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Abstract
Prediction of random effects is an important problem with expanding applications. In the simplest
context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster
selected via two-stage sampling. Recently, Stanek and Singer (JASA, 2004) developed best linear
unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from
mixed models and superpopulation models. Their setup, however, does not allow for unequally sized
clusters. To overcome this drawback, we consider an expanded finite population mixed model based
on a larger set of random variables that span a higher dimensional space than those typically applied
to such problems. We show that BLUPs for linear combinations of the realized cluster means derived
under such a model have considerably smaller mean squared error (MSE) than those obtained from
mixed models, superpopulation models, and finite population mixed models. We motivate our
general approach by an example developed for two-stage cluster sampling and show that it faithfully
captures the stochastic aspects of sampling in the problem. We also consider simulation studies to
illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed
model.
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1. INTRODUCTION
Optimal estimation of average costs for hospitals that typically vary in size is an important
practical problem because of the impact in health care economics, and patient choice of hospital
care (see http://www.healthgrades.com, for example). In many cases, this is based on
information obtained from patients (units) in hospitals (clusters) realized under a two-stage
sampling scheme.
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The best linear unbiased predictor (BLUP) developed under a mixed model is often offered as
a solution to this problem (Searle et al. 1992). Although the mixed model accounts for unequal
numbers of units in sample clusters, it does not use often available information about their
sizes. The superpopulation model of Scott and Smith (1969) is an alternative that incorporates
this information. Both models can be plausibly used to represent the problem of interest, but
neither is formally linked to the finite population from which the two-stage sample is drawn
as is the finite population mixed model recently proposed by Stanek and Singer (2004)1 for
situations where clusters are of equal size. Under this model, predictors have smaller mean
squared error (MSE) than the competitors, even when the variance components are replaced
by estimates as indicated in San Martino, Singer and Stanek (2007). We extend the approach
Stanek and Singer (2004) by developing predictors under a new expanded finite population
mixed model that outperforms the competitors both in equal and unequal size two-stage cluster
sampling problems.

Suppose our interest is in the average cost of appendectomies (the latent value) for each of
three hospitals in the past year (Table 1), and that such costs are known (without error) for
some patients in two of the hospitals. When the data are obtained from a stratified simple
random sample of appendectomy patients, with hospitals as strata, the best linear unbiased
estimate is the average cost for the available patients in each hospital (i.e., $2000 for
Central, and $1800 for Mercy).

Now assume that a simple random sample of appendectomy patients is selected from each of
a simple random sample of hospitals (Table 2) according to a two-stage sampling scheme. We
refer to a sample hospital as a primary sampling unit (PSU) to distinguish it from a specific
hospital, and to a sample patient as a secondary sampling unit (SSU) to distinguish it from a
specific patient. Under the usual mixed model, the sample appendectomy cost for SSU j in
PSU i is

(1)

where μ is the overall mean, Bi is the random effect for PSU i, and Eij is a random variable
corresponding to the deviation of the response of SSU j from the latent value of PSU i, namely
Ti = μ + Bi The random variables Bi and Eij are usually considered independent with null
expected values, and variances given by σ2 and  respectively. Model (1) is an example of
the general linear mixed model

(2)

where, for the sample in Table 2,  and B = (B1,…,Bn)′ with

 and var (Y) = Ω = ZΓZ′ + ∑ with 1a denoting an a×1 vector with all

elements equal to one, Ia representing an a×a identity matrix, and  indicating a block
diagonal matrix with blocks given by Ai (Graybill 1983). This model has a long history (see
for example Harville 1978,Laird and Ware 1982) and is the main topic in several recent texts
such as Brown and Prescott (1999),Verbeke and Molenberghs (2000),McCulloch and Searle
(2001),Byrk and Raudenbush (2002),Diggle et al (2002),Singer and Willett (2003),Demidenko

