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Abstract
Language fMRI has been used to study brain regions involved in language processing and has been
applied to pre-surgical language mapping. However, in order to provide clinicians with optimal
information, the sensitivity and specificity of language fMRI needs to be improved. Type II error of
failing to reach statistical significance when the language activations are genuinely present may be
particularly relevant to pre-surgical planning, by falsely indicating low surgical risk in areas where
no activations are shown. Furthermore, since the execution of language paradigms involves cognitive
processes other than language function per se, the conventional general linear model (GLM) method
may identify non-language-specific activations. In this study, we assessed an exploratory approach,
independent component analysis (ICA), as a potential complementary method to the inferential GLM
method in language mapping applications. We specifically investigated whether this approach might
reduce type II error as well as generate more language-specific maps. Fourteen right-handed healthy
subjects were studied with fMRI during two word generation tasks. A similarity analysis across tasks
was proposed to select components of interest. Union analysis was performed on the language-
specific components to increase sensitivity, and conjunction analysis was performed to identify
language areas more likely to be essential. Compared with GLM, ICA identified more activated
voxels in the putative language areas, and signals from other sources were isolated into different
components. Encouraging results from one brain tumor patient are also presented. ICA may be used
as a complementary tool to GLM in improving pre-surgical language mapping.
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INTRODUCTION
Functional magnetic resonance imaging (fMRI) has the potential to fully observe the working
of the human language system (Binder, 1997a; 2000). Information from language task fMRI
can be used to non-invasively lateralize (Binder et al., 1996; Woermann et al., 2003) and
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localize (Carpentier et al., 2001; Brannen et al., 2001) language regions in the brain. Language
fMRI is also applied to define spatial relationships between brain lesions and language areas
for pre-surgical mapping (Stippich et al., 2007). The sensitivity and specificity of language
fMRI are major concerns in generating language maps for clinical use (Tharin and Golby,
2007). In fMRI data analysis, the conventional confirmatory analysis technique (i.e., general
linear model, GLM) generates statistical maps by contrasting two conditions or comparing
event-related changes to a control state (Friston et al., 1995). The null hypothesis is “no
activation”, and type I error of finding activations by chance is controlled by criteria of
statistical significance selected by the investigator. However in pre-surgical mapping
applications, an excessively conservative criterion used to identify activations in the functional
areas has the potential of falsely indicating absence of surgical risk by removing the activated
voxels genuinely associated with the task (Loring et al., 2002). This kind of type II error of
failing to obtain statistical significance when the effects are genuinely present is particularly
relevant to pre-surgical functional mapping, in order to avoid harming critical cortical areas
during surgery.

A variety of word generation tasks have been used for mapping of language-specific cortical
regions (Bookheimer, 2007). In such tasks, subjects are given a word or letter cue and instructed
to produce a word or several words associated with the stimulus (Binder, 1997b). Since the
execution of such language paradigms necessarily involves cognitive processes and sensory/
motor functions other than language function per se, the statistical maps may show activations
in the non-language-specific regions related to perceptual, attentional, motor, or other
processes.

In an effort to improve pre-surgical language mapping by addressing the above problems, we
investigated an exploratory method, independent component analysis (ICA), as a
complementary approach to the confirmatory method (GLM). We evaluated ICA’s overall
ability in localizing putative language regions, both for reducing type II error and distinctly
identifying language-specific regions.

ICA has been shown to be useful in the extraction of statistically independent features from
fMRI data (McKeown et al., 1998; Calhoun et al., 2001a; Duann et al., 2002; Seifritz et al.,
2002). In spatial ICA (sICA), as ICA is usually implemented for fMRI, the blood-oxygen-level
dependent (BOLD) contrast image volume is assumed to be a linear mixture of spatially
independent components which may originate from different sources. The time courses and
spatial maps of the components can be decomposed by estimating the mixing matrix using a
variety of algorithms (Hyvärinen and Oja, 2000). Methods have also been proposed to extend
ICA to analyze multi-subject fMRI data (Calhoun et al., 2001b; Svensen et al., 2002; Esposito
et al., 2005; Beckmann and Smith, 2005b). Schmithorst and Holland (2004b) compared three
methods of group ICA analysis (across-subject averaging, subject-wise concatenation, and
row-wise concatenation) and concluded that the subject-wise concatenation approach proposed
by Calhoun et al. (2001b) provided the best overall performance among the three approaches.
This method has been used in studies of visual perception (Calhoun et al., 2001b), numerical
processing for complex math operations (Schmithorst and Brown, 2004a), narrative
comprehension (Schmithorst et al., 2006), and complex natural environment (Malinen et al.,
2007).

