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Abstract
Genotyping errors that are undetected in genome-wide association studies using single nucleotide
polymorphisms (SNPs) may degrade the likelihood of detecting true positive associations. To
estimate the frequency of genotyping errors and assess the reproducibility of genotype calls, we
analyzed two sets of duplicate data, one dataset containing twenty blind duplicates and another dataset
containing twenty-eight non-random duplicates, from a genome-wide association study using
Affymetrix GeneChip® 100K Human Mapping Arrays. For the twenty blind duplicates the overall
agreement in genotyping calls as measured with the Kappa statistics, was 0.997, with a discordancy
rate of 0.27%. For the twenty-eight nonrandom duplicates, the overall agreement was lower, 0.95,
with a higher discordancy rate of 4.53%. The accuracy and probability of concordancy were inversely
related to the genotyping uncertainty score, i.e., as the genotyping uncertainty score increased, the
concordancy and probability of concordant calls decreased. Lowering of the uncertainty score
threshold for rejection of genotype calls from the Affymetrix recommended value of 0.25 to 0.20
resulted in an increased predicted accuracy from 92.6% to 95% with a slight increase in the “No
Call” rate from 1.81% to 2.33%. Hence, we suggest using a lower uncertainty score threshold, say
0.20, which will result in higher accuracy in calls at a modest decrease in the call rate.
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1. Introduction
Genotyping of single nucleotide polymorphisms (SNPs) is becoming increasingly affordable
and efficient and, hence, SNPs are being used as genetic markers in genetic linkage and
association studies (Collins et al., 1997). An error in genotyping occurs when the observed
(“called”) genotype of an individual is different from the true unknown genotype (Bonin et al.,
2004). Random genotyping errors can lead to loss of power to determine genetic associations,
by biasing results towards the null hypothesis (Gordon et al., 2002; Mote and Anderson,
1965). Genotyping errors are less likely to cause false-positive results since genotyping errors
and missing data should affect cases and controls similarly/equally (Hirschhorn and Daly,
2005). Simulation studies show that the effect of genotype errors on linkage disequilibrium
analysis can be serious even if the error rate is low (< 3%) (Akey et al., 2001). In most studies,
the called genotype is taken to be the true or correct genotype when fitting a statistical model
to assess genetic associations. Methods to incorporate genotype error into the statistical
association analysis can be applied in large scale whole–genome association analysis with
many thousands of SNPs (Gordon and Ott, 2001; Gordon et al., 2004; Gordon et al., 2007;
Hao and Wang, 2004; Rice and Holmans, 2003; Sobel et al., 2002; Tintle et al., 2007), where
genotyping errors may be more pronounced than in candidate gene association studies. In
addition, erroneous genotype calls can result in possible bias when samples with a particular
genotypes are more often misclassified or result in a no call for the genotype, as is seen often
with heterozygotes (Hirschhorn and Daly, 2005; Miller et al., 2002).

A possible difficulty arises in case-control studies when the cases and controls are ascertained
at different times, such that DNA processing may not be similar between cases and controls
with differential misclassification errors (Rebbeck et al., 2004). To assess genotyping errors,
a standard laboratory practice would be to genotype blind duplicate samples to assess error
rates and reproducibility of genotype calls. Pompanon et al (2005) (Pompanon et al., 2005)
outline a number of methods to quantify error rates, some including mean error rate per allele
and error rate per reaction.

This paper will illustrate results for reproducibility and accuracy of genotype calls for
Affymetrix GeneChip® 100K Human Mapping Array Set based on 20 blind duplicate samples
and 28 non random duplicate samples that were re-genotyped (due to low initial call rates) in
a pharmacogenomic study of antihypertensive drug response.