1We refer to such models as a finite population mixed models instead of random permutation models as in Stanek and Singer (2004) to
avoid confusion with the homonymous, but different, model considered in Hedayat and Sinha (1991).
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(2004),Littell et al (2006), and Jiang (2007). Under (1), the BLUP of the latent value for PSU
i is

(3)

where  is a weighted sample mean with

 (Goldberger 1962;Henderson
1984,McLean, Sanders and Stroup 1991;Robinson 1991). The predictor  is a linear function

of Y (i.e., ), is unbiased (i.e. ), and has minimum MSE. Using the realized
random variables represented in Table 1, and assuming that σ = 100, σ1 = 300 and σ2 = 50 it
follows that μ ̂ = $1844, k1 = 0.25, k2 = 0.89, and the predictor of the latent value for the realized
hospital corresponding to i = 1 (i.e., Central) is  while the predictor of the latent
value for i = 2 (i.e., Mercy) is 

The estimate of a realized hospital’s latent value derived from the stratified model or the
corresponding predictor obtained from the mixed model do not use additional information,
such as the number of hospitals in the population, or the number of appendectomy patients in
each hospital, even though such additional information may be available (as illustrated in the
remainder in Table 2). The combined sample and remainder represents a superpopulation that
is constructed by first (conceptually) selecting a finite population (presumably from some
larger population in time or space), and then selecting a two-stage sample from it. Scott and

Smith (1969) show that the latent value for a hospital in the superpopulation,  is
predicted by

(4)

where fi = mi/Mi. Using the data in Table 1, the resulting predictor for i = 1 (i.e., Central) is
 and for i = 2 (i.e. Mercy) is 

The superpopulation model does not clearly separate the labeled clusters (as in Table 1) from
random variables that represent a sample of clusters (i.e., note how Central Hospital is uniquely
associated with i = 1 in Table 2). This separation is clear when the two-stage sampling process
is represented with indicator random variables in the finite population mixed model developed
by Stanek and Singer (2004). The resulting predictor (limited to equal size clusters and equal
size cluster sample sizes) is

(5)

where  With equal size
clusters, the predictor specified by (4) differs from (5) since variance components have different
definitions. Theoretically, the expected MSE of (5) is less than the expected MSE for (4) or
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(3) as shown by Stanek and Singer (2004), while the empirical version of (5), formed by
replacing variance components with their sample estimates, in general outperforms the
empirical versions of the other predictors, as summarized by San Martino, Singer and Stanek
(2007). However, (5) cannot be used for data like those in Table 1 and Table 2 since cluster
and sample sizes differ.

When clusters are of equal size, the finite population mixed model can be used to represent the
remaining random variables (as in Table 2) without the need to identify the realized clusters
for sample PSUs. When clusters differ in size, we do not know how many SSUs remain since
we do not know the size of the realized PSU. Other problems occur with the representation in
Table 2, as for example, the impossibility that the PSU i = 1 be County Hospital (Table 2),
even though the first stage sampling is assumed to be simple random sampling, or the apparent
random nature of the second stage sample size, PSU size, and SSU variance due to the first
stage sampling.

We extend the expanded model used by Stanek, Singer, and Lencina (2004) for simple random
sampling to two-stage unbalanced sampling to overcome these problems. The expanded model
simultaneously retains the cluster identity and the PSU position, and for each PSU,
distinguishes the relevant contribution of both sampled SSUs, and non-sampled SSUs to a
target random variable such as a PSU mean. For such purposes, we first define an expanded
set of random variables, and subsequently show that a lower dimensional (collapsed) set can
adequately represent the problem without loss of information. Following the steps in Stanek
and Singer (2004), we specify the expanded finite population mixed model in Section 2, derive
the corresponding BLUP along with its theoretical expected MSE in Section 3, and compare
the proposed predictor to others via simulation studies in Section 4, and conclude with
discussion in Section 5.

