocol. MSVM based visualizations are collated
with those computed with 3TP, and a class label derived from the color hue assigned by 3TP
to each lesion voxel serves as a ground truth for a quantitative evaluation of the MSVM based
signal classification.

3 Visualization Results Based on Classification and Unsupervised Clustering
Techniques
3.1 Results for Unsupervised Clustering of Time–Series Signals

In the following, we will present the segmentation method for the evaluation of time–series
signals for the differential diagnosis of enhancing lesions in breast MRI.
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A carefully chosen circular ROI is defined by taking into account the voxels whose intensity
uptakes are above a radiologist defined threshold (> 50%) in the early postcontrast phase. The
specific choice of this threshold is motivated by the relevant literature, e.g. [24], where the
probability of missing malignant lesions by excluding regions with a relative signal increase
of less than 50% is considered negligible. For all voxels belonging to this ROI an average time–
series signal is computed. This averaged curve is then rated. This simple method is fast but is
threshold–limited. A detailed analysis of the intensity curves of all voxels is then performed
by the fuzzy clustering technique based on deterministic annealing as a chosen clustering
method.

The obtained time–series signals of enhancing lesions were presented as relative enhancement
curves together with the corresponding quantities initial signal change (sai), i.e., the signal
change (in percent) between the precontrast and second postcontrast image, and the postinitial
signal change (svp) reflecting the signal change between the third and last postcontrast image
(see e.g. Fig. 4–6). The diagrams were presented to two experienced radiologists who were
blinded to any clinical or mammographic information of the patients. The radiologists were
asked to rate the time courses as having a steady, plateau, or washout shape – type I, II, or III,
respectively [4].

The classification of the lesions on the basis of the time course analysis was then compared
with the lesions definitive diagnosis. The definitive diagnosis was obtained histologically by
means of biopsy or by means of follow–up in the cases that, on the basis of history, clinical,
mammographic, ultrasound, and breast MR imaging findings, were rated to be probably benign.

Figure 4–Figure 6 exemplify visualizations based on the outcome of the unsupervised
segmentation for one benign and two malignant lesions. The images show the cluster
distribution for the given slices and at the same time the corresponding time–series signal
prototype for each cluster. Thus, a very accurate representation is obtained revealing the
nuances in tissue transition.

The shown images demonstrate clearly that the presented method, combining cluster analysis
besides conventional method of thresholding, allows for detecting lesions and analyzing their
architecture. The major advantage of the method is given by a differentiated examination of
tissue changes yielding to an increase in sensitivity of breast MRI with respect to malignant
lesions. Previous results of classification based either on the conventional method of
thresholding or on clustering of the whole breast voxels proved to lack this capability [25].

3.2 Results for Classification of Time–Series Signals
The following figures exemplify the pseudo-color visualization of manually selected ROIs
using classification. Figure 7 depicts three different types of pseudo-color visualizations of the
lesion of case B1. In the four adjacent image slices, only lesion voxels as marked by the
radiologist are displayed with pseudo-colors. Non-lesion voxels are depicted with signal
intensities of the precontrast image. In the left 2 × 2 image matrix, pseudo-colors reflect the
continues values of posteriori probabilities P(classk|x) for the three tissue classes classk ∈
{malignant, normal, benigng} Thus, bright red, green and blue voxels suggest high local
probabilities of malignant, normal and benign tissue, respectively. Combination of the three
colors are indicative of tissue exposing time–series signals with less distinct signal
characteristics. A tissue classification according to the maximum posteriori probability
(red=malignant, green=normal, blue=benign) is depicted in the middle 2 × 2 matrix of images.
In order to demonstrate that the MSVM based approach, although not presupposing any model
assumptions about the signal, leads to a reasonable assessment of lesion voxels, the 3TP based
pseudo-coloring of the lesion is displayed in the right 2 × 2 image matrix. The same types of

Twellmann et al. Page 8

Eng Appl Artif Intell. Author manuscript; available in PMC 2009 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



pseudo-color images are shown for the benign case B4 and for the three malignant cases M1,
M4 and M6 in Figure 8, Figure 9, Figure 10 and Figure 11, respectively.

