Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1988 May;56(5):1352–1357. doi: 10.1128/iai.56.5.1352-1357.1988

Induction of tolerance to lipopolysaccharide (LPS)-D-galactosamine lethality by pretreatment with LPS is mediated by macrophages.

M A Freudenberg 1, C Galanos 1
PMCID: PMC259829  PMID: 3356468

Abstract

In mice treated with D-galactosamine, lipopolysaccharide (LPS) exhibits enhanced toxicity (C. Galanos, M. A. Freudenberg, and W. Reutter, Proc. Natl. Acad. Sci. USA 76:5939-5943, 1979). Pretreatment of mice with LPS before D-galactosamine rendered them tolerant to the enhanced lethal effect of LPS. Tolerance was established at 1 h after LPS injection and, depending on the dose of LPS used for pretreatment, lasted for up to 48 h. With C3H/HeJ mice with acquired sensitivity to LPS (M. A. Freudenberg, D. Keppler, and C. Galanos, Infect. Immun. 51:891-895, 1986), i.e., mice that had been administered C3H/HeN macrophages, pretreatment with LPS induced tolerance only if the C3H/HeN macrophages were already present at the time of pretreatment. This indicates that, like lethality, induction of tolerance by LPS is a macrophage-mediated phenomenon. Direct interaction of LPS with macrophages is the first step in the initiation of tolerance or toxicity. C3H/HeN macrophages (2 X 10(7], incubated with minute amounts of LPS (0.5 to 0.02 microgram) in vitro and transferred subsequently to C3H/HeJ mice, induced lethality when administered together with or after D-galactosamine and tolerance when injected before D-galactosamine. Macrophages activated in vitro lost their tolerance- and lethality-inducing properties upon further incubation in LPS-free culture medium for 18 h. Such macrophages could be successfully restimulated by a new addition of LPS.