2. AN EXPANDED MIXED MODEL FOR A FINITE CLUSTERED POPULATION
Let a finite population be defined (as in Table 1) by a listing of units, labeled by t = 1,…, Ms,
in each cluster, labeled by s = 1,…,N, where the non-stochastic potentially observable response
for unit t in cluster s is given by yst. The finite population mean and variance for cluster s are

respectively defined as  Similarly, the
population mean, and between cluster variance are respectively defined as

 We represent the potentially observable response
for unit t in cluster s as yst = μ + βs + εst where βs = (μs − μ) is the deviation of the mean for
cluster s from the overall mean, and εst = (yst − μs) is the deviation of the response for unit t

(in cluster s) from the mean for cluster s. Letting  where ys = (ys1 ys2 …
ysMs)′, the reparameterized finite population can be summarized as

(6)

where  and ε is defined similarly to y.
None of the terms in (6) are random variables.
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2.1. The Expanded Set of Random Variables
We define a vector of random variables to represent equally likely two-stage random

permutations of the population (i.e., with probability  as in Cochran 1977). Without
loss of generality, we assume that the sample clusters are in the first n positions in a permutation
of clusters and that the sample units in cluster s correspond to the units in the first ms positions
in a permutation of that cluster’s units. The ordering of the random variables is important, since
any realization can be re-ordered to exactly match the finite population values.

We use indicator random variables to relate the response for unit t in cluster s, namely, yst, to

the response for SSU j in PSU i. To do so, we let  be an indicator random variable that takes
on a value of one when SSU j in cluster s is unit t, and zero otherwise, so that the response for

SSU j in cluster s may be expressed as  We include a fixed non-stochastic weight
wsj for SSU j in cluster s, and define the weighted response as  so that the sum,

 will correspond to a cluster total when wsj = 1 for all j = 1,…,Ms, or to a cluster mean

when  for all j = 1,…,Ms, for example. Letting  it follows

that  The vector  represents a permutation of
weighted responses for the SSUs in cluster s.

We also let Uis be an indicator random variable that takes on a value of one when PSU i is
cluster s, and a value of zero otherwise. If all clusters were equal in size, we could represent a

permutation of SSUs for PSU i by  When cluster sizes differ, this sum is not defined,
since the dimensions of the vectors composing it cannot all be equal. We solve this problem
by expanding the set of random variables associated to PSU i into the ℕ×1 vector

 so that a two-stage random permutation
of the population is then represented by the Nℕ × 1 vector,

 where the jth element of  that corresponds to
Uis is 

2.2 The Expanded Finite Population Mixed Model

We construct a mixed model for the expanded response vector  next. Indexing expectation
with respect to permutations of clusters with the subscript ξ1 and expectation with respect to
permutations of units in a cluster with the subscript ξ2, and for PSU i, we let
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where ,

,

 denotes the deviation of response from the
expected response within a PSU. The fixed effects are given by μ, the vector of cluster means,

while the random effects correspond to  In the finite population
mixed model of Stanek and Singer (2004), the random effect for PSU i was defined as

 with the random variables Uis explicitly linking the
clusters to PSU i. In the finite expanded mixed model, random effects are defined for SSU j in

PSU i as  For example, when  for all j = 1,…,Ms (corresponding

to the PSU mean), it follows that  For both models,
the expected value of the random effects (with respect to ξ1) is zero. We combine the fixed
and random effects to define the expanded finite population mixed model as

(7)

where U = (U1 U2 … UN). The covariance matrix of the random effects is

while the covariance matrix of  is

where  and Ja denotes an a × a matrix with all elements equal to one.

2.3. Defining Target Quantities
Model (7) is an expanded version of a finite population mixed model that retains the identity
of clusters, while accounting for a two-stage random permutation. Our interest is to predict

target linear combinations defined by  where g is non-stochastic. For simplicity, we
limit discussion to the case

(8)

where c is an N × 1 vector of constants. In particular, we focus on the setting where c = ei, i.e.,
an N × 1 vector with all elements equal to zero, except for element i which has the value of
one. The principal interest lies in the setting where i≤n, i.e., in the clusters realized in the sample.
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When  for all s = 1,…,N, j = 1,…,Ms, the target,  is the mean of

PSU i; when wsj = 1 for all s = 1,…,N, j = 1, …,Ms, the target,  is the total
of PSU i. Note that in both cases, the target is a random variable.

