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Abstract
We describe a concise and convergent route to the core matrix of the cortistatin steroidal alkaloids.
The salient features of the synthesis are the Snieckus cascade methodology and the Masamune
alkylative dearomatization. This chemistry lends itself to a total synthesis of the cortistatins and to
the development of a SAR program based on diverted total synthesis.

In 2006, Kobayashi and coworkers reported the isolation of a novel class of steroidal alkaloids,
the cortistatins, from the marine sponge, Corticium simplex.1 Among them, cortistatin A, in
particular, exhibited cytostatic antiproliferative activity against human umbilical vein
endothelial cells (HUVECs) at concentrations as low as 100 pM. The high selectivity observed
for the endothelial (HUVEC) cell line, in comparison with other normal and cancerous cell
lines, suggests that cortistatin A (1) could, in principle, be a selective angiogenesis inhibitor.
2 Inspired by the potent biological activity and unusual structural elements of the cortistatins,
a number of groups have been engaged in total synthetic efforts directed at this challenging
family of natural products.3 The recent success of Baran and coworkers in converting
prednisone to cortistatin A (1) is a milestone in this field.4 Even more recently, a total synthesis
of cortistatin A (1) was accomplished by Nicolaou and coworkers.5

Our own initial approach to the synthesis of cortistatin A6 focused on the preparation of a key
pentacyclic intermediate, cf. 8. This advanced compound would hopefully serve as a precursor
to the natural product itself. Even more importantly, it would provide a useful synthetic
platform from which to gain entry to a range of cortistatin analogs through diverted total
synthesis.7 Unexpected problems encountered in our initial synthetic route6 led us to consider
an alternative and perhaps more interesting approach to the synthesis of intermediate 8. This
modified route would culminate in a Masamune-inspired alkylative dearomatization8 of
compound 7. As outlined in Scheme 1, we envisioned taking advantage of the elegant Snieckus
cascade methodology9 for construction of tetracyclic compound 7 from the relatively simple
precursors, 2 and 3. The progression would commence with 1,2-addition of the aryllithium
derived from 2 to α,β-unsaturated aldehyde 3, thereby generating alkoxide 4. Subsequent
intramolecular carbamate migration, followed by 1,4-elimination would give rise to
quinomethide 6. We anticipated that the latter would undergo 6π-electrocyclization to produce
an intermediate of the type 7.
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At the planning level, we could not be certain of the stereochemical outcome of the 6π-
electrocyclization (at C8). We postulated that intermediate 7 would likely be the
thermodynamically favored epimer, due to the trans/anti stereoconnectivity of the angular
methyl group (C18), the hydrogen on C14 and the angular 2-carbon chain. Finally,
intramolecular alkylation of 7 should provide access to the key pentacyclic core system (8) of
the cortistatins.

A model study was conducted to evaluate the likelihood of the applicability of the Snieckus
paradigm to our system. As shown in Scheme 2, aryl bromide 910 was exposed to the action
of tBuLi in ether for 30 min at −78 °C. Following addition of compound 10,11 the reaction
mixture was warmed to room temperature and stirred overnight. We were pleased to find that
the desired product, 14, could be isolated, albeit at the time, in only 33% yield. Selective
deprotection of the primary TBS-ether afforded compound 15,12 which was transformed to
mesylate 16 in excellent yield. Finally, the phenoxide, presumably generated by treatment of
compound 16 with anhydrous TBAF in THF at room temperature, was further heated to 130
°C to give the desired product 17 in 85% yield.