2. Materials and Methods
Sample selection

The data for this study were derived from samples collected in the Genetic Epidemiology of
Responses to Anti-hypertensives (GERA) study. The initial objective was to determine whether
polymorphisms in candidate genes of the renin-angiotensin-aldosterone system predict inter-
individual differences in BP response to a thiazide diuretic (i.e.,, hydrochlorothiazide) in
hypertensive African-Americans from Atlanta GA (n = 300) and non-Hispanic whites from
Rochester MN (n = 300). (Chapman et al., 2002)

We subsequently undertook a genome-wide search for pharmacogenetic loci influencing BP
response in the 200 "best" responders and the 200 "worst" responders (i.e., non-responders) to
hydrochlorothiazide. "Good" and "bad" responders to diuretic therapy were identified from
opposite tails of the respective ethnic-and-gender specific distributions of diastolic BP
response. Before selecting the best and worst responders, the ethnic-and-gender specific
distributions of diastolic BP response were adjusted to remove variation attributable to
differences in age and pretreatment level of diastolic BP(Chapman, et al., 2002).
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Between February, 2004 and December, 2005 genomic DNA samples from 194 African-
Americans and 195 non-Hispanic whites were successfully genotyped using the Affymetrix
GeneChip® Human Mapping 100K Array Set in collaboration with the Genotyping Shared
Resource facility at the Mayo Clinic, Rochester MN. In the course of this effort, 28 samples
were re-genotyped because of low call rates on an initial run, and 20 "blind duplicate" samples
(10 African-Americans, 10 European Americans) were re-genotyped by completing the entire
assay on two separate occasions with the laboratory personnel blinded to the identity of the
DNA source. This study design of having duplicates allows assessment of random genotyping
errors.

Genotyping
Genotyping was performed using the GeneChip® Human Mapping 50K Xba1 array and the
50K HindIII array following Affymetrix’s recommendations. Genomic DNA controls
provided by the manufacturer were used as a routine experimental positive control and for
troubleshooting. In addition, several quality control parameters were routinely monitored to
reduce the assay failure rate. Specifically, after PCR was performed, we required amplification
of fragments up to 2 kb to be observed for samples to be hybridized to arrays.

The probe arrays were scanned after the staining and washing protocols were completed. Raw
data were acquired from the scanner using the GCOS software (.dat and .cel files) and
transferred to the GeneChip® Genotyping Analysis Software (GTYPE) for generation the SNP
genotype calls (.chp file) and the uncertainty score for each SNP genotype call. Each SNP is
represented on the arrays by 40 probes organized into ten quartets consisting of perfect-match
and mismatch pairs for both alleles. Using a model-based genotyping algorithm motivated by
the work of Cutler and colleagues (Cutler et al., 2001; Di et al., 2005), the DM algorithm
calculates the log-likelihood of the possible genotype models (homozygote A or B,
heterozygote AB, and null (i.e., "no call") according to hybridization intensity patterns
observed in the quartets. For each quartet and model, log-likelihood ratios are determined by
comparing the log-likelihood of one model to the highest log-likelihood of the other three
models.

The Wilcoxon signed rank test is applied to the log-likelihood ratios of all ten quartets to
compute uncertainty scores (i.e., p-value) for each model and the model with the most
significant score is called as the genotype. The uncertainty score provides a statistical
assessment of call reliability. Imposing uncertainty score cutoffs filters out potentially
erroneous calls as "no-calls." Unlike the classification-based algorithm previously
implemented, (Liu et al., 2003) the DM-based algorithm does not require prior training and
enables accurate scoring of SNPs with low (<5%) minor allele frequency (MAF), for which
homozygotes for the minor allele may not appear during training.

Relationship between discordancy of call and uncertainty score
Even within the range of acceptable uncertainty scores, i.e., those below the threshold, one
might hypothesize that the smaller the uncertainty score, the more reliable the resulting
genotype call. Thus, one might expect a relationship between the pair of uncertainty scores and
the likelihood that two replicate genotype calls would agree. To investigate the relationship
between concordancy in genotype calls and the corresponding uncertainty scores, logistic
regression models were fit with discordancy in genotype calls (yes/no) being the dependent
variable. Analyses were completed with log of the uncertainty scores for the 1st and 2nd

genotype calls as 2 predictor variables, and with fixed subject effects (in addition) included or
excluded from the models. That is, for a model with the log of the uncertainty scores and fixed
subject effects, the model fit was log
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 represents the probability of
discordancy for SNP j on subject i , N is the number of subjects,αi represents the effect for
subject i, and S1ij and S2ij are the uncertainty score of the 1st and 2nd genotype calls for SNP
j on subject i, respectively.