3. PREDICTING A PSU MEAN IN THE EXPANDED FINITE POPULATION MIXED
MODEL

To obtain the BLUP, we adopt the basic strategy employed by Scott and Smith (1969), Royall
(1976), Bolfarine and Zacks (1992), Valliant et al. (2000), and Stanek and Singer (2004),
among others. We assume that the elements in the sample portion of  will be observed, and
express the target T as the sum of two parts, one which is a function of the sample, and the
other, a function of the remaining random variables. Then, requiring the predictor to be a linear
function of the sample random variables and to be unbiased, we obtain coefficients that
minimize the MSE. While in theory, an optimal predictor can be obtained via this recipe, in
practice, the high dimensionality of the expanded random vectors may result in singularities
that lead to multiple solutions as discussed in Stanek, Singer, and Lencina (2004). For this
reason, we explore projections of the expanded random variables into lower dimensional spaces
that retain the necessary information for an optimal solution.

3.1. Partial Collapsing of the Expanded Finite Population Mixed Model Random Variables
Following Rao and Bellhouse (1978), we provide a way of determining whether the optimal

linear unbiased predictor of a target random variable,  can be obtained as the optimal

linear unbiased predictor of  based on a vector of collapsed random variables that

spans a lower dimensional space defined by  is a matrix of dimension

Nℕ × c with c < Nℕ. We take  so that
the effect of collapsing is the generation of sums of the SSUs for the sample and for the
remainder in each cluster for each PSU, thus reducing the number of random variables from

Nℕ to 2N2. Since  we

can write  Using (8), it follows that

 represent an nN × 1. vector of

constants, and  be the first nN random variables (corresponding to the sample) in 

Then letting  be the optimal linear unbiased predictor of T based on  be

a linear unbiased predictor of  it follows from Rao and Bellhouse (1978, Theorem

1.1) that  will be optimal for  if and only if  Expressing

 as a function of  and simplifying terms, it follows that

 when wsj = ws for all j = 1,…,Ms (see details at
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http://www.umass.edu/cluster/). This implies that we can obtain the optimal predictor using
the partially collapsed random variables as long as within each cluster, the weights are equal
for all SSUs.

Having this in mind, we assume that wsj = ws for all j = 1,…,Ms and develop the BLUP of

 based on the 2N2 collapsed random variables contained in . The first N2 of them
are of the form  while the remaining N2 are of the form.

3.2. Predicting Linear Combinations of PSU Latent Values Using the Expanded Finite
Population Mixed Model

We partition  into the first nN random variables corresponding to the sample,  and

the N(N − n) remaining random variables,  and write the target as

 Explicitly, the partitioned
expanded finite population mixed model is

(9)

Requiring the predictor of T to be a linear function of  to be unbiased, and to have minimum
MSE, the BLUP of T in (9) is

(10)

where

(see a: http://www.umass.edu/cluster/ for details),

 is an indicator ‘inclusion’ random
variable for cluster s in the sample (see derivation in Appendix A). An expression for the MSE
of the predictor can be developed directly using expressions for the variance, and simplifies to
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where ,

 (see b.
http://www.umass.edu/cluster/ for details).

When predicting a PSU mean, i.e., using  (10) simplifies to  if i ≤ n and

to  when i > n, where  The MSE for a sample PSU mean predictor (when
i ≤ n) simplifies to

(see c. http://www.umass.edu/cluster/ for details) while the MSE for a PSU not in the sample
is given by