The pseudo-color visualizations of all five lesion accentuate the heterogeneity of lesion tissue,
stressing the requirement to analyze the enhancement kinetic of subregions of lesions instead
of whole-lesion ROIs. Lesion segments with different signal characteristics can be easily
identified by means of collections of voxels displayed with similar pseudo-colors.

A comparison of the pseudo-color visualizations based on the MSVM with those based on 3TP
suggests a high concordance between both techniques regarding the localization of voxels
exposing benign (blue) and malignant (red) signal characteristics. Tissue compartments
displayed bright green by 3TP, suggesting strong uptake but indistinct wash-out characteristics
of the underlying signals, are depicted purple in the MSVM based pseudo-color images.

3.2.1 Quantitative Evaluation—For assessing the classification performance of the
MSVM quantitatively, the MSVM based voxel classification is compared with a reference
label derived from 3TP. All voxels marked by the radiologist exhibit a significant signal
enhancement and have to be regarded as suspicious lesion voxels. The marked voxels can be
further subclassified into three tissue classes according to the color hue of the pseudo–color
assigned by 3TP: red, blue and green voxels indicate malignant, benign and suspicious (with
indistinct wash–out characteristics) time–series signals, respectively.

For the suspicious signal class of 3TP, no counterpart is provided by the MSVM. Nevertheless,
to be able to assess the MSVM classification on the basis of the available ground truth, a 3 ×
3 cost matrix (Table 2) is elaborated assigning a specific non-negative cost value to each pairing
of 3TP (malignant, suspicious, benign) and MSVM (malignant, normal, benign) decision. The
costs associated with a ”normal” classification of time–series signals by the MSVM are two,
regardless of the 3TP outcome; all voxels have been marked by the radiologist as belonging
to a lesion and thus have to be classified either as malignant or benign. The costs associated
with the misclassification of benign as malignant and vice versa are assigned a value of one.
There is zero costs if both techniques agree in their classification of signals as malignant or
benign, or if a signal which is classified by 3TP as suspicious with indistinct wash–out (green)
is rated as malignant or benign by the MSVM.

For each of the twelve lesions, a 3×3 confusion matrix is computed by counting how often the
different decision pairings occur. Then, the costs for classifying the lesion voxel with MSVM
are determined by adding up the entries of the confusion matrix multiplied by the corresponding
entries of the cost matrix. The final sum is normalized by the corresponding maximum possible
cost, which is computed as the maximum entry of the cost matrix multiplied by the number of
lesion voxels. The caused costs are visualized as a box plot in Figure 12. According to the
medians and interquartile ranges, the best results are obtained for the MSVM–L by evaluating
the raw–feature or allratios–feature representation of time–series signals. The median costs
caused by classifying the twelve lesions with the MSVM-L are lower than that of the MSVM-
G. Additionally, the costs for the individual lesions are much more concentrated around the
medians indicating a lower inter-patient variance in the MSVM-L based cost values.

The qualitative and quantitative results for the comparison of the supervised tissue
classification with those of 3TP have to be interpreted with care. Even though 3TP is a clinically
accepted method for analyzing lesions in DCE-MRI data sets, it does not necessarily reflect
the true tissue state. Thus, it is questionable whether a perfect conformance between the MSVM
and 3TP is desirable. Nevertheless, the comparison with 3TP illustrates how well the MSVM
performs compared with an established and clinically applied technique. A more detailed
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analysis of the tissue classification requires, e.g., a histopathologically validated voxel labeling,
which is difficult to obtain.

4 Conclusion and Discussion
We presented two different approaches for accentuating the spatio-temporal appearance pattern
of lesions in DCE-MRI studies of breasts. Both techniques lead to visualizations of temporal
image sequences in which the pseudo-color of voxels reflects the temporal characteristic of
the underlying tissue. Therewith, subregions with different enhancement kinetics can be
identified by means of a single 3D color image, exposing important information about the
lesion architecture by the topological pattern of different tissue types in the heterogenous lesion
tissue. Unlike the model-based 3TP method which only permits to consider data from one
precontrast and two postcontrast images, the proposed techniques are capable of exploiting the
information of the entire time–series signals. In consideration of the fact that a wide range of
imaging protocols with different spatial and temporal resolutions are used in clinical practice,
this flexibility with respect to the input data is a beneficial feature of the adaptive approaches.