We performed a group ICA analysis on fMRI data of two word generation tasks from fourteen
healthy subjects. We focused on the similar activation patterns revealed by both language tasks
since they represented the brain regions that were important across both paradigms. To this
end, we used similarity analysis on the component spatial maps derived from two tasks to
identify the common components of interest (CCOIs); among the CCOIs we identified the
language-specific components.
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In addition, since any single language task is unlikely to engage all aspects of language function,
we investigated strategies of combining results across different tasks. First, in order to
maximize the sensitivity of the procedure, we performed a union analysis on the language-
specific CCOIs across tasks. Second, for the purpose of identifying the likely essential language
areas, we performed a conjunction analysis (intersection) on the language-specific CCOIs. We
then compared the ICA results with the conventional GLM method. Finally, fMRI data from
one brain tumor patient was analyzed for comparison of ICA and GLM methods as potential
pre-surgical planning tools.

MATERIALS AND METHODS
Subjects and functional MRI

The protocol was approved by the Partner’s Institutional Review Board. Fourteen right-handed
native English speaking healthy subjects participated in the group study (7 female, mean age
= 27.6 ± 9.5 years, range 21–53 years). One right-handed brain tumor patient (male, 30 years
old, with anaplastic oligodendroglioma WHO Grade III tumor located in the left frontal lobe)
was also studied. All subjects provided written informed consent.

MR images were obtained using a 3.0 Tesla GE Signa system (General Electronic, Milwaukee,
WI, USA). A single-shot gradient-echo echo-planar imaging (EPI) was used to acquire BOLD
functional images (TR = 2000 ms, TE = 40 ms, flip angle = 90°, FOV = 24 cm, acquisition
matrix = 64 × 64, slice gap = 0 mm, voxel size = 3.75 × 3.75 × 5 mm3). In each image volume,
28 axial slices were acquired using ascending interleaved scanning sequence. Whole brain T1-
weighted axial 3D-SPGR (spoiled gradient recalled) MR images (TR = 7500 ms, TE = 30 ms,
flip angle = 20°, matrix = 512 × 512, 176 slices, voxel size = 0.5 × 0.5 × 1 mm3) were also
acquired for subsequent overlay of functional activation maps. High-resolution T2-weighted
gradient-echo MR images (TR = 8000 ms, TE = 98 ms, flip angle = 90°, matrix = 512 × 512,
93 slices, voxel size = 0.5 × 0.5 × 1.5 mm3) were acquired for the patient data in order to
demonstrate the surgical pathology.

Subjects performed two non-vocalized (silent) word generation tasks: antonym generation
(AG), and verbal fluency (VF). The tasks were implemented as blocked designs consisting of
six pairs of alternating task and rest blocks with 20 sec block duration, lasting 4 min 10 sec
(including a 10 sec pre-stimulus period excluded from analysis to allow stabilization of the
BOLD signal). Stimuli for both tasks were presented visually through MR-compatible video
goggles (Resonance Technology, Los Angeles, CA, USA). In the AG task, eight words were
presented to the subjects sequentially during each task block. Each word was shown for 2000
ms with a 500 ms inter-stimulus-interval (ISI). Subjects were instructed to think of the antonym
of the presented word without speaking aloud. In the VF task, a single letter was presented for
the entire duration of each task block (20 sec). Subjects were asked to generate covertly as
many words as possible beginning with the presented letter. During the rest blocks of both
tasks, subjects were asked to relax and look at a crosshair shown in the center of the visual
field.

Data pre-processing
FMRI data from the two language tasks were analyzed separately. We used the SPM2 software
package (Statistical Parametric Mapping, Wellcome Department of Cognitive Neurology,
London, UK) to perform slice-timing correction to account for the difference in image
acquisition time between slices; and then motion correction by realigning the functional images
to the first volume of each task. Spatial normalization to Montreal Neurological Institute (MNI)
space was performed subsequently on the healthy subjects’ data, re-sampling all functional
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images to 3 × 3 × 3 mm3 voxels by trilinear interpolation (resulting dimension = 53 × 63 × 46).
Spatial smoothing was not applied to the images.