Latent Variable Model for relationship between discordancy and uncertainty score
In addition to fitting logistic regression models to investigate the relationship between
uncertainty score of the genotype calls and the probability of discordancy, the probability of
discordancy between genotype calls was modeled in terms of the probabilities that each call is
correct, which in turn was modeled as a logistic function of the call uncertainty score. In general,
duplicate samples directly capture genotyping consistency rather than accuracy. Therefore, to
model accuracy, it was assumed that, in the case of two genotype calls agreeing, both calls
were correct. Otherwise, we assumed that one of 2 discordant genotype calls was correct. In
short, we always assumed that at least one call was correct. Lastly, the model assumes that the
heterozygote-to-homozygote and homozygote-to-heterozygote error rates are equal and the
homozygote-to-homozygote error rate is zero. Under these assumption, we can express P
(discordancy in calls | at least one call correct) as

Next, the probability of a genotype call being correct was modeled as a logistic function of the
uncertainty score of the call,

with the same relationship between correctness of call and uncertainty score between the two
replicates/runs (i.e., calls with high uncertainty scores may have higher probability of being
incorrect). Combining the model for the probability of discordancy and the model for
probability of correctness of call, a likelihood function for the latent variable model is

where p1 = α + β log(S1ij), p2=α + β log(S2ij), N is the number of individuals genotyped, S is
the number of SNPs, Cij is 1 if there was a discordancy in calls for SNP j for individual i and
0 if there was a match in calls, and S1ij and S2ij are the uncertainty score of the 1st and 2nd calls
for SNP j on subject i, respectively. It should be noted that this model assumes that the SNP
genotypes are independent, which in the case of high linkage disequilibrium may not be entirely
appropriate. The likelihood function L(α, β | X) can be maximized in terms of α and β to find
estimates for the parameters α and β. This latent variable model leads to further insight into
the relationship between the uncertainty score of the calls, probability of the call being correct,
and probability of discordance/concordance in two calls for the same SNP. This latent variable
model was fit within SAS® version 9.1 using PROC NLP. The NLP procedure in SAS offers
a set of optimization techniques for minimizing or maximizing a continuous nonlinear function
subject to linear and nonlinear, equality and inequality, and lower and upper bound constraints.
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3. Results
To investigate genotype errors and error rates, the two sets of genotype data were analyzed
separately, since the reason for re-genotyping of a sample was in one case random and in the
other case non-random. Discordancy rates, and thus error rates, were determined for the two
sets of data separately, along with relationship of accuracy of calls with the uncertainty score
and discordancy of calls.

For the 20 blind duplicates, results for both the Xba1 and HindIII assays and enzyme chips
were re-genotyped to get two separate calls for each SNP marker. The overall discordancy rate
between two calls was 0.27% with an agreement (Kappa) of 0.997, with an average call rate
between the two replicates of 97.8%. Table 1 cross-tabulates the genotype calls for the 1st and
2nd runs. As illustrated in Table 1, the percentage of no calls appears to differ between
heterozygote calls and homozygote calls (i.e., 1% of homozygous first calls are no calls for
second call, 4.9% of heterozygous first calls are no calls for second call, p-value < 0.00001.
Similar results where also seen by Tintle et al (Tintle et al., 2005).

