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Background: Chromosome 13q deletion is associated with
varying phenotypes, which seem to depend on the location of
the deleted segment. Although various attempts have been
made to link the 13q deletion intervals to distinct phenotypes,
there is still no acknowledged consensus correlation between
the monosomy of distinct 13q regions and specific clinical
features.
Methods: 14 Italian patients carrying partial de novo 13q
deletions were studied. Molecular–cytogenetic characterisation
was carried out by means of array-comparative genomic
hybridisation (array-CGH) or fluorescent in situ hybridisation
(FISH).
Results: Our 14 patients showed mental retardation ranging
from profound–severe to moderate–mild: eight had central
nervous system (CNS) anomalies, including neural tube defects
(NTDs), six had eye abnormalities, nine had facial dysmorph-
isms and 10 had hand or feet anomalies. The size of the deleted
regions varied from 4.2 to 75.7 Mb.
Conclusion: This study is the first systematic molecular char-
acterisation of de novo 13q deletions, and offers a karyotype–
phenotype correlation based on detailed clinical studies and
molecular determinations of the deleted regions. Analyses
confirm that patients lacking the 13q32 band are the most
seriously affected, and critical intervals have been preliminarily
assigned for CNS malformations. Dose-sensitive genes prox-
imal to q33.2 may be involved in NTDs. The minimal deletion
interval associated with the Dandy–Walker malformation
(DWM) was narrowed to the 13q32.2–33.2 region, in which
the ZIC2 and ZIC5 genes proposed as underlying various CNS
malformations are mapped.

T
he 13q-syndrome is caused by structural and functional
monosomy of the 13q chromosomal regions. Carriers of 13q
partial deletions may have widely varying phenotypes, but

the most common clinical features include moderate–severe
mental and growth retardation, craniofacial dysmorphisms,
hand and foot anomalies, and brain, heart and kidney defects1–4

(http://www.ecaruca.net). Several attempts have been made
over the years to correlate 13q deletion intervals with distinct
phenotypes. Niebuhr5 suggested that distal deletions are closely
associated with severe phenotypes, whereas proximal deletions
tend to cause fewer major anomalies, with the exception of
retinoblastoma. Brown et al3 6 defined 13q32 as the critical band
for the most severe phenotypes, showing that monosomy of a
1.2-Mb region in q32 is related to the development of severe
mental and growth retardation, as well as major malformations
including brain abnormalities. The ZIC2 (zinc finger protein of
cerebellum 2) gene maps to this critical region and has been

considered a plausible candidate for brain anomalies. ZIC2
mutations have been associated with holoprosencephaly
(HPE),7 8 thus leading to the hypothesis that ZIC2 hemizygosity
may contribute to the severe brain malformations of patients
with del(13q). Luo et al9 have suggested that one or more of the
genes mapping to 13q33–34 may be responsible for the
expression of neural tube defects (NTDs) as a result of
haploinsufficiency. McCormack et al10 and Alanay et al11 have
suggested that the 13q22–33 region is critical for the develop-
ment of the Dandy–Walker malformation (DWM), which
implies the existence of at least one other dose-sensitive gene
(in addition to ZIC2) that has a role in cerebellar development.

There is still no consensus on possible correlations between
the monosomy of distinct 13q regions and specific clinical
features. Here, we describe 14 cases of de novo 13q partial
deletions (seven terminal and seven interstitial) and their
characterisation by means of conventional cytogenetics, array-
comparative genomic hybridisation (array-CGH) or fluores-
cence in situ hybridisation (FISH), in an attempt to address the
karyotype–phenotype correlations.

METHODS
Table 1 summarises the clinical characteristics of each patient.
Additional clinical details are provided as supplementary
information (see http://jmg.bmjjournals.com/supplemental).
Case 10 has been previously described.12

To define the deletion breakpoints, the patients were
investigated by means of FISH, or array-CGH and FISH.