Having established the viability, at least in principle, of our general vision of the problem it
was now appropriate to turn to the synthesis of aldehyde 22. As outlined in Scheme 3, alkylation
of the Hajos-Parrish mono-ketal 18 with bromide 19 afforded 20 in 58% yield.13 Extended
triflate formation,14 followed by Pd-catalyzed carboxylation15 of the crude triflate gave the
methyl carboxylate, which was further reduced by DIBAL-H to furnish compound 21 (50%
yield over three steps starting from 20). The resultant allylic alcohol was oxidized to the desired
aldehyde 22 through treatment with IBX.16

When aldehyde 22 was exposed to the kind of reaction conditions described above (see Scheme
2), only the 1,2-addition product was isolated, as a 1:1 mixture of diastereomers. However,
when the reaction mixture was further heated overnight at 80 °C, the tetracyclic product 23
was obtained in 44% yield, though with the undesired stereochemistry at C8, as evidenced by
X-ray crystallography of the deprotected product 24 (Scheme 4).17 However, when compound
23 was heated at 130 °C in THF, it epimerized to the desired compound 25 in quantitative
yield, presumably through a sequence comprised of retro-6π-electrocyclization and 6π-
electrocyclization. This transformation is consistent with our expectation that compound 25,
possessing a 1,3-cis diaxial relation between the angular methyl and the angular 2-carbon chain
(−CH2CH2OTBS), is the thermodynamically favored epimer. We further envisioned that, if
the reaction mixture arising from treatment of aldehyde 22 with aryllithium derived from 9
were heated at 130 °C, the desired product, 25 could be obtained. Indeed, upon heating the
reaction mixture at 130 °C overnight, the hoped for product 25 was obtained in high yield
(71%). Following selective deprotection and subsequent mesylation of the primary alcohol,
intermediate 26 was in hand. The latter smoothly underwent the desired alkylative
dearomatization to produce the pentacyclic core of the cortistatins in excellent (ca. 88%) yield.
The structure of compound 27 was unambiguously confirmed by X-ray crystallography.18

In summary, we have devised and reduced to practice a concise and efficient route to the core
matrix of the cortistatins. Critical to its success was an orchestration of carbanion chemistry,
an O→O acyl transfer driven rearrangement, quinonemethide formation, and electrocyclic re-
aromatization setting the stage for alklyative dearomatization (see 9→27). This chemistry
could well be extended to a total synthesis of the cortistatin family of steroids. Equally
important, it sets the stage for realistic SAR work based on diverted total synthesis.7
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Scheme 1.
Synthetic strategy toward cortistatin A (1).
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Scheme 2.
Model Study. Reagents and conditions: (a) tBuLi, Et2O, −78 °C, 30 min, then 10, then warm
to RT, overnight, 33%; (b) I2, MeOH / THF (1 / 1), RT, 3 h, 80%; (c) MsCl, pyridine,
CH2Cl2, 0 °C → RT, 6 h, 98%; (d) TBAF, THF, RT, 5 min, then 130 °C, 20 min, 85%.

Dai and Danishefsky Page 5

Tetrahedron Lett. Author manuscript; available in PMC 2009 November 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 3.
Synthesis of aldehyde 22. Reagents and conditions. (a) NaH, DMSO; then 19, RT, 4 h, 58%;
(b) (i) Tf2O, 2,6-di-tert-butyl-4-methylpyridine, CH2Cl2, 0 °C, 30 min; (ii) Pd(OAc)2, PPh3,
iPr2NEt, CO, MeOH, 50 °C, 48 h; (iii) DIBAL-H, CH2Cl2, 0 °C, 30 min, 50% from 20; (c)
IBX, ethyl acetate, reflux, 7 h, 90%.
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Scheme 4.
Synthesis of the pentacyclic core of cortistatin A. Reagents and conditions. (a) tBuLi, Et2O,
−78 °C, 30 min, then 22, then heated to 80 °C, overnight, 44%; (b) TBAF, THF, 0 °C, 2 h,
96%; (c) THF, 130 °C, overnight, 100%; (d) tBuLi, Et2O, −78 °C, 30 min, then 22, then heated
to 130 °C, overnight, 71%; (e) I2, MeOH / THF (1 / 1), RT, 2 h, 83%; (f) MsCl, Pyridine,
CH2Cl2, 0 °C → RT, 94%; (g) TBAF, THF, RT, 5 min, then 130 °C, 20 min, 88%.
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