For the 28 nonrandom duplicates (28 individuals with either the Xba1 enzyme chip, HindIII
enzyme chip or both), in which the genotyping was redone due to low initial call rates, the
overall discordancy rate between two calls was 4.53%, with agreement, measured by a
weighted Kappa statistic, of 0.95. The average call rate, across the two replicates, for the
nonrandom duplicates was 91.6%. Table 2 shows the agreement between the first and second
calls. The percent of homozygote and heterozygote calls was similar between the 1st and 2nd

calls, with 0.07% and 0.08% of individuals switching between the type of homozygote from
one call to another. With a homozygote-to-homozygote genotype error the most costly error
in terms of loss of power for genetic association analyses, it is important that this error rate is
small, which was observed in our duplicates(Ahn et al., 2007;Kang, Finch et al., 2004;Kang,
Gordon et al., 2004). Lastly, the percent of no calls was lower for the second replicate than the
first (3.22% 10 verses 13.65%). This is not surprising, since these chips were selected to be re-
genotyped due to low initial call rates. Based on the results presented in Table 1 and Table 2,
along with the work of Tintle et al (Tintle, et al., 2005), that the assumed genotyping error
model, in which we assumed the probability of homozygote-to-homozygote error is practically
0 and the P(observed heterozygote genotype call | true homozygous genotype) is equal to P
(observed homozygous genotype call | true heterozygous genotype), looks reasonable.

Very high discordancy rates in calls between the first and second replicates were observed in
3 subjects: (subject e000211 had discordancy rate of 37.2%, subject e000106 had discordancy
rate of 19.6%, and subject e000014 had discordancy rate of 11.4%). Subject e000211 had both
the Xba1 enzyme and HindIII enzyme chips re-analyzed with similar discordancy rates
between the two chips (35.4% verses 39.1%). In addition to having higher discordancy rates,
as compared to the other 25 individuals, these three individuals had an agreement of only
0.6785, along with having a higher percent of switching between type of homozygote (0.46%
and 0.55%). We were unable to determine the reason for the poor performance of these three
samples and completed the analysis with these three subjects removed. When these three
samples were excluded, the overall discordancy drops from 4.53% to 1.17% with an agreement
of 0.9873.

We investigated visually the relationship between error (i.e., discordancy between the two
calls) and uncertainty score of the call for the 20 blind duplicates, in addition to modeling the
probability of discordancy as a function of uncertainty scores of the calls. In doing so, we only
included observations in which there was a call for both replicates (i.e., “no calls” were
excluded). Figure 1A shows the relationship between the average of the maximum uncertainty
score for the two calls against discordancy percentage for each of the 20 randomly selected
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individuals. Figure 1A illustrates that genotype uncertainty score increased as a function of the
percentage of discordant genotype calls.

Logistic regression models for the 20 blind duplicates were also fit showing that the uncertainty
score of the 1st and 2nd calls, on the log scale, were both significant predictors of discordancy
of the calls. The regression equation for predicting the probability of mismatch for SNP
genotype j on subject i, pij, including the uncertainty scores for the two genotype calls (S1ij
and S2ij) was estimated to be logit(pij) = 0.1181 + 0.3869*log(S1ij) + 0.8730*log(S2ij) with
both uncertainty scores making significant contributions to predicting probability of mismatch
(p-value < 0.0001). Figure 2 shows the predicted probability of discordancy as a function of
log(S1ij) = log(S2ij) for the 20 blind duplicates.

A similar logistic regression model was fit in which subject-specific fixed effects were also
included, in which both uncertainty scores (p-value < 0.0001) and all subject effects were
significant (p-value < 0.05), with the exception of blind duplicates 3, 9, 11 and 16. The 95%
confidence interval for the odds ratio for effect of log(S1ij) and log(S2ij) from model with
subject effects were (1.54, 1.59) and (2.22, 2.31), respectively.

As with the 20 blind duplicates, we evaluated the relationship between uncertainty score of the
call and the probability of discordancy for the 28 nonrandom duplicates. Figure 1B shows the
relationship between percent of discordant calls and average maximum uncertainty score for
the two calls in the 28 nonrandom duplicates. Most of the 28 individuals had average maximum
uncertainty scores of their calls less than 0.035, with the average uncertainty score for an
individual’s calls being much lower for the second replicate. This was expected because chip
(s) were rerun to correct the low initial call rates, and thus high uncertainty scores (uncertainty
score > 0.25 resulted in a no call for the genotype). Note in Figure 1B that two individuals
(e000211 and e000106) had high discordancy rates despite low average maximum uncertainty
scores.