FISH analysis
To establish the telomeric or interstitial nature of the deletions,
metaphases of all the patients were analysed by means of FISH
using specific 13q subtelomeric probes (Vysis, Downers Grove,
Illinois, USA; and Oncor, Gaithersburg, Maryland, USA)
according to the manufacturers’ protocols. The maintenance
of such sequences in one or both of the 13 homologues
indicates a terminal or interstitial deletion. Case 13 was also
investigated by means of specific 13/21, 14/22 and 15
centromeric probes (Oncor).

RPCI-11 BAC clones, selected according to the UCSC Genome
Browser (http://genome.ucsc.edu/, release April 2004) and
provided by Dr M Rocchi, University of Bari, Italy, were used
to characterise the breakpoints. BAC clone cultures, probe
labelling, slide preparation and hybridisation were carried out
using standard protocols.

Abbreviations: array-CGH, array comparative genomic hybridisation;
BAC, —; CNS, central nervous system; DWM, Dandy–Walker
malformation; FISH, fluorescent in situ hybridisation; HPE,
holoprosencephaly; NTDs, neural tube defects; ZIC2, —
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Array-CGH analysis
Genomic DNA was extracted from peripheral blood samples
(cases 3, 8, 11), amniocytes (cases 1, 7), fibroblasts (cases 9, 14)
or lymphoblast cultures (cases 2, 10) using the GenElute Blood
Genomic DNA kit (Sigma-Aldrich, St Louis, Missouri, USA)
according to the supplier’s instructions. Patients 1, 2, 3, 7, 8 and
10 were investigated by means of a Spectral Genomics 1 Mb
chip (www.spectralgenomics.com) together with SpectralWare
software that gives a graphical view of the analysis of the
acquired images. The array-CGH procedures were performed as
previously described.13 The array-CGH analysis of patients 9, 11
and 14 was carried out using the Agilent Human Genome CGH
Microarray Kit 44B platform, a high-resolution 60-mer oligo-
nucleotide-based microarray, allowing a genomewide survey
and molecular profiling of genomic aberrations with a resolu-
tion of about 75 kb. Labelling and hybridisation were carried
out as previously described.14

RESULTS
Seven of the de novo 13q deletions were interstitial (patients 2–
6, 8 and 9) and seven terminal (cases 1, 7 and 10–14). Table 1
summarises the clinical findings and the size of the 13q-deleted
segment for each patient. The patients are arranged from 1 to
14 according to the breakpoint localisation (from centromere to
telomere) on 13q. Additional clinical details, including whole
facial dysmorphisms, congenital heart defects, and hand, foot
and skeletal abnormalities, are given as supplementary
information. Three of the 14 patients (1, 4 and 7) were
diagnosed prenatally, and the ultrasound results of all of them
are available: the three pregnancies were voluntarily inter-
rupted, but only patient 4 underwent fetal autopsy. Our patient
series consists of nine XX females, three XY males and two XY
patients with ambiguous genitalia; patient 11 is characterised
by a minor genital abnormality. The ages of the post-natal
patients range from 4 months to 28 years. Growth parameters
were poor in nine patients, with head growth concordantly
reduced in six; postnatal overgrowth was recorded in one
patient (case 13). Mental retardation ranged from severe–
profound (four patients) to mild–moderate (four patients);
among the mild–moderate patients, the age at which develop-
mental milestones were reached varied (table 1); three of the 11
postnatal patients were not assessed for cognitive performance.
Eight of the 14 patients show CNS anomalies (including NTDs).
Six have eye abnormalities, including three (patients 10–12)
who are blind owing to microphthalmos, coloboma and
hypoplasia of the optic nerve. Nine patients show facial
dysmorphisms, the most frequent of which are hypertelorism
(8/9 cases) and a broad and prominent nasal bridge (7/9); other
minor anomalies are less frequent, such as a high and narrow
palate (5/9), low-set ears (4/9) and epicanthus (4/9). Eight
patients have both hand and foot anomalies, and two have
either hand or foot anomalies. Absent or hypoplastic thumbs
and brachyphalangy of the middle phalanx of the little finger
have been reported as the main digital malformations in
patients with 13q deletions,15 and patients 10 and 11 show
absent or hypoplastic thumbs; patients 3, 11 and 13 show fifth
finger clinodactyly, with other phalangeal abnormalities iden-
tified in patients 3 and 9. Two patients (5 and 12) have
brachymetacarpia or brachymetatarsia. Five patients show
congenital heart defects. Two patients (8 and 10) have
gastrointestinal malformations (severe gastro-oesophageal
reflux and stenotic anus) and one (case 11) has a minor renal
anomaly consisting of hypoplastic kidneys with normal renal
function.

Figure 1 shows the BAC clones used for the analyses, their
cytogenetic localisation, the distances between the clones
defining the breakpoints and the extension of the deleted

regions. Additional cytogenetic data are provided as supple-
mentary information. The size of the deletions varies from 4.2
to 75.7 Mb.

DISCUSSION
Our study is the first comprehensive molecular characterisation
of de novo 13q deletions by means of array-CGH and FISH, and
allows us to address karyotype–phenotype correlations depend-
ing on the extent of the deletions. In agreement with previous
reports,6 the overall phenotype severity in our series varies
widely, with some patients being only slightly affected and
carrying only dysmorphic features and minor anomalies, and
others being seriously compromised.

Three patient groups have been distinguished on the basis of
previous attempts to correlate defined 13q-deletion intervals
with specific phenotypic signs3: patients carrying proximal
deletions not extending into the q32 band and characterised by
variable dysmorphic features, mild or moderate mental
retardation and growth retardation (group 1); patients with
deletions including at least part of q32 and the most serious
phenotype, with severe mental and growth retardation and one
or more major malformations most often involving the brain,
eyes, distal limbs, genitourinary and gastrointestinal traits
(group 2); and patients with more distal deletions involving
bands q33–34, who usually show growth and severe mental
retardation, but without gross malformations (group 3). In our
cohort, four patients (2, 4, 5 and 6) fit into group 1, as they
carry proximal deletions not extending to q32; eight patients (1,
3, 7–12) show the deletion of the entire 13q32 band (with the
exception of patient 3 who lacks only the q32.1 sub-band) and
are assigned to group 2; and two patients (13 and 14) seem to
belong to group 3 as they carry more distal deletions exclusively
involving the q33–q34 bands. Table 2 lists the clinical features
indicated as being typical of patients with 13q32 deletions,3 6

and their presence or absence in our three patient groups.
Patients of groups 1 and 3 do not perfectly fit the suggested

phenotypic features,3 especially with regard to mental retarda-
tion: in group 1, this was scored mild and moderate in patients
2 and 5, but severe in patient 6; and, in group 3, patients 13 and
14 show only moderate mental retardation, but they lack brain
anomalies and other major malformations, according to Brown
et al.3 However, our findings confirm that group 2 patients
(lacking the 13q32 band) are the most seriously affected: all of
the patients for whom data are available show severe and
profound mental retardation, growth delay, microcephaly and
brain anomalies or NTDs (except for patient 3, who lacks only
the q32.1 sub-band; table 2). The microphthalmia and
coloboma previously reported in patients with the 13q32
deletion6 are confined to our group 2 patients (table 1 patients
1, 8, 10–12). Patients 8 and 10–12 share coloboma (table 1) and
a common deleted region ranging from 13q32.2 to 13q33.2
(fig 1). In addition to coloboma, patients 10–12 show
microphthalmia and blindness (table 1), and a common deleted
interval extending from 13q33.2 (the distal bkp of the
‘‘coloboma’’ region) to 13q33.3 (the deletion breakpoint of
patient 13 who does not display any eye abnormality; fig 1). The
EFNB2 (ephrin-B2) gene maps within the 13q33.2–13q33.3
interval. This gene belongs to a family of ligands with specificity
for the eph receptors, which, in animal models, participate in
several aspects of visual system development.16 It might be
hypothesised that haploinsufficiency in this gene is responsible
for the more severe eye anomalies found in patients 10–12 as
compared with patient 8. Hand and foot anomalies in our
sample are not restricted to group 2 (table 1), but patients 10
and 11 show the absent or hypoplastic thumbs considered to be
the most representative of these features.3 15 17 Given that
patients 10–12 present with the most severe eye abnormalities,
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but diverge from the absent or hypoplastic thumbs phenotype,
assignment to 13q33.2–13q33.3 of gene or genes involved in
absent or hypoplastic thumbs cannot be definitely inferred.