Group ICA analysis of healthy subjects’ data
We applied the subject-wise concatenation approach of group ICA analysis (Calhoun et al.,
2001b) using the GIFT software package (Group ICA of fMRI Toolbox, Olin Neuropsychiatry
Research Center, Hartford, CT, USA). Prior to the ICA procedure, two data reduction steps
were performed using principal component analysis (PCA) to reduce data dimension and thus
reduce the computational load. The number of independent components (ICs) was estimated
for each subject separately using minimum description length (MDL) criteria (Li et al.,
2007). The number of ICs was estimated as 29 ± 4 (mean ± SD across subjects) for the AG
task, and 31 ± 5 for the VF task. We chose to use the maximum number among all subjects
(39 for the AG task, and 41 for the VF task) in the first data reduction step, due to the concern
of under-fitting individual subject data and thus losing important information. Therefore the
AG task data of each subject was reduced to 39 time points (from 120 time points of the original
data set), and the VF task data of each subject was reduced to 41 time points. In the second
data reduction step, we did not use MDL, instead we explored different numbers of ICs, e.g.,
the mean or maximum number of ICs among all subjects. With the concern of under-fitting
individual subject data, and for the purpose of accommodating the variability of artifactual
components across subjects, we also tested a higher number of ICs (i.e., 50). Among all
experiments of different numbers of ICs, 50 seemed to generate plausible results without over-
fitting the activation patterns. Therefore in the second data reduction step for each task, the
reduced data of each subject were concatenated and further reduced to 50 time points. It is
worth mentioning that MDL is only one possible indicative measure of a reasonable number
of dimensions to keep, and cannot be considered a rule.

The reduced data were then decomposed into “group independent components” by the Infomax
ICA algorithm (Bell and Sejnowski, 1995). Each group IC had a spatial map and a
corresponding temporal activation profile (time course). Subsequently single subject IC spatial
maps and time courses were back-reconstructed from group ICs based on the results from data
reduction steps, and then scaled to z-scores.

Selection of common components of interest (CCOIs)
In order to identify common activations by both tasks, we performed a spatial similarity
analysis on the components across tasks. We designated as rAiVj the spatial correlation
coefficient between the mean z-score map (averaged across subjects) of the ith IC of the AG
task and the mean z-score map of the jth IC of the VF task, using Pearson’s correlation equation:

(Equation 1)

where Aim and Vjm are the intensity of voxel m in the ith IC map of the AG task and the jth IC
map of the VF task respectively, and N is the number of voxels in the spatial maps. Then the
similarity measure of the ith IC of the AG task is:

(Equation 2)

Similarly rViAj and rVi were calculated for each IC of the VF task as well. Then we specified
an arbitrary threshold of the similarity measure r = 0.5 to define the common components
across tasks, yielding pairs of ICs with highly similar spatial maps.

There were 30 ICs of the AG task whose rAi was higher than 0.5 with its counterpart IC from
the VF task, and 29 ICs of the VF task whose rVi was higher than 0.5 with its counterpart IC
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from the AG task. Among these components, 29 pairs of ICs confirmed their mutual similarity.
A special case was that one IC of the VF task had two counterpart ICs from the AG task. We
subsequently focused our analysis on these common components and visually inspected their
spatial maps. We excluded the components that highlighted veins, the ventricular system, or
other non-cortical regions. Finally, for each remaining common component of interest (CCOI),
a random-effects (RFX) analysis was performed on the back-reconstructed individual subjects’
maps by a one-sample t test. The t maps were thresholded at |t| = 3.85 (p < 0.001, degrees of
freedom (df) = 13).

GLM analysis of healthy subjects’ data
For comparison purposes, the pre-processed data sets were submitted to SPM2 for conventional
analysis based on the GLM method. In the first-level single subject analysis, an estimate of the
canonical hemodynamic response function (HRF) was used as the basis function, and only task
conditions were explicitly modeled. Then a second-level RFX analysis was performed by one-
sample t test on the contrast images derived from the single subject analyses. The t maps were
thresholded at t = 3.85 (p < 0.001, df = 13) in order to be comparable with the ICA results.

Voxel count in the putative language areas
To facilitate a quantitative comparison between the ICA-derived maps and the GLM maps in
terms of the number of supra-threshold voxels identified in the putative language areas, two
region of interest (ROI) images were generated for Broca’s and Wernicke’s areas respectively
(shown in Figure 1), based on the Talairach Daemon database (Talairach and Tournoux,
1988), using WFU Pick Atlas software (version 1.04, Department of Radiology, Wake Forest
University, Winston-Salem, NC, USA) (Lancaster et al., 1997,2000; Maldian et al, 2003). The
ROI for Broca’s area consisted of Brodmann areas (BAs) 44 and 45 in the left hemisphere; and
the ROI for Wernicke’s area consisted of the posterior half of the left superior temporal gyrus.
Then the number of supra-threshold voxels that were located within the ROI images was
counted for each map, using Brain Imaging Tools (BIT, Gabrieli Lab, Department of Brain
and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA).