4. COMPARISON OF PREDICTORS
We compare the MSE of (10) to that of the simple mean, and of predictors (3) and (4). When
clusters are of equal size, have homogeneous unit variances, and sample sizes are equal, the
MSE for each predictor can be explicitly calculated. In this setting, we also compare the results

with the MSE for predictor (5). For the sample mean,  while for

(5),  The MSE for predictors (3) and (4) are

given by  for (3) and

 for (4) as shown in Stanek and Singer (2004). Although we have explicit
expressions for the MSE of these predictors, the difference between them is a complicated
function of the population parameters. Since shrinkage constants for the expanded predictor
depend on the cluster latent values, we compare the MSE relative to the expanded finite
population mixed model predictor in four settings with different values of the unit intra-class

correlation coefficient,  In each setting, the cluster latent values are set equal to
evenly spaced quantiles from some specified distribution. The results, expressed as percent
increase in MSE relative to the MSE of (10) are presented in Figure 1, and illustrate that in all
settings considered, using (10) results in a substantial reduction in MSE (over 40% when f <
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0.2). This is true even for (5), illustrating that a smaller MSE can be achieved for the BLUP
derived under the expanded finite population mixed model as compared to the BLUP obtained
under the finite population mixed model of Stanek and Singer (2004). There were little
differences in the MSE comparisons with different distributions of the cluster latent values.
The results illustrate that predictor (3) has larger MSE relative to the other predictors when f
> 0.5. The MSE for predictors (4) and (5) are similar, and differ more from the MSE of (10)
when f is small.

Figure 2 summarizes increases in MSE for different intra-class correlation coefficients;
quantiles of a uniform distribution were used to determine cluster latent values and unit
parameters. The results illustrate that for low intra-class correlation coefficients, the relative
increase in MSE can be dramatic. Once again, for low sampling fractions, similar patterns in
MSE are evident for (3), (4) and (5).

In Figure 3, we compare predictors of the sample mean, for (3) and (4) in two settings where
cluster sizes differ. Predictor (5) is not applicable in such settings. These results are based on
simulation studies (with 5000 trials each) that repeat a two-stage sampling process from a finite
population. The MSE is estimated by the average squared difference between the predictor and
the latent PSU value in each case. In the left column, cluster sizes differ by 10-fold, with sample
sizes for clusters proportional to the cluster size. The results illustrate the performance of the
predictors for different sampling fractions. The right column in Figure 3 compares the MSE
of predictors when the sample size per cluster is constant.

5. DISCUSSION
The expanded finite population mixed model uses a larger set of 2N2 random variables than
the ℕ random variables typically used in superpopulation models or in the finite population
mixed model of Stanek and Singer (2004). These random variables are fewer than the ℕ2
random variables resulting from an expansion that retains the identity of units and SSUs, and
even fewer than the very general representation of the model used by Godambe (1955). We
show that this intermediate set of random variables allows a clear representation of a two-stage
sample, while accounting for details on different cluster and sample sizes. Other approaches
do not appear to connect the potentially observable data to the random variables in the stochastic
model. Since more than one finite population mixed model can be used, we have shown how
they can be compared by considering them in a hierarchy, and identifying whether the
additional set of orthogonal random variables adds to the information about the target quantity.
Further reductions in the number of random variables from the expanded finite population
mixed model were considered (Appendix B), each of which lead to loss of information.

It is valuable to note that these results depend on selection of the target quantity. For example,
if there is interest in the relationship between two variables among units (in a cluster), the
collapsed expanded set of 2N2 random variables is not likely to be sufficient.

The BLUP obtained under the new model offers substantial gains over previous predictors.
These gains are likely mitigated by the need to estimate shrinkage constants for use in practical
setups. Simulation studies comparing the performance of the empirical predictors (3), (4), and
(5) in the equal cluster size/sample size settings indicate some loss in efficiency, but with a
similar ordering of MSE (San Martino, Singer, and Stanek 2007). Limited simulation studies
have been conducted using the expanded model predictor and have indicated that there is a
greater loss in the MSE of (10) relative to the other predictors. Iterative estimation procedures
may be possible, and are currently being investigated. This area requires more study.
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APPENDIX A
Consider the partitioned expanded finite population mixed model in (9) where

 and the random effects are given

by  with

 and U = (UI UII), UI = ((Ui)) = (U1 U2 … Un) and UII =
((Ui)) = (Un+1 Un+2 … UN). The corresponding covariance matrix is given by