Patients 1 and 2 carry deletions including the RB1 locus
(13q14.2). No signs of retinoblastoma were evident at
prenatal ultrasound examination in patient 1, whereas patient

2 did not develop the tumour until age 11 years. In contrast
with most patients with germline RB1 mutations, a relevant
proportion of those carrying a cytogenetically visible deletion
involving the 13q14 band show unilateral disease and some
develop no tumours at all.18 19 This is the case in our postnatal
patient 2.

Table 2 Main clinical features of patients with 13q deletions grouped according to the inclusion or exclusion of the 13q32 band

Features

Group 1 patients: deletions
proximal to q32 Group 2 patients: deletions including q32

Group 3 patients:
deletions distal to q32

2 4 5 6 1 3 7 8 9 10 11 12 13 14

OFC q q Q NK — Q — R NK Q Q Q Q Q
Growth NK Q Q NK Q Q — Q (pre-n) NK Q Q Q q (post-n) Q
Mental retardation Mild — Moderate Severe — — — Severe — — Profound Profound Moderate Moderate
Brain anomalies – + – NK + – – + NK + + + – –
NTDs – – – – – – + – + – – – – –
Other major malformations – – – +* +� – +` – – +1 +� +** – –

OFC, occipitofrontal head circumference; NTDs, neural tube defects; NK, not known; pre-n, prenatal; post-n, postnatal. Q, reduced; R, normal; q, increased; +/–,
presence/absence of the features; —, undetectable.
*Ambiguous genitalia.
�Microphthalmos.
`Diaphragmatic hernia.
1Eye abnormalities with blindness; absent or hypoplastic thumbs; atrial and ventricular septal defects; patent ductus arteriosus; ambiguous genitalia; stenotic anus.
�Hypoplastic thumbs; cleft lip and palate; eye abnormalities with blindness.
**Eye abnormalities with blindness.

Cytogenetic
region BACs

13q13.3

13q14.11

13q14.3

13q21.1

13q21.31

13q21.33

13q22.1

13q22.2

13q22.3

13q31.1

13q31.2

13q31.3

13q32.1

13q32.2

13q33.1

13q33.2

13q33.3

13q34

13qter

RP11_647F1
RP11_779P7
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Figure 1 FISH results obtained using BAC clones targeting the 13q arm. For each patient, the size of the deleted regions (coloured bars) and the distances
between the BACs defining the breakpoints are indicated. +, presence of the hybridisation signal on the deleted chromosome; 2, absence of the
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Congenital heart defects are heterogeneous and do not seem
to be associated with 13q32 or any other specific deleted
segments; and renal and gastrointestinal malformations are
infrequent, even in group 2.

Bartchs et al20 suggested that the 13q32.2–q34 region plays an
important role in genital development. Two of our group 2
patients show ambiguous genitalia (patient 10) and a minor
genital abnormality (patient 11; table 1), thus confirming the
possible involvement of the q32 band in genital development.
However, patient 6 (carrying a 13q22.1 or q22.2–q31.3 deletion)
shows ambiguous genitalia, thus suggesting that other prox-
imal genes may be involved in genital anomalies due to
haploinsufficiency.