Data analysis of one tumor patient’s data
We performed single subject analysis using both ICA and GLM methods on the patient’s pre-
processed data (after slice-timing and motion correction procedures). For the ICA method, the
number of components was estimated as 60 for the AG task, and 55 for the VF task, using
MDL, and PCA was used to reduce the data dimension. Then for each task, the Infomax ICA
algorithm was applied to separate the data into independent components, whose spatial maps
were scaled to z-scores and thresholded at |z| = 2. A similarity analysis was applied on the
spatial maps across both tasks to select components of interest. In the GLM method, first-level
analysis was applied to each task, and the activation maps were thresholded at t = 2.35 (p <
0.01, uncorrected, df = 133) for the AG task, and t = 1.66 (p < 0.05, uncorrected, df = 118) for
the VF task. The t threshold was chosen relatively lenient for better visualization of the
activation clusters.

RESULTS
Language-specific CCOIs

Out of the 29 pairs of common components across both tasks, and one additional component
of the AG task, there were 5 pairs showing signals from the veins, 2 pairs showing signals in
the ventricular system, 5 pairs showing signals in the cerebellum, and 3 pairs showing signals
in the brainstem. These 15 pairs of common components were excluded from further analysis.
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For the remaining 14 pairs of CCOIs and one additional IC of the AG task, the MNI coordinates
of the supra-threshold voxels were submitted to WFU Pick Atlas database to find the
corresponding anatomic regions and BAs, using a custom toolbox. Then based on the
knowledge of the location of putative language areas in the left frontal and temporal lobes in
the right-handed control population, we classified two ICs from the AG task (designated as
ag1 and ag2) and one IC from the VF task (designated as vf1) as “language-specific” CCOIs
(note that both ag1 and ag2 had the same counterpart IC from the VF task, which is vf1, their
similarity measures are listed in Table 1). The spatial maps of these language-specific CCOIs
are shown in Figure 1, and their activation regions are listed in Table 1. For the AG task,
ag1 demonstrates significant activation in the left inferior/middle frontal gyrus; ag2 shows
activation in the left superior/middle temporal gyrus and superior/inferior frontal gyrus. For
the VF task, vf1 demonstrated robust activations mainly in the left frontal lobe (especially the
inferior/middle/superior frontal gyrus), with some activation in the lentiform nucleus and
caudate.

The time courses of the language-specific CCOIs are plotted in Figure 2 for individual subjects,
as well as the mean time course across subjects (shown in red), and the reference function
generated by convolving the design matrix boxcar with an estimate of the HRF (shown in blue).
The correlation coefficients between IC time course and the reference function are 0.48 ± 0.18
(mean ± SD), 0.53 ± 0.19, and 0.68 ± 0.13 for ag1, ag2, and vf1 respectively (all p < 0.0001).
We also ranked the 50 separated components based on their temporal correlation with the
reference function. The results indicated that ag1 and ag2 ranked the fifth and the second among
ICs of the AG task, and vf1 was the most task-related IC of the VF task.

Comparison of language-specific CCOIs maps with GLM maps
The activation maps of GLM group analysis are shown in Figure 1, for comparison with the
ICA-derived language-specific maps. The results of quantitative comparison between
language-specific CCOI maps and the GLM maps are listed in Table 2, showing the number
of supra-threshold voxels that were located in the putative language ROIs. For the AG task,
the activations of ag1 were mainly located in Broca’s area, and those of ag2 were mainly
located in Wernicke’s area. The combination of these two components showed substantially
more voxels (n = 108) in Wernicke’s area compared with the GLM maps (n = 5), although the
number of voxels in Broca’s area (n = 138) is less than that in the GLM maps (n = 176). For
the VF task, there are twice as many voxels in Broca’s area in vf1 maps (n = 185) than in the
GLM maps (n = 91). Compared with the GLM results, the language-specific CCOIs showed
a greater proportion of total activated voxels in the thresholded maps that were located within
the putative language ROIs, indicating that the ICA-derived maps are more specific to the
language areas with less activation in the non-language-specific region.

We have further investigated the GLM results of the areas that were identified by the ICA
method but not shown in the GLM maps at the same group statistical significance level (p <
0.001, t-threshold = 3.85). For the AG task, the ICA-derived maps identified 103 supra-
threshold voxels that were not identified by the GLM method within the Wernicke’s ROI. The
t-score of those voxels is 1.19 ± 1.24 (mean ± SD). For the VF task, the t-score of the voxels
in the Broca’s ROI that were not identified by the GLM method is 2.61 ± 0.75 (n = 94). As for
the Wernicke’s ROI, there are 5 voxels identified by the ICA method but not shown in the
GLM maps (tmax = 0.91, tmin = −3.88).