Figure 1C is a plot excluding the three outliers for subject e000211, e000106 and e000014.
Combining the 20 blind duplicates and the 28 nonrandom duplicates (excluding the three
subjects e000211, e000106 and e000014) into a single figure (Figure 1D), the increase in
percent of discordant calls with uncertainty score is more pronounced. To further investigate
the relationship between discordant calls and uncertainty score for the 28 nonrandom
duplicates, a logistic regression model was fit including both the uncertainty score for the 1st

and 2nd genotype calls: logit(pij) = − 0.6564+0.349*log(S1ij) + 0.1096*log(S2ij), with pij
representing the probability of mismatch for SNP genotype j on subject i and S1ij and S2ij
representing the uncertainty scores for the 1st and 2nd genotype calls for person i, SNP j. If the
three individuals with high discordancy rates are removed from the analysis, the estimated
logistic regression function is logit(pij) = −2.487+0.388*log(S1ij) + 0.119*log(S2ij). The
estimate of the effect of the uncertainty scores on the probability of mismatch was observed
to be much smaller for the nonrandom duplicates as compared to the blind duplicates. This
discrepancy is somewhat expected, in that, for the nonrandom duplicates the probability of
mismatch may be attributed to other factors (sample processing issues, DNA quality, etc.) as
they had low call rates on the first round of genotyping. Figure 2 shows the predicted probability
of discordancy as a function of uncertainty score of the calls on the log scale for the 28
duplicates excluding the individual e000211, e000106 and e000014 from the analysis. To
account for possible difference between subjects, we also included fixed subject effects in the
logistic regression model. All predictors in this latter model were statistically significant (p-
values < 0.0001).

In addition to logistic modeling to assess the relationship between discordancy of genotyping
calls and confidence score, we fit the latent variable model that predicts probability of
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discordancy as a function of correctness of the call and confidence score for both the 28
nonrandom duplicates and the 20 blind duplicates, assuming the same relationship for each of
the uncertainty score measures (i.e., same effect for both the first and second uncertainty score).
The analysis of blind duplicates shows that for log uncertainty score in calls less than −3
(uncertainty score around 0.05), the predicted probability of error is close to zero. The
probability of error was found to be highly significantly associated dependent on the genotype
uncertainty score, with a slope estimate of β̂= −1.545, approximate standard error of 0.0153,
and a p-value < 0.0001. This estimate was similar to the estimate of β found with the nonrandom
duplicate, minus the three outlier subjects (e000014, e000106 and e000211). Hence, if the
uncertainty score of the calls was 0.20 (high uncertainty score), the predicted probability of an
error would be 13.5%. Figure 3 displays the predicted probability of accuracy based on the
latent variable model for the 20 blind duplicates and the 28 nonrandom duplicates. Looking at
Figure 3, which displays the predicted probability of accuracy (i.e., probability the call is
correct) for various uncertainty scores. As the uncertainty score increases (i.e., less confidence
in the genotype call), the probability of accuracy decreases for the blind duplicates. Moreover,
there is a high probability of accuracy when the call uncertainty score is less than 0.05 in the
blind duplicates.

In comparison, the latent variable model was fit to the 28 nonrandom duplicates, producing
estimates of α and β to be 1.149 and −0.499 and standard errors of 0.01 and 0.002, respectively.
When subjects e000014, e000106 and e000211 were excluded from the analyses, the estimates
of α and β where α̂= 0.22 (SE = 0.024) and β̂ = − 1.277 (SE = 0.009), which are similar to the
estimates found based on the 20 blind duplicates. They were both highly significant with
predicted probability of discordancy being large when the uncertainty score for the call is large
(i.e., low uncertainty score in the call). Figure 3 illustrates that if the uncertainty score of the
call was 0.20 (log uncertainty score of −1.60) the predicted probability of discordancy was
22% based on the model fit to the nonrandom duplicates.