The critical 13q32 band responsible for the severe phenotypes
of group 2 patients has subsequently been restricted to a 1.2-
Mb region between markers D13S136 and D13S147,6 contain-
ing the ZIC2 gene at q32.3.7 8 The observation that heterozygotic
ZIC2 mutations are associated with HPE in patients without
chromosomal abnormalities led to the hypothesis that ZIC2
haploinsufficiency may partially underlie the brain malforma-
tions seen in patients with the 13q deletion and, in line with
this hypothesis, the only one of our group 2 patients without
CNS anomalies (patient 3) retains the q32.3 sub-band and,
consequently, the ZIC2 gene. Luo et al9 have proposed a critical
region at 13q33.2-qter, distal to and not overlapping Brown’s
critical band specifically involved in NTDs, and suggested that
one or more genes mapping to this band and distal to ZIC2 may
cause NTDs as a result of haploinsufficiency. Two of our
patients show NTDs (tables 1 and 2): patient 7 with a 13q22-
qter deletion, and patient 9 with an interstitial 13q31.1–q33.1
deletion and the maintenance of the entire proposed critical
region. The distal breakpoint at q33.1 indeed maps 1.5 Mb
proximally to the microsatellite markers D13S274-D13S1311,
fixing the q33.2 breakpoint of the terminal deletion indicated
by Luo et al.9 On the basis of these observations, we presume
that other dose-sensitive genes proximal to q33.2 may be
involved in NTDs if they are haploinsufficient, and this favours
the hypothesis of the presence of more than one locus for NTDs
in the 13q32-qter region.6 The role of ZIC2 mutations as a
common cause of human NTDs was excluded by Brown et al,21

but it should be noted that ZIC5 (another member of the ZIC
gene family) maps 16 kb proximally to ZIC2. Deficiency of the
Zic5 mouse orthologue is associated with NTDs,22 which makes
the hypothesis that ZIC5 deletion may be responsible for
human NTDs attractive even if no human ZIC5 mutations have
yet been described.23

Another locus within 13q22–33 (different from ZIC2) has
been proposed as a cause of DWM, a specific CNS abnormality
associated with distal 13q deletion.10 11 Our patient 8 has DWM,
and patients 11 and 12 show DWMs respectively associated
with cerebellar hypoplasia and agenesis of the corpus callosum.
As the breakpoints of their deletions (fig 1) are localised distally
to the centromeric boundary of the previously reported DWM
critical region,10 we narrowed the minimal DWM-associated
deletion interval to 13q32.2–33.2, and a recent report of a
13q31.2/32.1-qter deletion in a fetus with DWM and other
malformations supports our finding.24

The first locus involved in human DWM has been localised to
an interval encompassing the ZIC1 and ZIC4 genes in the 3q2
region and, on the basis of the observation that heterozygotic
deletions of both mouse orthologues Zic1 and Zic4 cause a
DWM-like phenotype, it has been hypothesised that a hetero-
zygotic loss of both ZIC1 and ZIC4 genes may cause DWM in
patients with 3q deletion.25 ZIC1 and ZIC4 genes map to
chromosome 3 in a configuration that is paired with that of
ZIC2 and ZIC5 on chromosome 13. Like the four previously
reported patients with DWM,10 11 24 our patients with DWM lack

the 13q32.3 band encompassing the ZIC2 and ZIC5 genes. It is
therefore possible to assume that the loss of both ZIC2 and ZIC5
may cause DWM in patients with the 13q deletion, like the loss
of ZIC1 and ZIC4 in patients with the 3q deletion. Grinberg et
al23 have suggested that the loss of ZIC2 may lead to HPE, and
the loss of both ZIC2 and ZIC5 may lead to DWM with HPE.
However, all our patients with CNS anomalies lack both genes
and have different CNS features, thus making it difficult to
support this assumption. Clinical studies on patients with 13q
deletions including only one of the two genes may be useful for
establishing their possible role in determining CNS-specific
phenotypes, although further studies on human mutations and
their phenotype effects are necessary to clarify the possible role
of ZIC5 in CNS anomalies.

An additional consideration is that the loss of ZIC2 and/or
ZIC5 may underlie the various CNS malformations seen in
patients with the 13q deletion. Indeed, loss of the same genes
leading to different CNS phenotypes can be ascribed to the
simultaneous loss of contiguous but different chromosomal
regions that may influence their expression. Alternatively,
variable expression of such genes may be caused by modifier
loci modulating the severity of the traits. Furthermore, it is well
known that patients carrying deletions of precisely the same
chromosomal regions may show different phenotypic features
depending on the genetic background in which they are placed.

For more information visit the website http://
jmg.bmj.com/supplemental
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di Milano, Milan, Italy

Competing interests: None declared.

*These authors contributed equally to this work.

Correspondence to: E Rossi, Biologia Generale e Genetica Medica,
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