Analysis across both tasks
The results from both tasks were combined in two ways. First, in an effort to increase the
sensitivity of language mapping, we performed a union analysis on the thresholded maps of
the ICA-derived language-specific CCOIs. The union maps consisted of activations in the maps
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of any component among ag1, ag2, and vf1, and are shown in Figure 1. Second, to identify the
likely essential language regions, we performed a conjunction analysis similar to the approach
for multi-task fMRI analysis based on the GLM method (Nichols et al., 2005). To this end, the
language regions identified by the AG task were first represented by the union maps of ag1
and ag2, then the intersection of this union map and vf1 maps were generated for the conjunction
maps, which are shown in Figure 1. For comparison purposes, we also performed both union
and conjunction analyses to combine the GLM results from both tasks (Figure 1). The voxel
count results in each map are listed in Table 1. The results of both union and conjunction
analyses indicated that the ICA method identified more activated voxels in the putative
language areas than the GLM method. The ICA-derived conjunction maps identified a greater
proportion of overall activated voxels in the language ROIs, indicating more language-
specificity compared with the GLM-derived conjunction maps.

Non-language-specific CCOIs identified by ICA
In addition to the language-specific CCOIs, there were 13 pairs of non-language-specific
CCOIs identified by both tasks. We classified these components into three categories based on
their activation regions. Their thresholded t maps are shown in Figure 3 (for AG task). The
anatomical regions and BAs of their activations, the spatial similarity measures across tasks,
and the correlation coefficients between their time courses and the reference function are listed
in Table 1.

The first category has one pair of CCOIs, with activations primarily in the perisylvian region
in bilateral inferior/middle frontal gyrus, and bilateral superior/middle temporal gyrus. The
second category consists of 6 pairs of CCOIs, with activations in the motor and sensory cortical
areas. The third category consists of 6 pairs of CCOIs, with activations in different parts of
parietal lobule, precuneus, and cingulate.

Results of single patient’s data
Figure 4 shows the ICA and GLM results of the brain tumor patient’s data. The similarity
analysis identified two language-specific components from the AG task, and one from the VF
task. The red component of the AG task resembles the GLM activation maps, showing
activations in the left frontal and temporal lobes, and in the lateral visual areas. The green
component shows significant activations in Broca’s area. For the VF task, the ICA-derived
maps and the GLM maps identify similar activated areas, while ICA maps have less extraneous
activations in the non-language-specific region. Temporal correlation analysis indicated that
these language-specific components are the most task-related components among the separated
ICs for each task (r = 0.54 and 0.35 for the red and green components of the AG task, r = 0.81
for the language component of the VF task, all p < 0.0001).

DISCUSSION
In this study, we performed group ICA analysis on fMRI data from two language tasks in
fourteen healthy subjects to assess the overall performance of ICA with regards to improving
the sensitivity and specificity of language mapping. We applied a novel strategy of choosing
components of interest based on spatial similarity of the components across different tasks.
Among the identified common components, two language-specific components were identified
for the AG task and one for the VF task. We subsequently compared the ICA-derived language
maps with the GLM results at the same group statistical significance level. In general, the
language-specific CCOIs identified more activated voxels in the putative language areas,
indicating the potential advantage of ICA in reducing type II error. Furthermore, the union
maps derived by the ICA method identified more activated voxels in the putative language
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areas than that of the GLM method, indicating an increase in the sensitivity of language
mapping.

In addition to the language-specific CCOIs, several non-language-specific CCOIs were also
identified. This finding confirmed the usefulness of ICA to isolate signals from other areas that
may participate in language tasks, and therefore provide activation maps more specific to the
language function per se. Furthermore, in an effort to reveal the areas likely essential to the
language processing, the conjunction maps derived by the ICA method identified a greater
proportion of activated voxels in the putative language areas than that of the GLM method,
and therefore more specific to language function.

The results of one brain tumor patient’s data are promising regarding the application of ICA
as a complementary approach to the conventional GLM method for pre-surgical language
mapping. In the AG task, besides one component that was very similar to the GLM results, an
additional component was identified with significant activations in Broca’s area. In the VF
task, compared with the GLM maps, the ICA-derived language maps were more specific to
the language areas, showing less extraneous activations elsewhere.