The unsupervised approach can directly be adapted on the time–series signals of the DCE-MRI
study under investigation, which avoids the requirement of a larger set of (labeled) training
data. Furthermore, readaptation of the code-book vectors for each new patient allows for taking
into account interpatient variabilities of the signal data caused by e.g. variations in the
placement of patients in the scanner. However, the diagnostic meaning of the pseudo-colors
reflecting cluster indices may vary from patient to patient, and radiologists have to interpret
the codebook vectors for each case anew. At the expense of the requirement of a sufficient set
of labeled training data, the pseudo-colors derived from the supervised classifier reflect definite
signal characteristics. Application of both methods to patient data does not delay the diagnosis
process. The training of the supervised approach with data from several labeled cases has to
be executed only once, and evaluation of lesions of average size takes less than a minute. The
unsupervised approach has to be retrained for each new case, but the adaptation is fast due to
the typically small ROIs.

Future work will concentrate on establishing a ”digital atlas” for different lesion types as it
was demonstrated in traditional digital mammography. The assessment of the morphology in
addition to the temporal kinetics of lesions in a computerized fashion offers potential for
substantial improvements in diagnostic accuracy and efficiency.

To extend this idea to breast MRI, we need to develop mathematical descriptors for the different
morphologies, e.g., by employing shape models. Based on the combination of descriptors for
the temporal and spatial tissue characteristics, we will obtain a lesion classification and also a
similarity ranking within the medical image database. In summary, compact and efficient shape
descriptors will improve the quality of breast MR data analysis and implicitly that of existing
CAD systems beyond the current level.
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Fig. 1.
Example slices showing the enhancement of lesion tissue over time. The upper left image shows
a typical field-of-view as it is used for simultaneous imaging of both breasts. The position of a
region-of-interest (ROI) in the right breast is depicted by a white box. The white circle indicates
the position of the lesion, which segmentation is presented in white. The remaining images
show a magnified view of the ROI in the precontrast (upper right), first postcontrast (lower
left) and fifth postcontrast (lower right) image. The lesion exposes a heterogeneous
enhancement pattern: the intensity of the tissue in the lesion center continuously increases over
time, whereas tissue at the lesion border reaches its peak intensity in the early postcontrast
image and exposes lower intensity values in the late postcontrast image. These subtle
differences in the temporal characteristics of the tissue are difficult to recognize in the original
images but nevertheless important for the differential diagnosis of tumors.
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Fig. 2.
Schematic drawing of the three types of time–series signals according to Kuhl et al. [4]. Type
I corresponds to a straight (Ia) or curved (Ib) line; enhancement continues over the entire
dynamic study. Type II is a plateau curve with a sharp bend after the initial upstroke. Type III
is a washout time course. For visual inspection, the time–series signals are typically displayed
as relative-enhancement curves depicting the signal enhancement with respect to the signal
intensity in the precontrast image.
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Fig. 3.
Model-based 3TP method [14,15] as the basis for pseudo-coloring of lesions voxels: the
intensity of the pseudo-color represents the amount of signal uptake between the precontrast
and the early postcontrast image. The presence or absence of a wash–out is associated with the
color hue, yielding thus a simple lesions’ evaluation method which is capable to integrate
information from exactly one precontrast and two postcontrast images.
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Fig. 4.
Segmentation method applied to data set B1 (benign lesion, fibroadenoma) and resulting in
four clusters. The left image shows the cluster distribution for each slice ranging from 21 to
23. The right image presents for each cluster the representative time–series signal (displayed
as relative enhancement curves) and the corresponding quantities initial signal change (sai)
and postinitial signal change (svp). The pseudo-color images indicate strong and steady
enhancing tissue in the lesion center and weakly enhancing tissue at the lesion border,
suggesting an overall benign lesion.
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Fig. 5.
Segmentation method applied to data set M1 (multilocullar recurrent ductal carcinoma) with