(see a. http://www.umass.edu/cluster/ for details) which we partition as

 where  (see b.
http://www.umass.edu/cluster/ for details). Letting L be a vector of constants, it follows that

 and the unbiased constraint is given by

 Using Lagrange multipliers, we minimize  while
accounting for the unbiased constraint results and obtain the familiar solution

This result simplifies to

Stanek and Singer Page 11

J Stat Plan Inference. Author manuscript; available in PMC 2009 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.umass.edu/cluster/
http://www.umass.edu/cluster/


(see c. http://www.umass.edu/cluster/ for details) where

 (see d. http://www.umass.edu/cluster/ for

details),  The predictor  can then be
expressed as as (10) (see e. http://www.umass.edu/cluster/ for details).

APPENDIX B
We discuss whether several other plausible reductions in the dimension of the set of expanded
random variables (given by Nℕ), including a reduction to the set of 2N random variables used
by Stanek and Singer (2004), may be considered without loss of information. First, it is natural

to consider whether it is sufficient to predict  using the 2N collapsed random

variables defined by  This set of random variables is similar to that used by Stanek
and Singer (2004) for a population with equal size clusters and equal size samples per cluster

with no response error. Since  defines a
linear combination of PSU means.

First, let T ̂ = L̂′YwI where L^ represents an n × 1. vector of constants, and YwI represents the
first n random variables (corresponding to the sample) in Yw. In this case, the bias Eξ1ξ2(L̂′
YWI − T) = (L̂′1n)ms − (c′1N)(Ms − ms) is zero only if sampling of clusters is conducted with
probability proportional to size (PPS) (see a. http://www.umass.edu/cluster/).

Now assume a PPS sampling scheme, and notice that since , we may write

 Letting  be a linear unbiased predictor of

 based on the sample part of  the predictor T ̂ will
be optimal if and only if Eξ1ξ2[(T ̂ − T)B̂] = 0. Simplifying this expectation, we find

where  cI is an n × 1. vector and f denotes the common sampling
fraction (see b. http://www.umass.edu/cluster/). This expression is not equal to zero, even when
the population consists of equal size clusters with homogeneous variances, and equal size
samples are taken from sample clusters. By Theorem 1.1 in Rao and Bellhouse (1978), this

result implies that some efficiency is lost in prediction when collapsing  to Yw. The

predictor based on  will have smaller MSE than the predictor based on Yw, even in the
settings considered by Stanek and Singer (2004) with no response error when clusters are of
equal size, and equal size samples are selected.
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Figure 1.
Percent increase in MSE for the Finite Population Mixed Model (FP), Superpopulation Model
(SP), Mixed Model (MM), and Sample Mean (Mean) Predictors Relative to Finite Expanded
Mixed Model Predictor of a Realized PSU Mean where N = 100, n = 30, and M = 20 for all
clusters. Equal Size Clusters and Equal Unit Sampling Fractions per Cluster
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Figure 2.
Percent increase in MSE for the Finite Population Mixed Model (FP), Superpopulation Model
(SP), Mixed Model (MM), and Sample Mean (Mean) Predictors Relative to Finite Expanded
Mixed Model Predictor of a Realized PSU Mean by Unit Intra-class Correlation and Unit
Sampling Fraction where N = 100, n = 30, and M = 20 for all clusters. Equal Size Clusters and
Equal Unit Sampling Fractions per Cluster
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Figure 3.
Percent increase in MSE for the Finite Population Mixed Model (FP), Superpopulation Model
(SP), Mixed Model (MM), and Sample Mean (Mean) Predictors Relative to Finite Expanded
Mixed Model Predictor of a Realized PSU Mean with Probability Proportional to Size SSU
sampling and for Equal SSU size sampling for different Cluster Sizes where N = 100, n = 30,
and M = 20 for all clusters.
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