Selection of components of interest in ICA
ICA has proven to be an effective method for detecting spatially independent features of fMRI
data without a priori assumptions about the time course of different brain processes. A practical
challenge for the ICA technique is in the objective selection of the components that are of
interest for a given application. Methods have been proposed for this purpose based on spatial,
temporal, and spectral criteria (McKeown et al., 1998; Calhoun et al., 2001b; Moritz et al.,
2003). In this study, we proposed a strategy for identifying components of interest based on a
similarity analysis on the components’ spatial maps across different language tasks. The
underlying rationale is that the highly similar components revealed by both tasks potentially
represent activation patterns that are of interest. Calhoun et al. (2004) used a method for
comparing group ICA results by both within-group and between-group similarity analysis,
which focused on the components’ time courses instead. In our study, we did not rely on the
ICs’ temporal behavior to select components of interest; rather we depended on their spatial
patterns. The advantage of this strategy is that we could identify language associated activations
whose temporal behaviors differ from the task timing.

In our study, the spatial maps of the selected common components were then visually inspected,
and the components that presumably originated from non-cortical areas (e.g., veins, ventricular
system, cerebellum, and brainstem) were excluded from further analysis. Among the remaining
CCOIs, we identified the components specific to the language function based on the location
of the putative language areas and leftward asymmetry of language activation pattern in a right-
handed control population (Binder et al., 1997c).

It is worth mentioning that the proposed similarity analysis can be used to select common
components from two tasks. In cases with more than two decompositions, clustering techniques
or similar tools are necessary (Esposito et al., 2005; van de Ven et al., 2007).

Language-specific CCOIs
The activated areas identified by the language-specific CCOIs support the hypothesis that brain
regions involved in language processing extend well beyond the areas in the classical model
(Binder et al., 1997c). Besides Broca’s area in the left inferior/middle frontal gyrus (i.e., BAs
44 and 45) that has been linked to both word production and perception (Binder et al., 1997a;
Price et al., 1998), and Wernicke’s area in the left superior temporal gyrus (i.e., BA 22) that is
traditionally related to word comprehension (Cabeza and Nyberg, 2000), a variety of regions
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in the left superior/medial frontal gyrus, and the left inferior/middle temporal gyrus were also
included in the ICA-derived language maps (see Table 1). Temporal correlation analysis
indicated that the language-specific CCOIs were among the most task-related components.

It is interesting to note that there were two language-specific components found from the AG
task while only one found from the VF task. Ag1 was mainly in the left frontal lobe, ag2 was
mainly in the left temporal lobe, whereas vf1 showed significant activation in the left frontal
lobe with only minor activation in the left temporal lobe. This observation may be due to the
different cognitive demands of the two tasks. During the antonym generation task, subjects
were presented a series of word stimuli, which might require more comprehension at linguistic-
semantic and phonological levels, compared with the verbal fluency task in which subjects
were presented only one letter as the stimulus cue, which likely requires less linguistic
decoding. Therefore, the signals isolated in the temporal lobe (revealed by ag2) may be related
to the language comprehension that occurs more consistently during the AG task. Under this
hypothesis, it is interesting to note that the ICA approach is able to separate the linguistic
decoding from the linguistic encoding aspects of language. This separation effect was
demonstrated in the single patient data as well. Therefore different tasks, and different
combinations of tasks, could be investigated for their usefulness in identifying anatomic
substrates underlying various aspects of language processing.

Comparison of ICA and GLM results
Results from group ICA and GLM analyses have been compared in recent studies. Goebel et
al. (2006) compared self-organizing group ICA (Esposito et al., 2005) with GLM on a sentence
repetition task using fMRI, and concluded that group ICA provided a functional connectivity
model by separating different patterns from the data. In another study that used subject-wise
concatenation group ICA (Calhoun et al., 2001b) on a series of complex natural environment
(Malinen et al., 2007), it was found that the GLM method only revealed sub-areas of the ICA-
revealed activations.

In this study, comparison between group ICA and GLM analyses was focused on the activations
in the putative language areas from word generation tasks. With the GLM method, approaches
have been used to limit type I error associated with multiple comparisons, e.g., Bonferroni
correction (Maxwell and Delaney, 1990), random field theory (RFT, Worsley et al., 1996), and
false discovery rate (FDR, Benjamini and Hochberg, 1995). However adjustments to control
type I error are at the expense of type II error, which is failing to obtain statistical significance
when the effects are genuinely present (Loring et al., 2002). For pre-surgical language mapping,
type II error is more relevant since it may result in falsely underestimating the extent of critical
language cortex and thus resulting in an underestimate of potential surgical risk to language
function. In our study, the majority of voxels in the putative language areas that were missed
by the GLM method had t-scores substantially lower than the chosen threshold, suggesting that
their temporal behaviors correlated poorly with the task timing. This can explain why the
inferential GLM method failed to identify those areas. Therefore as a complementary method
to GLM, ICA can be used to detect activations where the hemodynamic response differs from
the model, thus reducing type II error.

Visual inspection of the language maps derived by the ICA and GLM methods indicated that
ICA-derived maps were more specific to the language function. This observation is confirmed
by the voxel count results demonstrating that a greater proportion of the activated voxels are
within the language ROIs in the ICA maps than in the GLM maps. The GLM maps incorporate
activations in the regions similar to those in the ICA-derived non-language-specific
components (e.g., bilateral activations of the perisylvian, motor, visual, and parietal regions).
With the GLM method, approaches have been explored to identify the brain regions involved
in specific cognitive processes, e.g., factorial designs, cognitive subtraction, and cognitive
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conjunction (Petersen et al., 1990; Price and Friston, 1997; Price et al., 1997). However, these
approaches require the implementation of strictly complementary behavioral task conditions,
which may be difficult to design, complicated for subjects, particularly patients, to perform,
and may generate results that are not straightforward to interpret (Price et al., 1997).
Additionally, such task-centered approaches to narrowing the identified language areas may
be vulnerable to variability between subjects and approaches, and may also lead to less robust
activations in the putative language areas. As such, the advantage of ICA is allowing the
decomposition of comprehensive activation maps into distinct components that could be
individually assessed with regards to their participation in language processing.

Therefore, in contrast to the approaches using GLM to control type I error of the null hypothesis
of “no activation”, and the design strategies using GLM to identify brain regions specific to a
cognitive process, ICA offers a complementary and direct investigation into the null hypothesis
of “no activation” (by separating noise components), as well as the alternative hypothesis of
language-specific vs. non-language-specific activations.

A difficulty encountered with ICA is that the separated components are not always easy to
interpret since ICA is a purely exploratory technique. Therefore the GLM maps could be used
as a template to help guide the interpretation of components. The advantage of a confirmatory
method like GLM is that it provides an integrated picture of all the task-related areas, thus
allowing investigators to view all task-related activations together and form their own
interpretation of the results. Combining the results from both the confirmatory GLM and the
exploratory ICA methods may offer a more complete description of the brain activations
associated with language task performance, particularly useful for the specific application of
pre-surgical mapping.

The ICA-derived maps showed smoother activations than the analogous GLM maps, indicating
that the components from multiple subjects can be well summarized at the group level even
without spatial smoothing. This finding can be explained by the fact that the ICA components
are made of linear combination of voxels (linear multivariate approach) while the GLM is a
linear univariate approach. As a further improvement of ICA by taking into account its linear
multivariate property, Formisano et al. (2004) proposed a cortex-based ICA technique (cbICA),
restricting the decomposition to the “cortical” sub-region of the matrix, where the resulting
component maps are linear combination of voxels laying on a distributed anatomical structure
(e.g., cortex). However for clinical applications where the anatomy might be distorted by the
lesion, this cortex-based approach should be used with special caution.

Combining different language tasks
In this study, we performed both union and conjunction analyses to combine two language
tasks. The purpose of union analysis is to capture activations in the language areas by either
task, thus to increase the sensitivity of language mapping. The purpose of conjunction analysis
is to capture activation areas that are more likely to be essential for language function, by
exclusion of the areas that possibly only participate in, but are not essential to language. These
two combination analyses are valuable for pre-surgical language mapping, since the surgeon
wishes to have a language map that is both sensitive and specific, in order to identify those
brain regions critical for language function so that they may be avoided during the resection,
as well as to maximize resection.

Non-language-specific CCOIs
The ICA-derived non-language-specific CCOIs are likely to represent other brain areas that
nevertheless are involved in performance of the word generation tasks, although some of them
were not highly correlated with the task timing (see Table 1).
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The component in category I shows bilateral activation in the perisylvian region, mainly in the
inferior frontal gyrus (BA 47) and superior temporal gyrus. BA 47 in the left inferior frontal
gyrus has been associated with semantic/syntactic processing (Poldrack et al., 1999). More
recently, left BA 47 and its right hemisphere homologue has been speculated to “constitute a
modality-independent brain area that organizes structural units in the perceptual stream to
create larger, meaningful representation” (Levitin and Menon, 2003). In our study, although
this component was not classified as language-specific mainly due to its symmetric activation
pattern, we propose that the identified regions may represent brain areas involved in perceptual
organization in the language task.