four clusters. The left image shows the cluster distribution for each slice ranging from 13 to
16. The right image presents for each cluster the representative time–series signal (displayed
as relative enhancement curves) and the corresponding quantities initial signal change (sai)
and postinitial signal change (svp). The pseudo-color images indicate a lesion core of malignant
tissue exposing signals with strong uptake and distinct wash-out characteristics.
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Fig. 6.
Segmentation method applied to data set M3 (malignant lesion, ductal carcinoma in situ) and
resulting in four clusters. The left image shows the cluster distribution for each slice ranging
from 6 to 8. The right image presents for each cluster the representative time–series signal
(displayed as relative enhancement curves) and the corresponding quantities initial signal
change (sai) and postinitial signal change (svp). The pseudo-color images indicate a lesion
core of malignant tissue exposing signals with a strong uptake but weak wash-out. Voxels at
the lesion margin expose persistently enhancing time–signal intensity curves.
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Fig. 7.
Four different image slice showing the benign lesion B1 (fibroadenoma) with pseudo-colors
reflecting the local probability of malignant, benign and normal tissue (left 2 × 2 image matrix)
or the local tissue classification as malignant (red), normal (green) or benign (blue) tissue
(middle 2 × 2 image matrix). The 3TP based visualization of the lesion is presented in the right
2 × 2 image matrix. Both techniques indicate benign tissue (blue) in the lesion center. Tissue
rated as suspicious by 3TP (green) is displayed with shadings of purple and red in the MSVM
based visualization, also indicating suspicious signals with no distinct benign or malignant
signal characteristics.
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Fig. 8.
Same pseudo-color visualizations as described in Figure 7 but for the benign lesion B4 (lymph
node). Both techniques are concordant in the assessment of benign tissue regions. Voxels of
suspicious tissue (3TP: green) are displayed with shadings of purple by the MSVM.
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Fig. 9.
Four adjacent image slices showing the malignant lesion M1 (ductal carcinoma) with pseudo-
colors reflecting the local probability of malignant, benign and normal tissue (left 2 × 2 image
matrix) or the local tissue classification as malignant (red), normal (green) or benign (blue)
tissue (middle 2 × 2 image matrix). The 3TP based visualization of the lesion is presented in
the right 2 × 2 image matrix. Both techniques indicate the same signal characteristics for most
voxels.
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Fig. 10.
Same pseudo-color visualizations as described in Figure 10 but for the malignant lesion M4
(multilocullar ductal carcinoma). All types of pseudo–color visualizations expose the
heterogenous structure of the lesion tissue, with malignant tissue areas at the lesion margin and
tissue with benign signal characteristics in the core and right part of the lesion.
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Fig. 11.
Same pseudo-color visualizations as described in Figure 10 but for the malignant lesion M6
(ductal carcinoma). Both techniques indicate two regions exposing either benign or malignant
time–series signals.
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Fig. 12.
Box plot of the misclassification costs obtained for the MSVM based classification with
different feature sets (raw, allratios) and different kernels (MSVM-L, MSVM G). For each
combination, the median (bold line), middle half of the sample (color filled box), and extreme
values (whiskers) are presented. For the MSVM with linear kernel and allratios-feature, one
case deviating more than 1.5 box length from the end of the box is identified as an outlier.
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Table 1
Histopathologic lesion classification of the twelve cases. The lesions’ size is measured as number of voxels which have
been conventionally marked by a radiologist.

ID Lesion classification Size
B1 fibroadenoma 169
B2 fibrous mastopathy 497
B3 scar 26
B4 lymph node 113
B5 granuloma with signs of inflammation 99
B6 chronic mastitis 25
M1 DC (ductal carcinoma) 207
M2 scirrhous carcinoma 49
M3 DCIS (ductal carcinoma in situ) 49
M4 status post mastectomy, multilocullar recurrent DC 169
M5 ductal papillomatosis, transition into papillary carcinoma 169
M6 DC 284

Eng Appl Artif Intell. Author manuscript; available in PMC 2009 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Twellmann et al. Page 26

Table 2
Cost matrix representing the loss associated with the different pairings of MSVM and 3TP decisions.

MSVM
Malignant Normal Benign

Malignant 0.0 2.0 1.0
Suspicious 0.0 2.0 0.0

Benign 1.0 2.0 0.0
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