4. Discussion and Conclusions
We studied the reproducibility and error rates for genotypes determined by the Affymetrix
GeneChip® 100K Human Mapping Array Set using the Dynamic Modeling Genotyping
Algorithm. Overall, we found excellent reproducibility and accuracy for the Affymetrix
GeneChip® 100K Human Mapping Array Set based on blind duplicate data collected on 20
individuals. We also observed a relationship between the genotype accuracy and discordance
rate and the uncertainty score for the genotype call (i.e., as the uncertainty score increases, the
probability of concordance in genotype calls and accuracy decrease). We observed an overall
discordancy rate of 4.53% and 0.27% for the 28 nonrandom duplicates and 20 blind duplicates,
respectively. When the three extreme discordancy cases are removed from the 28 nonrandom
duplicates, the overall discordancy rate is 1.17%, down from 4.53%. In addition to observing
the low discordancy (error) rate for the 20 blind duplicates, we observed an overall agreement
of 99.7% between the two calls. We also observed that the uncertainty score for the SNPs was
significantly associated with the probability of discordancy. This was true, both when each
subject’s data were aggregated and used as one observation, but also when this association was
examined within individual.

Matsuzaki et al (2004) (Matsuzaki et al., 2004) investigated the reproducibility, accuracy and
call rates using the HapMap CEPH trios for 116,204 SNPs genotyped using oligonucleotide
arrays with the Dynamic Modeling (DM) algorithm for calling the genotype (Cutler, et al.,
2001). The uncertainty score is the p-value produced by the DM algorithm for testing which
genotype is more likely to be correct. Matsuzaki et al (Matsuzaki, et al., 2004) reported a
genotype concordance rate of 99.76%. A low uncertainty score is indicative of a significant
genotype call in which the test for a particular genotype call was highly significant (i.e., low
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p-value). In addition, they investigated the relationship of the DM call uncertainty score, using
various uncertainty score cut-offs (ranging from 0.01 to 1.0), with the reproducibility,
Mendelian inheritance and concordance. They found that as the uncertainty score cut-off
increased, the reproducibility, inheritance and concordance decreased, while the call rates
increased. An uncertainty score cut-off of 0.25 was proposed to provide optimal balance
between call rate and reproducibility. Modification of the calling uncertainty score threshold
from 0.25 to >0.25 would improve accuracy in the called genotypes but at a cost of a reduced
call rate (Figure 3). For the blind duplicates when the threshold was set to 0.25, 0.20, 0.15 and
0.10 the percent of “No Calls” was 1.81%, 2.33%, 2.87% and 4.16%, respectively. Thus,
lowering the threshold from 0.25 to 0.15 results in only a modest increase in “No Calls” (1%)
and would increase the predicted accuracy from 0.926 to 0.965. To have accuracy of 95%, the
score threshold would need to be around 0.20 resulting in 2.33% “No Calls”.

Planned duplicates are a desirable feature of any genome-wide association study and can
provide insight into the nature and possible causes for genotyping errors that could otherwise
go undetected. Further research in genotype calling algorithms, methods for detecting
genotyping errors and methods for incorporating these errors into the statistical analysis are
needed for large genome-wide association studies to be successful.
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Figure 1.
Percent discordant versus average of the maximum uncertainty score of call; (A) Blind
duplicates (B) Nonrandom duplicates (C) Nonrandom duplicates excluding E000211, E000106
and E000014 (D) Blind duplicates and nonrandom duplicates excluding E000211, E000106
and E000014
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Figure 2.
Predicted Probability of discordancy from logistic regression where the uncertainty score of
1st and 2nd calls are equal for the 28 nonrandom duplicates, the 28 nonrandom duplicates minus
e000014, e000211 and e000106, and the 20 blind duplicates. The vertical line indicates an
uncertainty score of 0.25.
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Figure 3.
Predicted probability of accuracy based on latent variable model fitted to data from the blind
duplicates and the nonrandom duplicates with and without removing subject e000014, e000106
and e000211; Call Rates for various uncertainty score thresholds based on the blind duplicates.
The horizontal line represents a probability of correct call of 0.95 and the vertical line represents
an uncertainty score of 0.25.
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