The components in category II represent bilateral activations in the motor and sensory areas.
The activations in the primary motor and pre-motor areas are consistent with the findings by
Rueckert et al. (1994) in a silent verbal fluency task. The activations in the medial and lateral
visual areas, auditory system, and sensory-motor system are consistent with the resting-state
patterns reported by Beckmann et al. (2005a).

The components in category III show bilateral activations in different parts of parietal lobule,
precuneus, and cingulate. It is interesting to note that the activations in these areas in the left
hemisphere have been reported regarding language processing networks (Binder et al.,
1997a; 1997c; Levin et al., 1991; Price et al., 1998), however, the bilateral activation pattern
identified in this study has not been previously reported.

ICA analysis for single patient’s data
In the analysis of one brain tumor patient’s data, we applied spatial similarity analysis across
tasks to select components of interest, as in the group study. In the AG task, besides one
component that resembled the activated areas in the GLM maps, another component (shown
in green in Figure 4) demonstrated significant activations in Broca’s area. Temporal correlation
analysis indicated that this component was poorly correlated with the reference function ( r =
0.35, p < 0.0001). This observation may explain why the GLM method failed to identify
activations in this region, thus resulting in type II error. In the VF task, ICA-derived language
maps were similar to the GLM maps, however, ICA maps were less noisy and more specific
to the language areas. Our results indicate that ICA-derived maps could be complementary to
the GLM maps, especially when GLM fails to identify language activations even at a low
statistical significance level. Furthermore, selecting components of interest based on spatial
similarity across tasks of the same function might be more useful in cases where the
hemodynamic response is difficult to predict, for example, during complicated tasks (e.g.,
event-related paradigms), or for patients’ data.

In a report that compared ICA and hypothesis-driven methods for clinical fMRI tasks (Quigley
et al., 2002), it was observed that ICA mapped the language areas less robustly than the
conventional regression analysis, which is in contrary to our results of the single patient’s data.
They postulated that their finding might be due to the separation of language activations into
multiple components, and the lack of uniformity of the BOLD signal-to-noise ratio (SNR)
across the brain.

Our study on a group of healthy subjects and one brain tumor patient confirmed the possible
role of ICA in improving the sensitivity and specificity of fMRI language mapping. Our results
suggest that the ICA method may be fruitfully applied as a complementary tool to the GLM
method for pre-surgical planning. Further study on single subject/patient language fMRI data,
as well as the investigation of optimal task and task combinations will be needed so that this
technique may become most clinically useful.
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Figure 1.
Comparison of group ICA and GLM analyses of fMRI from antonym generation (AG) and
verbal fluency (VF) tasks from healthy subjects. ROI images in the putative language areas
(red: Broca’s area; green: Wernicke’s area) are shown. The thresholded group activation maps
of the language-specific CCOIs (ag1 and ag2 for the AG task, and vf1 for the VF task; |t| =
3.85) are superimposed on the averaged SPGR images. Results of union and conjunction
analyses by ICA and GLM methods are shown in the last two rows.
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Figure 2.
Time courses of the language-specific CCOIs (plotted for each subject individually). The mean
time course averaged across subjects is shown in red, and the reference function is shown in
blue. All time courses are scaled to z-scores.
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Figure 3.
Group activation maps of the non-language-specific CCOIs identified from the AG task (their
counterpart ICs from the VF task have highly similar spatial maps, not shown). The CCOIs
are classified into three categories based on their activation regions. Category I: activations in
the perisylvian region; category II: activations in the motor and sensory cortical areas; category
III: activations in the parietal lobule, precuneus, and cingulate. All maps are thresholded at |
t | = 3.85.
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Figure 4.
Comparison of ICA and GLM results of the brain tumor patient’s data. Two language-specific
components (shown in red and green) are identified from the AG task, and one is identified
from the VF task. In the AG task, the red component resembles the activations in the GLM
maps. The green component reveals activations in Broca’s areas that were not shown in the
GLM maps (highlighted by magenta circles). In the VF task, the ICA and GLM maps are
similar, but the GLM maps are noisier with activations in the non-language-specific regions.
All ICA component maps are thresholded at | z | = 2. GLM maps of the AG task are thresholded
at t = 2.35 ( p < 0.01, uncorrected). GLM maps of the VF task are thresholded at a lenient level
of t = 1.66 ( p < 0.05, uncorrected) for better visualization of the activations in the language
areas. The background structural images are high-resolution T2 images coregistered to the first
functional image of the corresponding task.
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