Full text

PDF
1353

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
  2. Brade H., Galanos C., Lüderitz O. Differential determination of the 3-Deoxy-D-mannooctulosonic acid residues in lipopolysaccharides of Salmonella minnesota rough mutants. Eur J Biochem. 1983 Mar 1;131(1):195–200. doi: 10.1111/j.1432-1033.1983.tb07249.x. [DOI] [PubMed] [Google Scholar]
  3. Decker K., Keppler D. Galactosamine hepatitis: key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death. Rev Physiol Biochem Pharmacol. 1974;(71):77–106. doi: 10.1007/BFb0027661. [DOI] [PubMed] [Google Scholar]
  4. Dinarello C. A., Bodel P. T., Atkins E. The role of the liver in the production of fever and in pyrogenic tolerance. Trans Assoc Am Physicians. 1968;81:334–344. [PubMed] [Google Scholar]
  5. Freudenberg M. A., Bøg-Hansen T. C., Back U., Galanos C. Interaction of lipopolysaccharides with plasma high-density lipoprotein in rats. Infect Immun. 1980 May;28(2):373–380. doi: 10.1128/iai.28.2.373-380.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freudenberg M. A., Keppler D., Galanos C. Requirement for lipopolysaccharide-responsive macrophages in galactosamine-induced sensitization to endotoxin. Infect Immun. 1986 Mar;51(3):891–895. doi: 10.1128/iai.51.3.891-895.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Freudenberg M. A., Kleine B., Galanos C. The fate of lipopolysaccharide in rats: evidence for chemical alteration in the molecule. Rev Infect Dis. 1984 Jul-Aug;6(4):483–487. doi: 10.1093/clinids/6.4.483. [DOI] [PubMed] [Google Scholar]
  8. Galanos C., Freudenberg M. A., Jay F., Nerkar D., Veleva K., Brade H., Strittmatter W. Immunogenic properties of lipid A. Rev Infect Dis. 1984 Jul-Aug;6(4):546–552. doi: 10.1093/clinids/6.4.546. [DOI] [PubMed] [Google Scholar]
  9. Galanos C., Freudenberg M. A., Reutter W. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5939–5943. doi: 10.1073/pnas.76.11.5939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Galanos C., Lüderitz O. Electrodialysis of lipopolysaccharides and their conversion to uniform salt forms. Eur J Biochem. 1975 Jun;54(2):603–610. doi: 10.1111/j.1432-1033.1975.tb04172.x. [DOI] [PubMed] [Google Scholar]
  11. Galanos C., Lüderitz O., Rietschel E. T., Westphal O., Brade H., Brade L., Freudenberg M., Schade U., Imoto M., Yoshimura H. Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur J Biochem. 1985 Apr 1;148(1):1–5. doi: 10.1111/j.1432-1033.1985.tb08798.x. [DOI] [PubMed] [Google Scholar]
  12. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  13. Galanos C., Lüderitz O., Westphal O. Preparation and properties of a standardized lipopolysaccharide from salmonella abortus equi (Novo-Pyrexal). Zentralbl Bakteriol Orig A. 1979 Apr;243(2-3):226–244. [PubMed] [Google Scholar]
  14. Galanos C., Rietschel E. T., Lüderitz O., Westphal O., Kim Y. B., Watson D. W. Biological activities of lipid A complexed with bovine-serum albumin. Eur J Biochem. 1972 Dec 4;31(2):230–233. doi: 10.1111/j.1432-1033.1972.tb02524.x. [DOI] [PubMed] [Google Scholar]
  15. Gmeiner J., Lüderitz O., Westphal O. Biochemical studies on lipopolysaccharides of Salmonella R mutants. 6. Investigations on the structure of the lipid A component. Eur J Biochem. 1969 Jan;7(3):370–379. doi: 10.1111/j.1432-1033.1969.tb19618.x. [DOI] [PubMed] [Google Scholar]
  16. Greer G. G., Rietschel E. T. Inverse relationship between the susceptibility of lipopolysaccharide (lipid A)-pretreated mice to the hypothermic and lethal effect of lipopolysaccharide. Infect Immun. 1978 May;20(2):366–374. doi: 10.1128/iai.20.2.366-374.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kleine B., Freudenberg M. A., Galanos C. Excretion of radioactivity in faeces and urine of rats injected with 3H,14C-lipopolysaccharide. Br J Exp Pathol. 1985 Jun;66(3):303–308. [PMC free article] [PubMed] [Google Scholar]
  18. Lehmann V., Freudenberg M. A., Galanos C. Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice. J Exp Med. 1987 Mar 1;165(3):657–663. doi: 10.1084/jem.165.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Madonna G. S., Vogel S. N. Early endotoxin tolerance is associated with alterations in bone marrow-derived macrophage precursor pools. J Immunol. 1985 Dec;135(6):3763–3771. [PubMed] [Google Scholar]
  20. Rietschel E. T., Schade U., Jensen M., Wollenweber H. W., Lüderitz O., Greisman S. G. Bacterial endotoxins: chemical structure, biological activity and role in septicaemia. Scand J Infect Dis Suppl. 1982;31:8–21. [PubMed] [Google Scholar]
  21. Sayers T. J., Macher I., Chung J., Kugler E. The production of tumor necrosis factor by mouse bone marrow-derived macrophages in response to bacterial lipopolysaccharide and a chemically synthesized monosaccharide precursor. J Immunol. 1987 May 1;138(9):2935–2940. [PubMed] [Google Scholar]
  22. Seyberth H. W., Schmidt-Gayk H., Hackenthal E. Toxicity, clearance and distribution of endotoxin in mice as influenced by actinomycin D, cycloheximide, -amanitin and lead acetate. Toxicon. 1972 Aug;10(5):491–500. doi: 10.1016/0041-0101(72)90175-4. [DOI] [PubMed] [Google Scholar]
  23. Williams Z., Hertogs C. F., Pluznik D. H. Use of mice tolerant to lipopolysaccharide to demonstrate requirement of cooperation between macrophages and lymphocytes to generate lipopolysaccharide-induced colony-stimulating factor in vivo. Infect Immun. 1983 Jul;41(1):1–5. doi: 10.1128/iai.41.1.1-5.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES